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Abstract—This paper proposes a suite of algorithms to deter-
mine the active- and reactive-power setpoints for photovoltaic
(PV) inverters in distribution networks. The objective is to
optimize the operation of the distribution feeder according to a
variety of performance objectives and ensure voltage regulation.
In general, these algorithms take a form of the widely studied
AC optimal power flow (OPF) problem. For the envisioned
application domain, nonlinear power-flow constraints render per-
tinent OPF problems nonconvex, and computationally-intensive
for large systems. To address these concerns, we formulate a
quadratic constrained quadratic program (QCQP) by leveraging
a linear approximation of the algebraic power-flow equations.
Furthermore, simplification from QCQP to a linearly constrained
quadratic program (LCQP) is provided under certain conditions.
The merits of the proposed approach are demonstrated with
simulation results that utilize realistic PV-generation and load-
profile data for an illustrative distribution system.

Index Terms—Distribution networks, PV systems, Optimiza-
tion, Linearization.

I. INTRODUCTION

THE methods proposed in this paper seek contributions in
the domain of next-generation distribution-system oper-

ations and control by leveraging scalable convex optimization
approaches. The increased penetration of PV systems has high-
lighted pressing needs to address power quality and reliability
concerns. Therefore, systematic means to operate distribution
networks with high PV penetration will be key to ensure a
sustainable capacity growth with limited need for transmission
expansion.

Recent efforts in the domain of PV integration are focused
on inverters deviating away from nominal maximum power
outputs to provide reactive power support and curtail active
power as required. For instance, local active power control
strategies proposed in [1], [2] are grounded on the premise of
curtailing active power from inverters based on the observed
nodal voltages. Similarly, low power factors and possibly high
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network currents—which may lead to conductor overheating
and power losses—can occur if local reactive-power con-
trol strategies are used [3]–[5]. Focusing on network-wide
optimality, an OPF-based Optimal Inverter Dispatch (OID)
strategy was proposed in [6], where the SDP relaxation for AC
power flow equations (see, e.g., [7]) was leveraged to obtain
a strategy to dispatch network-wide-optimal setpoints for PV
inverters. However, for a balanced network with N nodes, this
problem requires O(N2) optimization variables; consequently,
this approach may become computationally expensive as the
distribution-system size grows [8], even when parallel decom-
position arguments for SDP programs are advocated [9]. A
notable exception is the recently proposed sparsity-exploiting
SDP formulation in [10] in which number of variables do
not scale as O(N2). Another pertinent reference is a Second
Order Cone (SOC) relaxation of the OPF problem proposed
in [11]. Using the SOC relaxation, a rendition of the OPF
problem for networks with approximately 3000 buses has
been solved in around 30 seconds [12]. We adopt an alternate
perspective to tackle scalability in this work. In contrast to
the relaxations advocated in the references above, we focus
on obtaining linear relationships between network voltages
and nodal power injections, which bypasses non-convexity in
OPF problems and yields a convex problem formulation. In
particular, we propose a Scalable Optimal Inverter Dispatch
algorithm (SOID) using a recently proposed linear approxi-
mation to the power flow equations [13], [14]. This problem
formulation address a different suite of Optimal Power Flow
problems, wherein along with voltage we also find active-
and reactive-power setpoints for PV inverters. The proposed
schemes required only O(N) optimization variables, and leads
to a convex Linearly Constrained Quadratic Program (LCQP).
Furthermore, when the cost is linear and real-power (or
reactive-power) compensation alone is implemented, the SOID
is in fact a linear program.

A key insight that this paper leverages to develop the opti-
mization problems is a linear approximation of the nonlinear
power flow expressions in rectangular coordinates [13], [14].
A variety of methods exploiting linearizations of the nonlinear
power flow equations have been proposed in the literature. For
instance, linear non iterative power flow algorithms consider-
ing only active power flows are proposed in [15], [16]. Relaxed
AC OPF problems obtained by linearizing just the power flow
balance equations have been proposed in [17]–[20]. Different
from the approaches above, we leverage a closed-form linear
approximation for the voltages across the network [13], [14]
to formulate computationally tractable optimization problems.
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Compared to semidefinite programming (SDP) methods in
our original work [6], simulations for the IEEE 123-node sys-
tem for an equivalent QCQP demonstrate substantial computa-
tional speed improvements, which will be discussed in the case
studies. Furthermore, we remark that while we consider single-
phase settings, the linear approximations for the solutions to
the power flow problem can be extended to cover multi-phase
setups, following which, adopting approaches akin to the ones
in [15], [17], [21], the methods proposed here can be tailored
to multi-phase setups. While these optimization problems for
multi-phase settings are beyond the scope of this manuscript,
they present compelling options for future work.

