Description of graphsp_IP_res.m
Matlab syntax
>> out = graphsp_IP_res(Lp,E,Q,R,gamma,opts);
Matlab function graphsp_IP_res.m takes the problem data
and the input opts and returns the solution to the sparsity-promoting
optimal control problem for growing connected resistive
networks. Input opts allows users to specify the following parameters
opts.eps_dg – tolerance on duality gap;
opts.eps_res – tolerance on dual residual;
opts.maxit – maximum number of IP iterations;
opts.maxit_pcg – maximum number of PCG iterations;
opts.delta_pcg_aff – algorithm parameter for pcg method;
opts.delta_pcg – algorithm parameter for pcg method;
opts.method – method used for computing search directions.
opts.method specifies method used for computing search directions
opts.method = 'chol’ – Cholesky factorization;
opts.method = 'pcg1’ – PCG method with diagonal preconditioner; Hessian stored;
opts.method = 'pcg2’ – PCG method with diagonal preconditioner; Hessian not stored.
If opts argument is omitted, the default values are set to:
opts.eps_dg = ;
opts.eps_res = ;
opts.maxit = ;
opts.maxit_pcg = ;
opts.delta_pcg_aff = ;
opts.delta_pcg = ;
opts.method = 'pcg2’;
The output out is a structure that contains
out.x – optimal vector of the controller edge weights;
out.z – optimal dual vector;
out.dg – duality gap;
out.res – dual residual;
out.s – number of IP iterations;
out.ind1 – number of PCG iterations for affine search direction;
out.ind2 – number of PCG iterations for Mehrotra search direction.
Description of graphsp_proxN_res.m
Matlab syntax
>> out = graphsp_proxN_res(Lp,Ec,R,gamma,opts);
Matlab function graphsp_proxN_res.m takes the problem data
and the input opts and returns the solution to the sparsity-promoting
optimal control problem for growing connected resistive
networks. Input opts allows users to specify the following parameters
opts.eps_dg – tolerance on duality gap;
opts.eps_res – tolerance on dual residual;
opts.maxit – maximum number of proxN iterations.
If opts argument is omitted, the default values are set to:
opts.eps_dg = ;
opts.eps_res = ;
opts.maxit = .
The output out is a structure that contains
out.x – optimal vector of edge weights;
out.s – number of proxN iterations;
out.dg – duality gap;
out.res – dual residual;
out.js – number of iterations for line-search;
out.ss – step-size;
out.iter_time – time of an inner iteration.
Description of graphsp_proxBB_res.m
Matlab syntax
>> out = graphsp_proxBB_res(Lp,Ec,R,gamma,opts);
Matlab function graphsp_proxBB_res.m takes the problem data
and the input opts and returns the solution to the sparsity-promoting
optimal control problem for growing connected resistive
networks. Input opts allows users to specify the following parameters
opts.eps_dg – tolerance on duality gap;
opts.eps_res – tolerance on dual residual;
opts.maxit – maximum number of proxN iterations;
opts.flagBB – flag for BB step-size initialization.
If opts argument is omitted, the default values are set to:
opts.eps_dg = ;
opts.eps_res = ;
opts.maxit = ;
opts.flagBB = .
The output out is a structure that contains
out.x – optimal vector of edge weights;
out.s – number of proxBB iterations;
out.dg – duality gap;
out.res – dual residual;
out.js – number of iterations for line-search;
out.ss – step-size;
out.iter_time – time of an inner iteration.
Description of run_graphsp_res.m
Matlab script run_graphsp_IP_res.m allows users to:
Please set flag_p to:
We set the sparsity-promoting parameter to , where identifies the value of for which all
edge weights in the controller graph are equal to zero. You can specify
other values of in the code.
run_graphsp_IP_res.m gives:
(output of graphsp_IP_res.m for opts.method = 'chol’) and (total running time);
(output of graphsp_IP_res.m for opts.method = 'pcg1’) and (total running time);
(output of graphsp_IP_res.m for opts.method = 'pcg2’) and (total running time);
(output of graphsp_proxN_res.m) and (total running time);
(output of graphsp_proxBB_res.m) and (total running time).
Description of run_proxBB_proxN_res
Matlab script run_proxBB_proxN_res allows users to:
Please set flag_p to:
We set the sparsity-promoting parameter to , where identifies the value of for which all
edge weights in the controller graph are equal to zero. You can specify
other values of in the code.
run_graphsp_IP_res.m gives:
(output of graphsp_proxN_res.m) and (total running time);
(output of graphsp_proxBB_res.m) and (total running time).
Description of run_graphsp_IP_res.m
Matlab script run_graphsp_IP_res.m allows users to:
Please set flag_p to:
We set the sparsity-promoting parameter to , where identifies the value of for which all
edge weights in the controller graph are equal to zero. You can specify
other values of in the code.
run_graphsp_IP_res.m gives:
(output of graphsp_IP_res.m for opts.method = 'chol’) and (total running time);
(output of graphsp_IP_res.m for opts.method = 'pcg1’) and (total running time);
(output of graphsp_IP_res.m for opts.method = 'pcg2’) and (total running time).
|