
QuantumOps

Salonik Resch

January 2019

1 Introduction

QuantumOps is designed to be a convenient tool when practicing linear algebra for quantum computa-
tion. It allows for the quick set up of kets, bras, and gate matrices to enable the user to quickly try
different inputs and get a feel for the operations. Multi-qubit kets, bras, and gates can be built easily
with a provided tensor product operation. It has built in all standard gates and has functionality for
users to create their own gates. Additionally, a user can specify a general function and a unitary gate
matrix will be generated implementing the same operation. Measurements can be performs on kets in
probabilistic fashion. Also contains the QFT and examples of Shor’s factoring algorithm.

1.1 Installation

QuantumOps is available on the CRAN repository. To bring up the QuantumOps environment

i n s t a l l . packages (” QuantumOps ”)
l i b r a r y (” QuantumOps ”)

2 Kets and Bras

Kets are represented by column vectors and Bras by row vectors. The ket and bra functions can be used
to create them. The arguments to these functions are a list of amplitudes. There can be any number
of amplitudes specified, but typically the number of amplitudes should be a power of 2. Each function
will automatically normalize the ket or bra so that the sum of the squares of the amplitudes equals 1.
The dirac function can be used to display kets in dirac notation.

2.1 Single Qubit Kets

Single qubit kets have two amplitudes, one for the state |0〉 and one for the state |1〉. To produce the
state |0〉, use the line of code

k e t ( 1 , 0 )

Which produces the output

[ , 1 ]
[ 1 , ] 1+0 i
[ 2 , ] 0+0 i

Which is a 2-element column vector. The first element is 1, indicating that ket is fully in the |0〉 state.

To produce the state
√
2 |0〉+

√
2 |1〉, use the line of code

k e t ( 1 , 1 )

Which produces the output

1



[ , 1 ]
[ 1 , ] 0.7071068+0 i
[ 2 , ] 0.7071068+0 i

Note that amplitudes in the ket are not the same as the arguments specified. This is due to the auto
normalization. The only requirement is that the two inputs be the same value. The probs function
reports the probability of measuring each state.

k <− k e t ( 1 , 1 )
p r i n t ( p r o b s ( k ) )

Output:

[ , 1 ]
[ 1 , ] 0 . 5
[ 2 , ] 0 . 5

Which is equally likely for each state.

The ket function also removes global phase. Imaginary components determine the phase between
the |0〉 and |1〉 components. Both components can be multiplied by a global phase, which leaves the
physical meaning of ket unchanged. For example, i |0〉 is equivalent to |0〉. The following example
demonstrates.

k <− k e t ( 1 , 0 ) #S p e c i f y s t a t e 1|0> + 0|1>
p r i n t (”K i s ”)
p r i n t ( k )
i <− complex ( 1 , 0 , 1 ) #Set v a r i a b l e i to m a t h e m a t i c a l i
k <− k e t ( i , 0 ) #S p e c i f y s t a t e i |0> + 0|1>
p r i n t (”K i s ”)
p r i n t ( k )

Output:

[ 1 ] ”K i s ”
[ , 1 ]

[ 1 , ] 1+0 i
[ 2 , ] 0+0 i
[ 1 ] ”K i s ”

[ , 1 ]
[ 1 , ] 1+0 i
[ 2 , ] 0+0 i

Note that the meaning is only unchanged if both amplitudes are multiplied by the phase. For example
i(|0〉+ |1〉) = i |0〉+ i |1〉 = |0〉+ |1〉
But phase differences between amplitudes do matter
|0〉+ |1〉 6= |0〉+ i |1〉
It is convention to have the phase in front of the |1〉. For example, the following states are equivalent.
i |0〉+ |1〉 = i(i |0〉+ |1〉) = − |0〉+ i |1〉 = −1(− |0〉+ i |1〉) = |0〉 − i |1〉
Which when normalized is
1√
2
|0〉 − i√

2
|1〉

So input to the ket function will follow this format

k e t ( i , 1 )

Output:

[ , 1 ]
[ 1 , ] 0 .7071068+0.0000000 i
[ 2 , ] 0.0000000−0.7071068 i

2



2.2 Multi-qubit Kets

Multi-qubit kets can be built in two ways. The first is to use the ket function but with more inputs. To
produce the 2-qubit state 0 |00〉+ 1 |01〉+ 0 |10〉+ 0 |11〉 = |01〉 use the line of code

k e t ( 0 , 1 , 0 , 0 )

Output:

[ , 1 ]
[ 1 , ] 0+0 i
[ 2 , ] 1+0 i
[ 3 , ] 0+0 i
[ 4 , ] 0+0 i

Which indicates the 2-qubit system is in the |01〉 state. Note that R begins indexing at 1, rather than
0. So the amplitude corresponding to 1 is at index 2.

