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Abstract

This paper proposes a set-theoretic method to capture the effect of parametric uncertainty in

reliability and performability indices obtained from Markov reliability and reward models. We assume

that model parameters, i.e., component failure and repair rates, are not perfectly known, except for

upper and lower bounds obtained from engineering judgment or field data. Thus, the values that these

parameters can take are constrained to lie within a set. In our method, we first construct a minimum

volume ellipsoid that upper bounds this set, and hence contains all possible values that the parameters

can take. This ellipsoid is then propagated via set operations through a second-order Taylor series

expansion of the Markov chain stationary distribution, resulting in a set that provides approximate

bounds on reliability and performability indices of interest. Case studies pertaining to a two-component

shared load system with common-cause failures, and preventative maintenance of an electric-power

distribution transformer are presented.
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NOTATION

Λ Markov chain generator matrix

θ = [θ1, . . . , θm]T Vector of model parameters

π(θ) = [π0(θ), . . . , πn(θ)]T Stationary distribution of the Markov chain

ξ Reward associated with a Markov reward model

X Parallelotope that describes uncertainty in model parameters

E Minimum-volume upper bounding ellipsoid to X
F Ellipsoidal bound to the stationary distribution assuming first-order approximation

S Set that describes uncertainty in second-order variation of stationary distribution

G Minimum-volume upper bounding ellipsoid to S
H Ellipsoidal bound to the stationary distribution assuming second-order approximation

e Column vector with all entries equal to 1

I. INTRODUCTION

The efficacy of reliability and performability indices obtained from Markov reliability and

reward models depends on the accuracy of component failure and repair rate data. However,

accurate values of failure and repair rates are seldom available [1]. Therefore, to quantify the

impact of this incomplete information, reliability models should incorporate the effect of paramet-

ric uncertainty [1]. The effect of parametric uncertainty in Markov models can be analyzed with

probabilistic and set-theoretic methods [1], [2]. In the realm of probabilistic methods, parameters

are modeled as random variables with known distributions which are propagated through the

Markov model to obtain distributions of reliability indices—we proposed an analytical solution

to this problem in [3]. In this paper, we explore the set-theoretic counterpart of [3]. Instead of

assuming that parameter probability distributions are available (or can be obtained from field

data), we assume that only upper and lower bounds around nominal parameter values are known.
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Thus, the values that these parameters can take are constrained within a set. Then, bounds on

reliability indices are obtained by propagating the set that describes all possible values the

parameters can take through to the stationary distribution of the Markov chain. This represents a

worst-case uncertainty analysis as no assumptions are made on the failure-/repair-rate statistics.

This method is more suited to reliability assessment when extensive failure/repair-rate data—that

would enable constructing probability distributions—are unavailable. In summary, probabilistic

parametric uncertainty models can be used to obtain statistics of reliability/performability indices,

i.e., instead of obtaining a single-point estimate, we can obtain the distribution of the relevant

indices. On the other hand, unknown-but-bounded parametric uncertainty models do not yield

any statistical information of reliability/performability indices. Instead, they yield a bounding set

that contains all possible values the relevant indices can take, i.e., in an unknown-but-bounded

model, there is no notion of a most likely value, but we know with certainty that the actual value

is contained in this bounding set [4]. The method we propose has broad applicability to areas

where failure and repair rate data is limited, and repeated computation of the reliability/reward

metrics is computationally expensive due to the size of the models. Some applications that

contend with these challenges include power systems, power electronic circuits, programmable

electronic circuits, weather models, software systems, and communication networks.