To further promote customer privacy while guaranteeing
scalability of the algorithms with limited information ex-
changes, we also propose a distributed version of the problem
setup leveraging the alternating direction method of multi-
pliers (ADMM) [22]–[24]. Convergence is faster if ADMM
is implemented in comparison to other distributed solution
approaches such as the sub-gradient method [25], [26]. The
SOID problem discussed above can be decomposed as a
sum of utility optimization and customer based optimization
objectives. Utility optimization includes network performance
objectives like power losses, whereas customer based opti-
mization includes maximizing their monetary objectives (e.g.,
minimizing the amount of active power to be curtailed). A
two-way exchange of information is required to implement
the above setup. Once the optimal setpoints are computed,
they are dispatched to inverters, where we assume that local
regulation capability implements the desired output real and
reactive power.

To summarize, the contributions of this paper are as follows.
First, we leverage a linearized version of the power flow
equations in rectangular coordinates tailored to distribution
networks to formulate an OPF-type problem with direct ap-
plications to distribution networks with PV systems. The
formulated SOID problem (and accompanying special case
tailored for resistive-dominant networks) can be formulated
to meet performance objectives of minimizing power losses
and voltage deviations from the nominal. Finally, to further
improve computational performance and promote scalability,
we propose a distributed version of the problem that can be
solved with ADMM.

The remainder of this paper is organized as follows. In
Section II, set of notations and network model used throughout
the paper are described, and an approximate expression for the
voltages is derived from linearization of the power-flow equa-
tions expressed in rectangular coordinates. Section III presents
the SOID problem formulation along with the distributed
implementation leveraging ADMM. In Section IV, we provide
various case studies and simulation results to demonstrate the
applicability of the method, and demonstrate computational
savings compared to our previous efforts that leveraged SDP
relaxations of the OPF problem. Finally concluding remarks
and pertinent directions for future work are highlighted in
Section V.

II. PRELIMINARIES AND POWER SYSTEM MODEL

In this section, we first establish notation and then describe
the power-system model that is utilized in the remainder of
the manuscript. We also develop the linearized model for the
voltages in the network.

A. Notation

The matrix inverse is denoted by (·)−1, transpose by (·)T,
complex conjugate by (·)∗, real and imaginary parts of a
complex number by Re{·} and Im{·}, respectively, magnitude
and phase of a complex scalar by |·| and ∠(·), respectively and
j :=
√
−1. A diagonal matrix formed with entries of vector x

is denoted by diag(x). A diagonal matrix formed with the lth
entry given by xl/yl is denoted by diag(x/y) , where xl and
yl are the lth entries of the vectors x and y, respectively and
a diagonal matrix with the lth entry given by x−1l is denoted
as diag(1/x). For a matrix X , Xmn returns the entry in the
m row and n column of X . The N × 1 vectors with all ones
and all zeros are denoted by 1N and 0N . The spaces of N ×1
real-valued and complex-valued vectors are denoted by RN
and CN , respectively; TN denotes the N -dimensional torus.

B. Network Model

Consider a single-phase distribution network with N + 1
nodes collected in the set N and distribution lines collected
in the set E . Set N ′ ⊂ N excludes the N + 1th node, i.e.,
N ′ = N \ {N + 1}. At H of these N + 1 nodes (collected
in the set H), we assume PV systems are installed with
inverters capable of responding to real- and reactive-power
dispatch commands. The N + 1 node models the secondary
of the step-down distribution transformer, and is assumed to
be the slack bus. Lines are represented by the set of edges
E := {(m,n)} ⊂ N×N . Finally, note that (·)(m,n) represents
a signal corresponding to the (m,n) line.

Let I = [I1, . . . , IN ]T, V = [V1, . . . , VN ]T ∈ CN and
S = [S1, . . . , SN ]T where I` ∈ C denotes the current injected
into bus `, V` = |V |`∠θ` ∈ C represents the voltage phasor
at bus ` and S` = P` + jQ` denotes the complex-power
bus injected at bus `. In rectangular coordinates, we have
V = Vre + jVim, where Vre, Vim ∈ RN denote the real and
imaginary components of V . Further we will define |V | =
[|V |1, . . . , |V |N ]T ∈ RN>0 and θ = [θ1, . . . , θN ]T ∈ TN , which
we will use subsequently. The available active power (based on
the incident irradiance) is denoted by the vector Pav ∈ RN≥0.
The active power curtailed by the inverters are collected in
Pc; and Qc collects the reactive powers generated/consumed
by the PV inverters. Active- and reactive- power loads are
collected in Pd and Qd respectively.