The second method is to use the tensor function. This is convenient for combining kets into larger
ones. If qubit 1 is in state |1〉 and qubit 2 is in state |0〉, the combined system is in state |10〉. tensor
performs the tensor (outer) product on the arguments from left to right, creating a larger, combined
system.

q u b i t 1 <− k e t ( 0 , 1 )
q u b i t 2 <− k e t ( 1 , 0 )
combined <− t e n s o r ( qub i t1 , q u b i t 2 )
p r i n t ( combined )

Output:

[ , 1 ]
[ 1 , ] 0+0 i
[ 2 , ] 0+0 i
[ 3 , ] 1+0 i
[ 4 , ] 0+0 i

tensor can take any number of inputs and can be use to construct arbitrarily large kets.
A convenient way to define basis kets is in encoded integer form
|2〉 = |10〉
The function intket can be used to create these. The first argument specifies the integer value and the
second specifies how many qubits should be in the ket

d i r a c ( i n t k e t ( 0 , 4 ) )
d i r a c ( i n t k e t ( 3 , 4 ) )

Output:

[ 1 ] ”1|0000>”
[ 1 ] ”1|0011>”

3



2.3 Summary

Algebraic Representation Input Output

|0〉
k e t ( 0 , 1 )

or
i n t k e t ( 0 , 1 )

[ , 1 ]
[ 1 , ] 1+0 i
[ 2 , ] 0+0 i

|1〉
k e t ( 0 , 1 )

or
i n t k e t ( 1 , 1 )

[ , 1 ]
[ 1 , ] 0+0 i
[ 2 , ] 1+0 i

|0〉+ |1〉 k e t ( 1 , 1 )
[ , 1 ]

[ 1 , ] 0.7071068+0 i
[ 2 , ] 0.7071068+0 i

|00〉
k e t ( 1 , 0 , 0 , 0 )

or
i n t k e t ( 0 , 2 )

[ , 1 ]
[ 1 , ] 1+0 i
[ 2 , ] 0+0 i
[ 3 , ] 0+0 i
[ 4 , ] 0+0 i

|01〉+ |10〉 k e t ( 0 , 1 , 1 , 0 )

[ , 1 ]
[ 1 , ] 0.0000000+0 i
[ 2 , ] 0.7071068+0 i
[ 3 , ] 0.7071068+0 i
[ 4 , ] 0.0000000+0 i

3 Gates

Quantum gates are represented by matrices. Matrix-vector multiplication performs the action of the gate
on the vector (ket) representing the state of the system. All gates are available from a corresponding
function, which will either return the matrix of the gate or perform the action of the gate on a given
ket. For example, the X gate is available from the function X(). If X() is called without arguments,
the matrix for X will be returned. If it is called with a ket argument, X(ket(1,0)), an X gate will be
performed on that ket and the result will be returned.

#A l l segments o f code have th e same e f f e c t
#Option 1
v <− k e t ( 1 , 0 ) #v i s q u b i t i n s t a t e |0>
g <− X( ) #A s s i g n X g a t e m a t r i x to v a r i a b l e g
v <− g %∗% v #m u l t i p l y k e t v by X m a t r i x ( i n v a r i a b l e g ) and s t o r e r e s u l t i n v
#Option 2
v <− k e t ( 1 , 0 ) #v i s q u b i t i n s t a t e |0>
v <− X( ) %∗% v #m u l t i p l y k e t v by X m a t r i x and s t o r e r e s u l t i n v
#Option 3
v <− k e t ( 1 , 0 ) #v i s q u b i t i n s t a t e |0>
v <− X( v ) #pe r f o r m X g a t e on v and s t o r e i n v

QuantumOps has the following primitive gates

4



Gate Function Description Input
I I() Identity 1 qubit
X X() Rotate around x-axis (NOT) 1 qubit
Y Y() Rotate around y-axis 1 qubit
Z Z() Rotate around z-axis (phase flip) 1 qubit
H H() Hadamard 1 qubit
R R() Phase Shift Angle of rotation and 1 qubit
S S() π/2 Phase Shift 1 qubit
T T() π/4 Phase Shift 1 qubit

CX CX() Controlled X (CNOT) 2 qubits
CY CY() Controlled Y 2 qubits
CZ CZ() Controlled Z 2 qubits

BELL BELL() Bell gate (EPR pair creation) 2 qubits
TOFFOLI TOFFOLI() Toffoli gate (CCNOT) 3 qubits