In the proposed method, we assume that the uncertain parameters take values in a parallelotope,

i.e., an extension of a parallelogram (in two dimensions) or a parallelepiped (in three dimen-

sions) to any dimension [5]. The center of the parallelotope corresponds to the nominal values

that the parameters can take. A minimum-volume ellipsoid is constructed to upper bound this

parallelotope. Then, by using set operations, this ellipsoid is propagated through a second-order

Taylor series expansion of the Markov chain stationary distribution.1 This facilitates computation

of approximate bounds on reliability and performability indices that arise from the Markov chain

stationary distribution. The Taylor series coefficients are evaluated only once for the nominal

values that the parameters take, and therefore, the approach is computationally inexpensive

1Ellipsoids are preferred instead of the original parallelotope that they upper bound because set operations with ellipsoids
involve simple matrix algebra. We will elaborate on this aspect later.
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compared to repeated simulations, i.e., computing the relevant indices for all possible parameter

values. A significant contribution of this work is a numerical method to propagate ellipsoidal sets

through second-order polynomial systems—previous work in this area has been largely focused

on linear systems [4]. This is relevant, as second-order Taylor-series expansions enable studies

involving the impact of larger uncertainties in parameter values, and as demonstrated in the

case studies and examples, provide more accurate bounds than those obtained with first-order

approximations only.

Methods to assess the impact of unknown-but-bounded parametric uncertainty that exploit the

sensitivity of the Markov chain transient solution to model parameters are proposed in [1], [2].

By contrast, we focus directly on the stationary distribution of ergodic Markov chains employed

in modeling repairable systems [3]. It is worth noting that the sensitivities of the stationary

distribution could be computed following the methods outlined in [1], [2], before applying the

set-theoretic methods we propose based on propagating ellipsoidal-shaped sets to bound the

reliability/reward metrics.

Techniques based on interval arithmetic (see, e.g., [6]) have been proposed in [7], [8]. In these

methods, the unknown parameters are assumed to belong to an interval—which is propagated

through the Markov model using methods from interval arithmetics. Parameters can also be

modeled as fuzzy sets to derive membership functions of the reliability/performability indices

of interest (see, e.g., [9] and the references therein).

The main advantage of our method is that the Markov chain generator matrix is the only re-

quired input, i.e., closed-form expressions for the stationary distribution or performability indices

as a function of the model parameters are not required a priori. Based on these features, the

proposed method is best suited to analyze parametric uncertainty in multi-state, multi-parameter

Markov models, where closed-form expressions for the relevant indices are difficult to obtain,

and exhaustive simulation of all possible parameter values is computationally expensive. We

demonstrate the application of the proposed method with two case studies: i) a two-component

shared-load system with common-cause failures, and ii) an electric-power distribution transformer

with deterioration and preventative maintenance. In the first case study, we quantify the impact
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of parametric uncertainty on a notion of reward defined for the two-component system, and

in the second, we explore the optimal preventative maintenance rate to maximize transformer

availability, while taking into account the effect of parametric uncertainty. We also compare

the execution time of the proposed method with exhaustively simulating all possible parameter

values as the model order grows.

The remainder of this paper is organized as follows. In Section II, we describe basic notions

of Markov reliability and reward models and pose the problem we address in the paper. The

method to propagate ellipsoidal sets through the Taylor-series expansion of the Markov chain

stationary distribution is explained in Section III. The case studies described above, are presented

in Section IV. Concluding remarks and directions for future work are discussed in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we provide a brief introduction to Markov reliability and reward models. For a

detailed treatment of these topics, the reader is referred to [10]–[12]. We then pose the problem

of concern in this paper—to capture the effect of unknown-but-bounded parametric uncertainty

on the stationary distribution of a Markov chain.

A. Markov Reliability and Reward Model Fundamentals

Note that the discussion below follows from [3], [12]. Let X = {X(t), t ≥ 0} denote a

stochastic process taking values in a countable set M. The stochastic process X is called a

continuous-time Markov chain if it satisfies the Markov property

Pr {X(tn) = i|X(tn−1) = jn−1, . . . , X(t1) = j1} = Pr {X(tn) = i|X(tn−1) = jn−1} , (1)

for t1 < . . . < tn, and i, j1, . . . , jn−1 ∈ M [12]. The chain X is said to be homogeneous if it

satisfies

Pr {X(t) = i|X(s) = j} = Pr {X(t− s) = i|X(0) = j} , ∀i, j ∈M, 0 < s < t. (2)
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Homogeneity of X implies that the times between transitions are exponentially distributed. The

chain X is said to be irreducible, if every state in the chain is accessible from every other state.