The electrical network operation in sinusoidal steady state
is described by Kirchhoff’s current law as follows:[

I
IN+1

]
=

[
Y Y

Y
T

ỹ

] [
V

V◦e
jθ◦

]
(1)

where V◦e
jθ◦ is the slack-bus voltage with V◦ denoting

the voltage magnitude at the secondary of the step-down
transformer feeding the network. Hereafter, we will consider
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V◦ = 1 and θ◦ = 0 for our discussion. Dimensions of the
entries of the admittance matrix are as follows: Y ∈ CN ,
Y ∈ CN×N , and ỹ ∈ C \ {0}. Also Y = G + jB, where
G and B ∈ RN×N are conductance and susceptance matrices
respectively. Current injected into slack bus is given by IN+1.
The vector of shunt admittances can be extracted as

Y 1N + Y = Ysh = Gsh + jBsh (2)

where Ysh ∈ CN , Gsh and Bsh ∈ RN . Finally, minimum and
maximum voltage magnitude limits at the nodes are denoted
by V min and V max, respectively.

C. Approximate Expression for the Voltages

We begin with complex-power balance, which can be writ-
ten with the aid of (1) as follows:

S = diag (V ) I∗ = diag (V )
(
Y ∗V ∗ + Y

∗)
. (3)

Recall that we denote: Pav ∈ RN as the available power (based
on the incident irradiance), Pc ∈ RN as the active power
curtailed, Pd ∈ RN is total load and similar definitions for
reactive-power related variables. Note that entries of Pav and
Pc are non-zero only if the corresponding node is connected
to a PV system With these definitions in mind, it follows that:

S = (Pav − Pc − Pd) + j(Qc −Qd). (4)

Let the actual solution to (3) be denoted by V ∈ CN .
We linearize (3) by expressing V = Vnom + ∆V , where
Vnom = |Vnom|∠θnom ∈ CN is some pre-defined nominal
voltage vector, and ∆V captures perturbations around Vnom.
Consider the following choice of nominal voltage, which also
corresponds to the voltage across the network with zero current
injections:

Vnom = −Y −1Y . (5)

With this choice of nominal voltage, it is easy to show that
by neglecting higher-order terms in (3), we get the following
solution for ∆V (details are in [14]):

∆V = Y −1diag (1/V ∗nom)S∗. (6)

Then, expanding the terms in (6) and considering the real
and imaginary components of ∆V provides the following
equations:

∆Vre =

(
R diag

(
cos θnom
|Vnom|

)
−X diag

(
sin θnom
|Vnom|

))
P

+

(
X diag

(
cos θnom
|Vnom|

)
+R diag

(
sin θnom
|Vnom|

))
Q, (7)

∆Vim =

(
X diag

(
cos θnom
|Vnom|

)
+R diag

(
sin θnom
|Vnom|

))
P

−
(
R diag

(
cos θnom
|Vnom|

)
−X diag

(
sin θnom
|Vnom|

))
Q, (8)

where P = Pav − Pc − Pd and Q = Qc − Qd and Y −1 =
R+ jX .

Notice that |V | = |Vnom| + ∆Vre and θ = θnom + ∆Vim
serve as first-order approximations to the voltage magnitudes

and phases across the distribution network, respectively, when
θnom ≈ 0N . In the present setting, this is true when shunt
impedances are negligible, i.e., Ysh = 0N . Furthermore,
from (2) and (5), we see that Y 1N + Y = 0N , and |Vnom| =
1N ; as a result of which (7) and (8) simplify as below:

∆Vre = R P +X Q, ∆Vim = X P −R Q. (9)

Finally, with the above discussions and approximations in
place, we recognize that the voltage magnitude at the n-th
bus is approximately given by

|V |n ≈ 1 +
∑
`∈N ′

Rn`P` +
∑
`∈N ′

Xn`Q`, ∀n ∈ N ′. (10)

III. PROBLEM FORMULATION

In this section we will begin with formulating different
components of the cost function for the optimization problem.
Next, we will describe the general SOID problem, consider
a special case, and also present a distributed version of the
problem that promotes scalability.