3.1 Arbitrary Input Gates

QuantumOps allows for computing with an arbitrary number of qubits. Hence, gates for many qubits
are required. There are a few different methods of creating higher order gates. The tensor function
works with gates (matrices) as well as kets (vector). It can be used to build a matrix which can then
mulitply a higher order ket. For example, if one wants to perform an X gate on the 2nd qubit of 2-qubit
system, while leaving the first qubit alone, a 2-qubit matrix can be constructed from the I (identity) and
X gates.

k <− k e t ( 1 , 0 , 0 , 0 ) #q u b i t i n s t a t e |00>
p r i n t (” Ket b e f o r e g a t e ”)
p r i n t ( k )
p r i n t ( d i r a c ( k ) )
g <− t e n s o r ( I ( ) ,X ( ) ) #c o n s t r u c t 2−q u b i t g a t e (X g a t e on 2nd q u b i t )
k <− g %∗% k #pe r f o rm o p e r a t i o n
p r i n t (” Ket a f t e r g a t e ”)
p r i n t ( k )
p r i n t ( d i r a c ( k ) )

Output:

[ 1 ] ” Ket b e f o r e g a t e ”
[ , 1 ]

[ 1 , ] 1+0 i
[ 2 , ] 0+0 i
[ 3 , ] 0+0 i
[ 4 , ] 0+0 i
[ 1 ] ”1|00>”
[ 1 ] ” Ket a f t e r g a t e ”

[ , 1 ]
[ 1 , ] 0+0 i
[ 2 , ] 1+0 i
[ 3 , ] 0+0 i
[ 4 , ] 0+0 i
[ 1 ] ”1|01>”

The operation flipped the 2nd qubit, going from state |00〉 to |01〉.
Controlled gates can be created with the controlled function, which takes a gate matrix as input and
an integer which specifies how many control qubits there should be.

c o n t r o l l e d (X( ) , 1 )

is equivalent to

5



CX( )

4 U function

The U function is a quick way to construct gates for arbitary numbers of qubits and, optionally, to apply
them to kets. The same functionality as the previous example, applying an X gate to the 2nd qubit of
a 2-qubit system, can be performed as follows.

k <− k e t ( 1 , 0 , 0 , 0 ) #q u b i t i n s t a t e |00>
p r i n t (” Ket b e f o r e g a t e ”)
p r i n t ( k )
p r i n t ( d i r a c ( k ) )
k <− U( I ( ) ,X( ) , k ) #c o n s t r u c t and a p p l y 2−q u b i t gate , and a p p l y to k , s t o r e i n k
p r i n t (” Ket a f t e r g a t e ”)
p r i n t ( k )
p r i n t ( d i r a c ( k ) )

Output:

[ 1 ] ” Ket b e f o r e g a t e ”
[ , 1 ]

[ 1 , ] 1+0 i
[ 2 , ] 0+0 i
[ 3 , ] 0+0 i
[ 4 , ] 0+0 i
[ 1 ] ”1|00>”
[ 1 ] ” Ket a f t e r g a t e ”

[ , 1 ]
[ 1 , ] 0+0 i
[ 2 , ] 1+0 i
[ 3 , ] 0+0 i
[ 4 , ] 0+0 i
[ 1 ] ”1|01>”

5 Quantum Oracles

Quantum oracles can be formed by converting functions to quantum gates. This can be done with the
Uf function. R allows the passing of functions as arguments. Uf takes as input a function followed by
2 integers. The first integer specifies the number of qubits in the input register and the second specifies
the number of qubits in the target register. The following example shows a function that performs
addition.

v <− i n t k e t ( 0 , 4 ) #C r e a t e |0000>
f <− f u n c t i o n ( x ){ ( x+2) %% 4 } #D e f i n e f u n c t i o n t h a t r e t u r n s i n p u t + 2 mod 4

#C r e a t e quantum o r a c l e f o r f , w i t h 2 i n p u t r e g i s t e r q u b i t s
m <− Uf ( f , 2 , 2 ) #and 2 t a r g e t r e g i s t e r q u b i t s
p r i n t (” Ket b e f o r e ”)
p r i n t ( d i r a c ( v ) )
v <− U(m, v ) #Apply o r a c l e
p r i n t (” Ket a f t e r ”)
p r i n t ( d i r a c ( v ) )

Output:

[ 1 ] ” Ket b e f o r e ”
[ 1 ] ”1|0000>”
[ 1 ] ” Ket a f t e r ”

6



[ 1 ] ”1|0010>”

Uf is used to build the quantum oracle used in Shor’s factoring algorithm

6 Quantum Fouier Transform

The QFT can be representated as a unitary matrix. The function QFT acts nearly identically to other
gates. If the argument supplied is an integer, it will return the matrix of the QFT which would act on
a ket with as many qubits as the specified integer. If a ket is supplied, it will apply the appropriately
sized QFT matrix and return the modified ket.