In this paper, we consider the class of continuous-time Markov chains that are homogeneous,

irreducible, and take values in a finite setM = {0, 1, 2, . . . , n}, where 0, 1, 2, . . . , n−1, index

system configurations that arise due to component faults, and n indexes the nominal, non-faulty

system configuration. Let X denote a chain belonging to this class; then, since the chain is

irreducible and takes values in a finite set, it follows that X is ergodic, i.e., it has a unique

stationary distribution independent of initial conditions [11].

Define π̃i(t) ≡ Pr {X(t) = i}, and denote the vector of occupational probabilities by π̃(t) =

[π̃0(t), π̃1(t), . . . , π̃n(t)]T . From the Chapman-Kolmogorov equations (see, e.g., [12]) it follows

that

˙̃π(t) = ΛT π̃(t), (3)

with π̃n(0) = 1, π̃i(0) = 0, i = 0, 1, . . . , n− 1, and where Λ ∈ Rn+1×n+1 is the Markov chain

generator matrix whose entries are a function of component failure and repair rates [10]. The

steady-state solution of (3) is referred to as the stationary distribution of the chain. It is denoted

by π, and is obtained as the solution of

ΛTπ = 0, πT e = 1, (4)

where e ∈ Rn+1 is a column vector with all entries equal to one. We assume that the generator

matrix is a function of m model parameters denoted by θj, j = 1, 2, . . . , m. To explicitly

represent parametric dependence, the generator matrix and stationary distribution are expressed

as Λ(θ) and π(θ) = [π0(θ), . . . , πn(θ)]T , respectively, where θ = [θ1, θ2, . . . , θm]T .

We can quantify a notion of performance by defining a reward function % :M→ R that maps

each state i = 0, 1, 2, . . . , n into a real-valued quantity ρi which quantifies system performance

while in state i [11]. A long-term measure of system performance can be described by the reward

ξ(θ) =
n∑
i=0

ρiπi(θ) = π(θ)Tρ, (5)
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where ρ = [ρ0, ρ1, . . . , ρn]T is the reward vector [13]. In the case studies, we demonstrate how

reliability/performability indices of interest can be recovered by appropriately formulating the

reward vector.

B. Problem statement

We assume that the model parameters, θj, j = 1, 2, . . . , m, are not perfectly known, but are

constrained to a range. The parameter vector can be expressed as θ = θ̄ + ∆θ, where θ̄ is the

vector of nominal parameter values and ∆θ ∈ X ⊆ Rm, where X is a parallelotope defined as

X ≡
{

∆θ :
∣∣κTi ∆θ

∣∣ ≤ 1, ∀i = 1, . . . , m
}
. (6)

The vertices of X are determined by the parameter value ranges, while the vectors κi define

the edges of X [14]. Given this unknown-but-bounded parametric uncertainty model, we are

interested in characterizing the uncertainty in the stationary distribution π(θ). In particular,

we are interested in determining the set Y , such that ∆π = π − π̄ ∈ Y ⊆ Rn+1, where

π̄ ≡ π(θ̄) = [π̄0, π̄1, π̄2, . . . , π̄n]T is the stationary distribution corresponding to the nominal

parameter values. Notice that the reward ξ(θ) = π(θ)Tρ is a linear projection of the stationary

distribution π(θ) onto the direction specified by the vector ρ. Therefore, to bound the values

that the reward can take, we need to obtain the set Y and then apply a linear transformation

to recover a set C ∈ R, such that ξ(θ) = π(θ)Tρ ∈ C. The brute-force solution to the problem

discussed here is to repeatedly compute the stationary distribution and the associated reward (by

solving (4), (5), respectively) for a range of parameter values in the set {θ̄} ⊕ X .2 However,

this approach is bound to be computationally expensive as the dimension of the state space n,

or the number of model parameters m, increases. Therefore, in this work, we seek an analytical

approach based on the Taylor-series expansion of the stationary distribution.