A. Cost Function

The formulation of the cost function encapsulates a variety
of power-quality and customer-oriented objectives. In particu-
lar, consider the following functions:

ρ(V, I) =
∑

(m,n)∈E

Re{y∗mn}
(

(Re{Vm}+ Re{Vn})2

+ (Im{Vm}+ Im{Vn})2
)

(11)

φ(Pc, Qc) =
∑
h∈H

ahP
2
c,h + bhPc,h + chQ

2
c,h + dh|Qc,h|. (12)

ν(V ) =
∑
n∈N

(
|V |n −

1

N + 1

∑
`∈N

|V |`

)2

. (13)

Above, ρ denotes the real-power losses in the network; φ
establishes a quadratic cost on the curtailed active power and
generated reactive power and ν attempts to minimize voltage
deviations from the average. The choice of ah , bh, ch, and
dh can be based on agreements between customer and utility.
Note that the derivation for the expression corresponding to
the losses (11) is provided in Appendix A.

B. SOID Problem: General Case

Using the functions defined in (11)-(13), let the overall cost
function to be optimized be defined as Copt. It follows that:

Copt(V, Pc, Qc) = cρρ(V ) + cφφ(Pc, Qc) + cνν(|V |) (14)
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and subsequently, the SOID problem is formulated as follows:

min
V,Pc,Qc

Copt(V, Pc, Qc) (15a)

subject to

Re{Vn} = 1 +
∑
`∈N ′

(Rn`(Pav,` − Pc,` − Pd,`)

+Xn`(Qc,` −Qd,`)), ∀n ∈ N ′ (15b)

Im{Vn} =
∑
`∈N ′

(Xn`(Pav,` − Pc,` − Pd,`)

−Rn`(Qc,` −Qd,`)), ∀n ∈ N ′ (15c)

Vmin ≤ 1 +
∑
`∈N ′

Rn`(Pav,` − Pc,` − Pd,`)

+
∑
`∈N ′

Xn`(Qc,` −Qd,`) (15d)

Vmax ≥ 1 +
∑
`∈N ′

Rn`(Pav,` − Pc,` − Pd,`)

+
∑
`∈N ′

Xn`(Qc,` −Qd,`) (15e)

0 ≤ Pc,h ≤ Pav,h ∀h ∈ H (15f)

Q2
c,h ≤ (S2

h − (Pav,h − Pc,h)2) ∀h ∈ H (15g)

|Qc,h| ≤ tan θ(Pav,h − Pc,h) ∀h ∈ H (15h)

Above, (15b)–(15c) capture voltages across the network;
(15d)–(15e) force the voltages to stay within defined limits
Vmin and Vmax; and (15f)–(15h) defines the set of feasible
operating points of each inverter, with cos θ denoting the
minimum allowable power factor.

Note that the problem above is a QCQP in the optimization
variables V, Pc, Qc. Key to ensuring this is the linearized ex-
pression for the voltage in (13) and (15b). As such, this QCQP
can be solved with lower computational burden compared
to semidefinite programming methods, that we previously
utilized in our work [6]. Notice further that, by utilizing
relations (7)–(8), the cost function and constraints in (15) can
be expressed in terms of the powers Pc, Qc, and the vector-
valued variable V can be discarded. Next, we consider a
further simplification/approximation that renders the problem
to be a Linearly Constrained Quadratic Problem (LCQP).

C. SOID Problem: Special Case

If we consider a resistive network, where we neglect all
reactive flows, i.e., Qc,h = 0, then the problem in (15) reduces
to the following:

min
Pc

Copt(Pc) (16a)

subject to

Vmin ≤ 1 +
∑
`∈N ′

Rn`P` (16b)

Vmax ≥ 1 +
∑
`∈N ′

Rn`P`, ∀n ∈ N ′ (16c)

0 ≤ Pc,h ≤ Pav,h, ∀h ∈ H. (16d)

The absence of (15g)–(15h) in this formulation, renders this
problem formulation a LCQP. Although the problems de-
scribed here and in the previous section are computationally
affordable, distributed implementations leveraging the alter-
nate direction method of multipliers are presented next to
facilitate scalability to large distribution networks with limited
information exchanges.

D. Distributed Implementation Leveraging ADMM

The main motivation for the development of a distributed
solver for (15) is to enable utility and customers to pursue
specific optimization objectives, while ensuring that system-
level power-flow and voltage-regulation constraints are satis-
fied. To this end, the ADMM is leveraged next to decouple
utility- and customer-orientated objectives and constraints.
Utility optimization includes minimizing power losses in the
network and correcting voltage deviations. Customer based
optimization includes minimizing the cost incurred in active
power curtailment.