7 Measurement

Measurement is a probabilistic process. QuantumOps simulates measurement by taking a random
sample. There are two functions that perform measurement, measure and reduceMeasure. When
measuring an entire ket both functions perform the same action. One of the states is chosen according to
the appropriate probabilities and a list is returned. The first item in the list is the ket post measurement.
The second item is the integer representation of the state that was measured.

v <− k e t ( 1 , 1 , 1 , 1 ) #i n i t i a t e 2−q u b i t k e t w i t h each s t a t e e q u a l l y p r o b a b l e
p r i n t (” Pre−measurment ”)
p r i n t ( d i r a c ( v ) )
L <− measure ( v )
v <− L [ [ 1 ] ] #k e t i s f i r s t i n r e t u r n e d l i s t
s <− L [ [ 2 ] ] #S t a t e i s 2nd i n r e t u r n e d l i s t
p r i n t (” Post−measurement ”)
p r i n t ( d i r a c ( v ) )
p r i n t ( p a s t e (” Measured s t a t e ” , s ) )

Output:

[ 1 ] ” Pre−measurment ”
[ 1 ] ”0.5 |00> + 0.5 |01> + 0.5 |10> + 0.5 |11>”
[ 1 ] ” Post−measurement ”
[ 1 ] ”1|11>”
[ 1 ] ” Measured s t a t e 3”

The measurement functions can also measure a subset of the qubits. This will happen if a list of
integers is supplied after the ket in the argument list. The qubits are indexed from 0 starting from the
right
|x3x2x1x0〉
This is so that the left-most qubit is the most significant. If a subset of the qubits are measured, the
measure function will set the amplitudes to the states that are no longer possible to 0, but leave the ket
with the same dimension. reduceMeasure will remove the states that are no longer possible, reducing
the dimension of the ket.

v <− k e t ( 1 , 1 , 1 , 1 )
w <− k e t ( 1 , 1 , 1 , 1 )
Lv <− measure ( v , 0 ) #Measure q u b i t 0 o f v
Lw <− reduceMeasure (w, 0 ) #Measure q u b i t 0 o f w
v <− Lv [ [ 1 ] ] #g e t measured k e t s
w <− Lw [ [ 1 ] ]
p r i n t (” v i s now ”)
p r i n t ( v )
p r i n t ( d i r a c ( v ) )
p r i n t (”w i s now ”)
p r i n t (w)
p r i n t ( d i r a c (w) )

7



Output:

[ 1 ] ”v i s now”
[ , 1 ]

[ 1 , ] 0.7071068+0 i
[ 2 , ] 0.0000000+0 i
[ 3 , ] 0.7071068+0 i
[ 4 , ] 0.0000000+0 i
[ 1 ] ”0.707 |00> + 0.707 |10>”
[ 1 ] ”w i s now”

[ , 1 ]
[ 1 , ] 0.7071068+0 i
[ 2 , ] 0.7071068+0 i
[ 1 ] ”0.707 |0> + 0.707 |1>”

8 Miscellaneous Functions

addmod2 bitwise adds the two bitstrings of two integers. Finds use in Simon’s algorithm
adjoint finds the adjoint of a ket, bra, or gate matrix. Is the same as the dagger operation. Will convert
kets to bras and bras to ket
CFA continued fractions algorithm. Finds numerator and denominator within a specified error of input
value. Used in Shor’s algorithm
colv returns a column vector. Similar to ket but is not normalized
dist find the distance between two vectors dotmod2 finds the dot product of the bitstrings of two inte-
gers and returns the value modulus 2
exponentialMod returns a function that raises a number to a power modulus a specified integer. Used
to avoid overflow errors with large numbers for the creation of the oracle in Shor’s factoring algorithm
hermitian returns a boolean indicating whether a gate matrix is hermitian
inner finds the inner product between two vectors
mm short for make-matrix. Performs same function as R function matrix but assumes it is square
norm finds the norm of a vector. Used for normalizing kets
pp short for print(paste()) and performs the same functionality
probs reports the probabilities of measuring each value of a ket by taking the absolute value square of
each amplitude
Shor performs Shor’s factoring algorithm by making the quantum oracle, using the QFT, and performing
a measurement. Then uses CFA to find the period and the euclidean algorithm to find the prime factors
teleport gives an example of quantum teleportation of a specified qubit
unitary returns a boolean indicating whether a gate matrix is unitary

8