Example 1. Figure 1 graphically describes the problem discussed above in the context of the

two-state Markov reliability model for a single component with two operating modes—failed

2A⊕ B denotes the vector (Minkowski) sum of the sets A and B.
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Figure 1. Illustrating the set-theoretic method for a two-state Markov reliability model.

in state 0 and operational in state 1. The probability that the component is failed is given by

π0(λ, µ) = λ/(λ+µ), and the probability that it is operational is given by π1(λ, µ) = µ/(λ+µ),

where λ is the component failure rate, and µ is the repair rate. The set X describes the values

that the parameters λ and µ may take. We are interested in recovering the set Y that captures

all values that the stationary distribution π = [π0, π1] may take, due to uncertainty in the values

of λ and µ. In the proposed method, we describe parametric uncertainty by an ellipsoidal set

E (an upper bound to the set X ). Then, we recover the set H by propagating E through a

second-order Taylor series expansion of π0(λ, µ) and π1(λ, µ) about the nominal values of λ

and µ (λ̄ and µ̄, respectively). The set H captures variability in π1 and π0 up to second order.

As hinted in the figure, if the parametric uncertainty is large, the set H may not upper bound

the set Y . In general, for multi-state, multi-parameter models, it is difficult to obtain closed-form

expressions for the stationary distribution—let alone analytically probe the impact of parametric

uncertainty on such expressions.3 The proposed method addresses this problem by: i) expressing

the stationary distribution with a Taylor-series expansion as a function of the model parameters,

and ii) providing a general method to propagate ellipsoidal-shaped sets through a second-order

Taylor-series expansion.

3To appreciate this aspect, readers are referred to (28)-(30) in Section IV-A—closed-form expressions for the stationary
distribution of a two-component shared-load system with common-cause failures.
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III. UNKNOWN-BUT-BOUNDED UNCERTAINTY MODELING

In this section, we characterize the Markov-chain stationary-distribution Taylor-series expan-

sion. Then, we propose methods to propagate ellipsoidal-shaped sets through first- and second-

order Taylor series expansions of the Markov chain stationary distribution.

A. Taylor-Series Expansion of the Stationary Distribution

To characterize uncertainty in the entries of the stationary distribution π(θ) = [π0(θ), π1(θ), . . . , πn(θ)]T ,

we can omit π0(θ) and only consider the other n (out of the n + 1) entries of π(θ). This is

because π0(θ) = 1 −
n∑
i=1

πi(θ). For small perturbations around the nominal parameter values,

πi(θ), i = 1, 2, . . . , n, can be approximated by a second-order Taylor series expansion

πi(θ) = πi(θ̄) + ∆πi ≈ π̄i +∇πi(θ̄)∆θ +
1

2
∆θT∇2πi(θ̄)∆θ, (7)

where ∆θ = [∆θ1, ∆θ2, . . . , ∆θm]T = [θ1− θ̄1, θ2− θ̄2, . . . , θm− θ̄m]T ∈ Rm. In (7), the gradient

∇πi(θ̄), and Hessian ∇2πi(θ̄), are given by

∇πi(θ̄) =

[
∂πi(θ̄)

∂θ1

,
∂πi(θ̄)

∂θ2

, . . . ,
∂πi(θ̄)

∂θm

]
, (8)

∇2πi(θ̄) =



∂2πi(θ̄)

∂θ21

∂2πi(θ̄)
∂θ1∂θ2

. . . ∂2πi(θ̄)
∂θ1∂θm

∂2πi(θ̄)
∂θ2∂θ1

∂2πi(θ̄)

∂θ22
. . . ∂2πi(θ̄)

∂θ2∂θm
...

... . . . ...
∂2πi(θ̄)
∂θm∂θ1

∂2πi(θ̄)
∂θm∂θ2

. . . ∂2πi(θ̄)
∂θ2m


. (9)

Since the generator matrix Λ is singular, it is easy to verify that the entries of the matrices in

(8)-(9) cannot be obtained by direct differentiation of (4). However, it has been shown in [15],

[16] that the group inverse4 of Λ, denoted by Λ#, is a powerful kernel to study the sensitivity

of the stationary distribution to parameter variations. In particular, the sensitivities ∂πi(θ̄)/∂θj ,