To this end, key is to introduce auxiliary vector-valued vari-
ables P̃ and Q̃ that represent copies of the inverter setpoints
P and Q on the utility side. Using these new variables in the
cost function in (14), the optimization problem (15) can be
reformulated in the following equivalent way:

min
V,{Pc,h,Qc,h}
{P̃h,Q̃h}

Cu(V, P̃ , Q̃) +
∑
`∈H

Cc,`(Pc,`, Qc,`)

subject to (15f)− (15h) and

Re{Vn} = 1 +
∑
`∈N ′

(Rn`P̃` +Xn`Q̃`) (17a)

Im{Vn} =
∑
`∈N ′

(Xn`P̃` −Rn`Q̃`) (17b)

Vmin ≤ 1 +
∑
`∈N ′

Rn`P̃` +
∑
`∈N ′

Xn`Q̃`

Vmax ≥ 1 +
∑
`∈N ′

Rn`P̃` +
∑
`∈N ′

Xn`Q̃`, ∀n ∈ N ′

P̃h = Pav,h − Pc,h − Pd,h ∀h ∈ H (17c)

Q̃h = Qc,h −Qd,h, ∀h ∈ H. (17d)

The next steps involve the introduction of auxiliary vari-
ables to facilitate the decomposability of the constraints (17c)
and (17d) across utility and inverters, and the partition of
the linearized voltage expressions (17a) and (17b) into two
groups: nodes with and without PV systems. Utility-related
optimization variables, V , P̃ , and Q̃, are collected in the
set O := {V, P̃ , Q̃}. Customer-related decision variables, Pc,
Qc, are collected in the set Ph := {Pc,h, Qc,h,∀h ∈ H}
and Pxy := {xh, yh,∀h ∈ H} denotes the set that collects
the auxiliary variables. Dual variables are collected in the
set D := {λh, λh, µh, µh,∀h ∈ H}; and κ > 0 is a
given constant. Finally, Lu(O) and Lh(Ph) denote the partial
Lagrangian functions for the utility and customer side respec-
tively, and they are spelled out in (24) and (25), respectively.
Then, following the procedure provided in Appendix B and
leveraging ADMM [22, Sec. 3.4], it can be shown that
the distributed algorithm boils down to the steps [S1]-[S2]
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performed iteratively as described below (m represent the
iteration index):

[S1a] Variables V [m+ 1], P̃h[m+ 1], Q̃h[m+ 1] are updated
as:

O := arg min
V,{P̃ ,Q̃}

Lu(V, P̃ , Q̃) (18)

subject to (22b)− (22c) and

Vmin ≤ 1 +
∑
`∈N ′

Rn`P̃` +
∑
`∈N ′

Xn`Q̃`

Vmax ≥ 1 +
∑
`∈N ′

Rn`P̃` +
∑
`∈N ′

Xn`Q̃`, ∀n ∈ N ′

[S1b] Variables Pc,h[m+ 1], Qc,h[m+ 1] are updated as:

Ph := arg min
{Pc,Qc}

Lh(Pc, Qc) (19)

s. to 0 ≤ Pc,h ≤ Pav,h

Q2
c,h ≤ (S2

h − (Pav,h − Pc,h)2)

|Qc,h| ≤ tan θ(Pav,h − Pc,h) ,∀h ∈ H

[S2] Dual variables are updated as follows:

λh[m+ 1] = λh[m] +
κ

2
(P̃h[m+ 1]− Pav,h + Pd,h

+ Pc,h[m+ 1]) (20a)

µh[m+ 1] = µh[m] +
κ

2
(Q̃h[m+ 1] +Qd,h

−Qc,h[m+ 1]). (20b)

To implement the above algorithm, we require two-way com-
munication of the values P c[m], Qs[m] and P̃c[m], Q̃s[m]
between utility and customers. For every iteration m > 0, (18)
is solved on utility side to update the variables in the set
O. Eventually PV-inverter setpoints satisfying power quality
objectives are obtained. Simultaneously customer side PV-
inverter setpoints are updated via (19) and subsequently sent to
the utility. Once these set points are exchanged, dual variables
are updated at utility and customers, respectively through (20).
While the problem setup considered here is different from that
in [27], convergence of the algorithm described above to the
solution of (15) can be shown leveraging [27, Proposition
1]. Finally, once the distributed algorithm is converged, all the
PV-inverter set points are implemented at the PV inverters.

IV. NUMERICAL CASE STUDIES

We consider suitably modified versions of the IEEE 2500-
and IEEE 123-node test feeders for the case studies. In
particular, the IEEE 2500- and IEEE 123-node systems are
used to discuss voltage profile across nodes using various
renditions of the SOID strategies; while simulation results for
the IEEE 123-node system help us to compare the accuracy
with respect to SDP-based optimization methods in [6]. For all
simulations, it is assumed that the network admittance matrix
Y , available power Pav, load demand Pd, Qd and inverter
ratings S are known. Voltage limits Vmin and Vmax are set
to 0.917 and 1.042 p.u. respectively [1]. The optimization
package CVX [28] as part of MATLAB is used to run SOID
and the distributed problem formulations proposed in this

Algorithm 1 Distributed Scheme
Set λh[0] = µh[0] = 0 for all h ∈ H.
for m = 1, 2, . . . (repeat until convergence) do

1. [Utility]: update O[m+ 1] via (18).
[Customer-h]: update Ph[m+ 1] via (19).

