Boundary actuation: an Euler-Bernoulli beam
The vertical displacement of an Euler-Bernoulli beam that is clamped at the left end and subject
to a boundary actuation at the other end is governed by
where
| — | vertical displacement of the beam |
| — | force acting on the tip |
| — | length of the beam |
| — | mass per unit length of the beam |
| — | flexural stiffness |
| — | Voigt damping factor. |
| | |
|
The outputs are given by
Application of the temporal Fourier transform yields
Matlab codes
omval = logspace(5,7,300);
alpha = 5e-8; mu = 1.88e-7; ell = 240e-6; EI = 7.55e-12;
a4 = EI/(ell^4); a3 = EI/(ell^3);
dom = domain(0,1);
y = chebfun('y',dom);
D1 = diff(dom,1);
fone = chebfun(1,dom); fzero = chebfun(0,dom);
Wa = [1, 0, 0, 0; 0, 1, 0, 0; zeros(2,4)];
r = [0; 0; 0; (1/a3)];
H1 = zeros(length(omval),1); KE = zeros(length(omval),1);
PE = zeros(length(omval),1);
for indom = 1:length(omval)
om = omval(indom);
Wb = [zeros(2,4); ...
0, 0, 1, 0; ...
0, 0, 0, (1 + alpha*1i*om)];
A0 = [-mu*om*om*fone, fzero, fzero, fzero, a4*(1 + alpha*1i*om)*fone];
[f,fder] = intbvp(A0,fzero,Wa,Wb,r);
H1(indom) = f(1);
KE(indom) = 0.5*norm(D1*D1*f)^2;
PE(indom) = 0.5*norm(om*f)^2;
end
TE = KE + PE;
Plot the magnitude and phase of the transfer function from to .
loglog(omval,abs(H1),'b-','LineWidth',1.1)
xlab = xlabel('\omega', 'interpreter', 'tex');
set(xlab, 'FontName', 'cmmi10', 'FontSize', 20);
h = get(gcf,'CurrentAxes');
set(h, 'FontName', 'cmr10', 'FontSize', 15);
semilogx(omval,unwrap(angle(H1)),'b-','LineWidth',1.1)
xlab = xlabel('\omega', 'interpreter', 'tex');
set(xlab, 'FontName', 'cmmi10', 'FontSize', 20);
h = get(gcf,'CurrentAxes');
set(h, 'FontName', 'cmr10', 'FontSize', 15);
Plot the total energy of the beam arising from boundary actuation.
loglog(omval,TE,'b-','LineWidth',1.1)
xlab = xlabel('\omega', 'interpreter', 'tex');
set(xlab, 'FontName', 'cmmi10', 'FontSize', 20);
h = get(gcf,'CurrentAxes');
set(h, 'FontName', 'cmr10', 'FontSize', 15);
|