4The group inverse of Λ is denoted by Λ#, and is given by the unique solution of: i) ΛΛ#Λ = Λ, ii) Λ#ΛΛ# = Λ#, and
iii) ΛΛ# = Λ#Λ, if and only if rank(Λ) = rank(Λ2), which is a condition that always holds for generator matrices of ergodic
Markov chains [16].
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∂2πi(θ̄)/∂θ
2
j , and ∂2πi(θ̄)/∂θj∂θk, ∀i = 0, 1, . . . , n, ∀j, k = 1, 2, . . . , m, are given by

∂πi(θ̄)

∂θj
= −π(θ̄)T

∂Λ

∂θj
Λ#ei, (10)

∂π2
i (θ̄)

∂θ2
j

= 2π(θ̄)T
(
∂Λ

∂θj
Λ#

)2

ei, (11)

∂π2
i (θ̄)

∂θj∂θk
= π(θ̄)T

(
∂Λ

∂θj
Λ# ∂Λ

∂θk
Λ# +

∂Λ

∂θk
Λ# ∂Λ

∂θj
Λ#

)
ei, (12)

where π(θ̄) is the stationary distribution evaluated at the nominal parameter values, Λ# is the

group inverse of the generator matrix, and ei ∈ Rn+1 is a vector with 1 as the i entry and zero

otherwise. The first and second-order sensitivities have been derived in our previous work ( [13]

and [3], respectively). The expression for the mixed partial derivatives is a contribution of this

paper; a short derivation of this result is included in Appendix A. Both the group inverse, Λ#,

and the stationary distribution for the nominal parameter values, π(θ̄), can be obtained by a QR

factorization of the generator matrix, Λ [13], [15]. A short discussion of this QR factorization

method is included in Appendix B. The nominal stationary distribution and the sensitivities

have to be computed just once, which provides a complete characterization of the second-order

Taylor-series expansion.

Recall from Section II-B that the values the model parameters can take are unknown but lie

within a parallelotope X centered around θ̄, i.e., θ = θ̄ + ∆θ, where ∆θ ∈ X ⊆ Rm. We are

interested in propagating the set X through the system defined in (7) to obtain the set Y that

contains all possible values that ∆π = [∆π1, . . . , ∆πn]T can take. To address this problem,

we build on results for unknown-but-bounded analysis in affine systems [4], which provides

a straightforward solution to the problem when (7) is truncated after the first-order term. A

major contribution of our work is to extend these results and include the effect of unknown-but-

bounded input uncertainty in second-order polynomial systems, i.e., it addresses the case where

(7) is not truncated. This is relevant, since we cannot guarantee linear (or almost linear) behavior

of π(θ) with variations of θ around the nominal value θ̄. As demonstrated in the case studies,

second-order approximations are far more accurate.
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The proposed method performs best when the stationary distribution is approximately a second-

order function of the model parameters. Otherwise, the higher-order sensitivities (closed-form

expressions are derived in [3]) can yield further insight into the impact of higher-order terms.

Expectedly, the percentage uncertainty of the model parameters around the nominal value also

has an impact on the accuracy of the results. Particularly, when X is small, the Taylor-series

approximation is more accurate.

Note that the proposed method is modular, in the sense that one can choose to conduct the

analysis by only using the first-order term, or include both the first- and second-order terms.

Particularly, if the second-order sensitivities are small, one can choose to conduct the analysis

by only using the first-order term. On the other hand, if the second-order sensitivities are large,

one can also include the second-order term in the analysis.

B. First-Order Approximation

Consider (7) truncated after the first-order term:

π(θ) = π(θ̄) + ∆π ≈ π(θ̄) + J∆θ, (13)

where π(θ) = [π1(θ), . . . , πn(θ)]T , (note that the first entry of the stationary distribution is

omitted, but we persist with the same notation), and J =
[
∂πi(θ̄)/∂θj

]
∈ Rn×m is the Jacobian

matrix of π(θ) excluding π0(θ). Given the uncertainty in the values that θ can take, we are

interested in determining the values that π can take, i.e., we wish to characterize the set Y such

that ∆π = [∆π1, . . . , ∆πn]T = π − π̄ ∈ Y ⊆ Rn.