2. [Utility]: send O[m+ 1] \ |V |[m+ 1] to Customer;
repeat for all h ∈ H.

[Customer-h]: receive O[m+ 1] \ |V |[m+ 1] from utility;
send Ph[m+ 1] to utility;
repeat for all h ∈ H.

[Utility]: receive Ph[m+ 1] from Customer;
repeat for all h ∈ H.

3. [Utility]: update {λh[m+ 1], µh[m+ 1]}h∈H via (20).
[Customer-h]: update λh[m+ 1], µh[m+ 1] via (20);

repeat for all h ∈ H.
end for
Implement real and reactive setpoints in the PV inverters.

paper. Dc-ac derating coefficient for the PV systems is set to
0.77 [29]. Three different kind of dc ratings (5.52kW, 5.7kW
and 9kW) have been used [30], [31]; and the PV inverters
are oversized by 10% of resultant ac rating [4]. The minimum
power factor of inverters is set to 0.85 [32]. System Advisory
Model provided by NREL is used to compute active powers
available during the day. Open Energy Info Database was used
to obtain the load profile. For the simulations, the base load
experienced in Saint Paul, MN, USA, during the month of
July is utilized. All the plots are in accordance with the data
considered during day time at 14:00. Finally, the voltage at the
secondary of the step-down transformer (considered as slack
bus in the model) is set to 1.02 p.u.

A. Accuracy of Linear Approximation

To demonstrate the accuracy of the linear approximation
compared to the original nonlinear power-flow equations, we
plot in Fig. 2 voltage magnitude and phase angles recovered
from the linear power-flow approximation and those obtained
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Fig. 1. IEEE 123-node distribution feeder with PV systems assumed to be
present at nodes: 2, 4, 6, 10, 11, 12, 16, 17, 19, 20, 22, 24, 27, 32, 33, 36,
37, 38, 39, 41, 43, 46, 48, 49, 50, 51, 56, 59, 65, 66, 71, 75, 79, 83, 85, 88,
90, 92, 94, 96, 104, 107, 111, 114, 151, 250, 300, 450. Lines in dashed red
indicate the modified meshed network that is also utilized in the case studies.
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Fig. 2. Accuracy of linear approximation.

from the solution of the nonlinear power-flow equations (fol-
lowing [6]) for the IEEE 123-node test feeder system depicted
in Fig. 1. By and large, we see that errors are minimal;
congruently problems formulated in Section III-B using this
linear approximation offer computational speedup of up to
75%, which we further comment on in the next section. In
Fig. 2, nodes with higher numbering are, in general, electri-
cally more distant from the reference bus. Consequently, we
see that errors increase as we move electrically further away
from the reference bus. Nonetheless, it is worth mentioning
that the errors conform to the bounds in [13], [14].
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Fig. 3. Voltage profile across nodes in the network for SOID formulated in
Section III-B for IEEE 2500-node system with radial structure.

B. SOID Plots for Different Cases

Results for the IEEE 2500-node test feeder system are
plotted in Fig. 3 and for the IEEE 123-node test-feeder system
in Fig. 4 and Fig. 5. Results for the modified IEEE 123-node
meshed network are plotted in Fig. 6. IEEE 123-node meshed
network is obtained from suitably modifying the test feeder
system by introducing lines as indicated by red dotted lines in
Fig. 1. It should be noted that these voltage plots correspond to
the nonlinear AC simulation of the original power flow equa-
tions. It can be seen that if no control strategy is implemented,
then the upper voltage limit (plotted as a flat cyan line) is
violated due to increased loading of the system. We implement
two different cases, SOID-A1 and SOID-A2, with respect to
the cost function in (14). Optimization parameters for strategy
SOID-A1 are cρ = 1, cφ = 1, cν = 0, ah = 0.1, bh = ch =
dh = 0 (and results are plotted in red); for strategy SOID-A2,
we penalize voltage deviations from the average by setting
cρ = 1, cφ = 1, cν = 1, ah = 0.1, bh = ch = dh = 0 (and
results are plotted in dark blue). In Fig. 3, given space limits,
we plot only the voltages for the first 100 nodes to demonstrate
that the system is operating at prescribed limits. The average
computational time required to solve the problem formulated
in Section III-B for IEEE 2500-node system was 600 sec; the
computation times for the different cases corresponding to the
IEEE 123-node system are tabulated in Table I. (Note that the
computational time is calculated with reference to time when
no control strategy is implemented and hence, the first row of
the table contains 0’s.) The computation times for the meshed
network are not reported, since they are approximately the
same as those in Table I. This table also provides a comparison
with the OID framework setup proposed in [6]. The simulation
was run on a machine with an Intel core i7-4710HQ CPU
@ 2.5 GHz. It can be seen that as we progress by adding
objective terms one at a time to the cost function from ‘No
Control Strategy’ to ‘SOID-A2’, the average computational
time increases.
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Fig. 4. Voltage profile across nodes in the network for SOID formulated in
Section III-B for IEEE 123-node system with radial structure.
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TABLE I
AVERAGE COMPUTATIONAL TIME IN (sec) FOR IEEE 123-NODE TEST