Assume that each entry in ∆θ = [∆θ1, ∆θ2, . . . , ∆θm]T , is constrained to a symmetric

interval (around 0), which implies that the set X which contains all possible values of ∆θ is a

parallelotope. A parallelotope can be tightly bound by the intersection of a family of ellipsoids

that satisfy some criteria, e.g., minimum volume or tightness along a given direction in the input

space [17]. We bound the uncertain parameters by a single minimum-volume ellipsoid E as

follows:

∆θ ∈ X ⊆ E =
{

∆θ : ∆θTΨ−1∆θ ≤ 1
}
, (14)
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where Ψ is a positive definite matrix that determines the shape of E . In particular, the eigenvectors

of Ψ determine the orientation of E , while the eigenvalues of Ψ determine the lengths of the

semimajor axes of E in the direction of the corresponding eigenvectors [4]. The volume of the

ellipsoid is proportional to (det Ψ)1/2; therefore, Ψ can be determined by solving the following

optimization program [18]:

min (det Ψ)1/2

s.t. vTΨ−1v ≤ 1, ∀v ∈ V , (15)

where V is the set of vertices that define X . The program in (15) can be efficiently solved using

convex optimization techniques [18].

Define F as the set that bounds ∆π = J∆θ resulting from variations in ∆θ as described in

(14), i.e., ∆π ∈ Y ⊆ F . Then, it follows that F is an ellipsoid (see e.g., [4]) described by

F =
{

∆π : ∆πTΓ−1∆π ≤ 1
}
, (16)

where the shape matrix Γ is given by

Γ = JΨJT . (17)

C. Second-Order Approximation

Here, we extend the ideas presented in Section III-B to the second-order Taylor-series approx-

imation in (7). As before, the set X that contains all possible values that ∆θ can take is bounded

by a minimum-volume ellipsoid E as described in (14). Following the method in Section III-B,

the linear component of (7), i.e., J∆θ, is bounded by the ellipsoid F defined in (16). We handle

the second-order term, i.e., (1/2)∆θT∇2πi(θ̄)∆θ, as follows. First, for each i, we solve the

following optimization problems:

∆πmini = min
1

2
∆θT∇2πi(θ̄)∆θ

s.t. ∆θ ∈ X , (18)

April 7, 2013 DRAFT



13

Figure 2. Ellipsoidal bounds for the Markov chain stationary distribution.

∆πmaxi = max
1

2
∆θT∇2πi(θ̄)∆θ

s.t. ∆θ ∈ X . (19)

Since we are interested in a worst-case bound, we can guarantee that (1/2)∆θT∇2πi(θ̄)∆θ ∈
Si, where Si = [−si, si], and si = max {|∆πmaxi | , |∆πmini |}. Repeating this procedure for

i = 1, 2, . . . , n, we obtain a set S = S1 × S2 × . . . × Sn ⊆ Rn that bounds the second-order

term. Then, we can obtain a minimum-volume ellipsoid G that contains S. The set Y ∈ Rn

(which contains ∆π) can be upper bounded by the Minkowski sum of the ellipsoids F and G,

i.e., Y ⊆ F ⊕G. In general, F ⊕G is not an ellipsoid, but we can obtain a family of ellipsoids

Hγ =
{

∆π : ∆πTΦ−1
γ ∆π ≤ 1

}
that upper bounds F ⊕ G by choosing

Φγ = (1− γ)−1Σ + γ−1Γ, 0 < γ < 1, (20)

which ensures that Y ⊆ F⊕G ⊆ ⋂Hγ. The result in (20) follows from a special type of Holder’s

inequality as discussed in [4]. Figure 2 illustrates the concepts introduced so far: a single ellipsoid

Hγ bounding Y is depicted in the figure, whereas a family of ellipsoids bounding Y (note that

Y is not depicted in the figure) may be obtained by varying γ between 0 and 1. The intersection

of the ellipsoids in this family would yield a tighter upper bound to the set Y .
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D. Capturing Uncertainty with a Family of Tight Upper-Bounding Ellipsoids

So far, we have exclusively considered minimum-volume ellipsoids to bound the first- and

second-order terms. Less conservative results can be obtained by considering a family of tight

upper-bounding ellipsoids as described next.