FEEDER SYSTEM

Cases in Fig. 4 SOID in Section III-B SDP-OID
No Control 0 0
SOID - A1 2.01 34.7
SOID - A2 2.51 54.07

C. Convergence of the Distributed Algorithm

Parameters to analyze convergence of the distributed scheme
are set as follows: ah = 0.1 and bh = 0. The ADMM
constant κ is set equal to 5. Solar irradiance conditions at
14:00 are utilized for this particular case. Figure 7 depicts
the trajectories of the iterates {P̃h[m]}h∈H (solid lines) and
{Ph[m]}h∈H (dashed lines) for a certain set of selected houses
among H1 − H48. Finally, the trajectories of error tracking
differences between |P̃h[m] − Ph[m]|, as a function of the
ADMM iteration index are depicted in Fig. 8. It can be clearly
seen that the algorithm converges to a set-point that is optimal
to both the utility and customers.

V. CONCLUDING REMARKS AND DIRECTIONS FOR
FUTURE WORK

This paper developed a suite of scalable algorithms to
determine the active- and reactive-power set points for pho-
tovoltaic (PV) inverters in residential distribution networks.
A linear expression for the voltages expressed in rectangular
coordinates was leveraged to get around the non-convexity
that would otherwise be encountered in the AC-OPF setting.
First, we formulated a quadratic constrained quadratic program
(QCQP) by leveraging a linear approximation of the algebraic
power-flow equations that ensures optimization of inverter
dispatch (quantified, e.g., through power losses, correcting
voltage deviations). This was then reduced to a LCQP for
resistive dominant networks. A distributed scheme was also
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Fig. 5. Voltage profile across nodes in the network for SOID formulated in
Section III-C for IEEE 123-node system with radial structure.

proposed to promote scalability and further reduce the compu-
tational burden of the optimization problem. Added advantage
of the distributed algorithm is that it outlines avenues for
the formulation and operation of distribution-network markets.
The merits of the proposed approach were demonstrated using
a comprehensive set of simulation results that utilized real-
world PV-generation and load-profile data for an illustrative
low-voltage residential distribution system.

As part of future work, the proposed SOID problems and
the distributed versions will be implemented in hardware
setups using micro-controllers and a suitable communication
medium. We will also study communication-related issues, as
well as further simplifications of the optimization problem to
make it suitable for practical implementation. An example
of such a simplification would be to express the operating
region of the PV inverters entirely with linear constraints.
Additionally, we will also focus on adopting the approaches
suggested in this work for unbalanced multi-phase networks.
Also, we will compare the results for the problems (and
distributed implementations) with approaches such as SOCP
and belief propagation.

VI. APPENDIX

A. Expression for Power Losses in (11)

Begin by expressing the voltage at the m node in the
network as Vm = Re{Vm}+j Im{Vm}. The expression in (11)
can be derived as follows:

ρ(V, I) =
∑

(m,n)∈E

Re{VmI∗(m,n)} − Re{VnI∗(m,n)}

=
∑

(m,n)∈E

Re{Vm(V ∗m − V ∗n )y∗mn}−

Re{Vn(V ∗m − V ∗n )y∗mn}

=
∑

(m,n)∈E

Re{(Vm(V ∗m − V ∗n )− Vn(V ∗m − V ∗n ))y∗mn}.
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Fig. 6. Voltage profile across nodes in the network for SOID formulated in
Section III-B for IEEE 123-node system with mesh structure.
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Fig. 7. Convergence of the distributed algorithm.

Expanding the expression above with the rectangular-form
adopted for the nodal voltages, we get:

ρ(V, I) =
∑

(m,n)∈E

Re{y∗mn}
(

(Re{Vm}+ Re{Vn})2

+ (Im{Vm}+ Im{Vn})2
)
. (21)

Other loss modeling methods have been proposed in the
literature and could potentially be applied to similar problem
settings, one example is [11].

B. Derivation of the ADMM-based Distributed Algorithm

Beginning with (17), the standard procedure it to dual-
ize constraints (17c) and (17d), and subsequently leverage
the decomposability of the associated Lagrangian function.
However, to favor decomposability of quadratically augmented
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Fig. 8. Error plot for power curtailment

Lagrangian functions [22, Sec. 3.4], consider first introducing
auxiliary variables xh, yh and reformulating (17) in the fol-
lowing equivalent way:

min
V,{Pc,h,Qc,h}
{P̃ ,Q̃,xh,yh}

Cu(V, P̃ , Q̃) +
∑
`∈H

Cc,`(Pc,`, Qc,`) (22a)

subject to (15f)− (15h) and

Re{Vn} = 1 +
∑
`∈H

(Rn`P̃` +Xn`Q̃`)

−
∑

`∈N ′\H

(Rn`Pd,` +Xn`Qd,`) ∀n ∈ N ′ (22b)

Im{Vn} =
∑
`∈H

(Xn`P̃` −Rn`Q̃`)

−
∑

`∈N ′\H

(Xn`Pd,` −Rn`Qd,`) ∀n ∈ N ′ (22c)

Vmin ≤ 1 +
∑
`∈N ′

Rn`P̃` +
∑
`∈N ′

Xn`Q̃`

Vmax ≥ 1 +
∑
`∈N ′

Rn`P̃` +
∑
`∈N ′

Xn`Q̃`, ∀n ∈ N ′

P̃h = xh ∀h ∈ H (22d)
xh = Pav,h − Pd,h − Pc,h ∀h ∈ H (22e)

Q̃h = yh ∀h ∈ H (22f)
yh = −Qd,h +Qc,h, ∀h ∈ H. (22g)

Now, (22) can be solved in a distributed fashion by dualizing
constraints (22d)–(22g) and leveraging ADMM [22, Sec. 3.4].
To this end, let λh, λh, µh, µh be the Lagrange multipliers
associated with (22d)–(22g), where h is the inverter index.
Then the quadratically augmented Lagrangian can be obtained
as:

L(O,Ph,Pxy,D) := Cu(V, P̃ , Q̃) +
∑
`∈H

Cc,`(Pc,`, Qc,`)

+
∑
h∈H

(
λh(P̃h − xh) + λh(xh − Pav,h + Pd,h + Pc,h)

)
+
∑
h∈H

(
µh(Q̃h − yh) + µh(yh +Qd,h −Qc,h)

)
+
∑
h∈H

(κ
2

(P̃h − xh)2 +
κ

2
(xh − Pav,h + Pd,h + Pc,h)2

)
+
∑
h∈H

(κ
2

(Q̃h − yh)2 +
κ

2
(yh +Qd,h −Qc,h)2

)
(23)

where utility related optimization variables are collected in
O := {V, P̃ , Q̃}; Customer related decision variables are col-
lected in Ph := {Pc,h, Qc,h,∀h ∈ H}; Pxy := {xh, yh,∀h ∈
H} is the set of auxiliary variables; Dual variables are col-
lected in D := {λh, λh, µh, µh,∀h ∈ H}; and κ > 0 is a
given constant. Using [27, Lemma 1] and (23) we can define
individual partial Lagrangian functions for utility as Lu(O)
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and customer side as Lh(Ph) for the mth iteration as below:

Lu(O) := Cu(V, P̃ , Q̃) +
∑
h∈H

κ

2
(P̃ 2 + Q̃2)

+
∑
h∈H

P̃h

(
λh[m]− κ

2
(P̃h[m] + Pav,h − Pd,h − Pc,h[m])

)
+
∑
h∈H

Q̃h

(
µh[m]− κ

2
(Q̃h[m]−Qd,h +Qc,h[m])

)
(24)

Lh(Ph) := Cc,h(Pc,h, Qc,h) +
∑
h∈H

κ

2
(P 2

c,h +Q2
c,h)

+ Pc,h

(
λh[m]− κ

2
(−Pc,h[m]− Pav,h + Pd,h − P̃h[m])

)
+Qc,h

(
− µh[m]− κ

2
(Q̃h[m] +Qd,h +Qc,h[m])

)
. (25)

By minimizing the respective partial Lagrangian function at
the utility and inverter sides, one obtains steps [S1]–[S2]. It
is also worth mentioning that various techniques have been
proposed in the literature to select the value of κ with a view
towards improving convergence, see, e.g., [33], [34].
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