First, consider the set X that captures all values the parameters can take. In addition to a

minimum volume ellipsoid E , define a family of ellipsoids {E1, E2, . . . , EE}, where each Ei is

tight to X along a direction specified by a unitary vector ηi.5 The shape matrix Ψi of Ei can be

obtained through the solution of the following optimization program

min
√
ηT
i Ψiηi

s.t. vTΨ−1v ≤ 1, ∀v ∈ V ,√
ηT
j Ψiηj ≤ kj, ∀j 6= i, (21)

where V is the set of vertices that enclose X , and kj is the maximum length of the semi-axis in

the ηj direction [19]. The objective function is the projection of the ellipsoid Ei onto ηi direction.

The first inequality constraint enforces the set containment requirement X ⊆ Ei, while the second

inequality ensures solvability of (21) by constraining the projection of Ei in all other directions

(except that specified by ηi).

Following (16), we propagate each element in the family {E , E1, E2, . . . , EE} through the first-

order term. This results in a family of ellipsoids {F ,F1,F2, . . . ,FE}; the intersection of the

ellipsoids in this family captures the output uncertainty up to first order and it is less conservative

that any single element in the family {F ,F1,F2, . . . ,FE}. Now, focused on the second-order

term, recall that the set S describes the bounds on the second-order variations. In addition to

the minimum volume upper-bounding ellipsoid G, define a family of ellipsoids {G1,G2, . . . ,GG},
where each Gi is tight to S along a direction specified by a unitary vector ζi. Note that the Gi’s
can be constructed by solving an optimization program similar to the one in (21). Finally, for

all Fi ∈ {F1, . . . ,FE} and Gj ∈ {G1, . . . ,GG} and appropriate values of γ, we obtain ellipsoidal

5Notice that the set E ∩ (∩iEi) is a tighter upper bound to X compared to just the minimum-volume ellipsoid, E .
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upper bounds on F ⊕ G, F ⊕ Gj , Fi ⊕ G and Fi ⊕ Gj . These ellipsoidal upper bounds define a

family of ellipsoids that we denote by {H1,H2, . . .HH}, and their intersection, ∩iHi, provides

a tighter upper bound to the output uncertainty, compared to any individual Hi (which may

include, e.g., the ellipsoid corresponding to the sum of the minimum-volume ellipsoids, i.e.,

F ⊕ G).

We now illustrate the ideas presented in the sections above with two simple numerical exam-

ples. The first example examines a second-order system (for which the Taylor-series expression

is exact), and therefore the method proposed in Section III-C provides an upper bound on all

possible values that the output can take. Also, following the approach outlined in Section III-D,

we demonstrate how less conservative results can be obtained by defining a family of ellipsoids

to bound the parametric uncertainty and the second-order terms. The second example investigates

a third-order system, in which case a second-order Taylor-series expansion is an approximation.

Therefore, while the method outlined in Section III-C improves the linear approximation, the

intersection of the Hγ’s does not provide, in general, an upper bound for all possible output

variations. Note that the examples do not correspond to the stationary distribution of actual

Markov chains, but are constructed primarily to illustrate the notation and the concepts introduced

so far.

Example 2. Consider the second-order system: π1(θ1, θ2) = 2θ2
1 + 3θ1θ2 + θ2

2,

π2(θ1, θ2) = θ1 + θ2 − 9θ2
1 − 9θ2

2.
(22)

Suppose the nominal parameter values are given by θ̄ = [θ̄1, θ̄2]T = [5, 1]T ; then from (22), it

follows that π̄ = [π̄1, π̄2]T = [66, −228]T. The Taylor-series expansion for the system in (22) is

given by:  ∆π1 = ∇π1(θ̄)∆θ + 1
2
∆θT∇2π1(θ̄)∆θ,

∆π2 = ∇π2(θ̄)∆θ + 1
2
∆θT∇2π2(θ̄)∆θ,

(23)
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where ∇π1(θ̄) and ∇π2(θ̄) are given by ∇π1(θ̄) = [4θ̄1 + 3θ̄2, 3θ̄1 + 2θ̄2] = [23, 17],

∇π2(θ̄) = [1− 18θ̄1, 1− 18θ̄2] = [−89, −17],
(24)

and ∇2π1(θ̄) and ∇2π2(θ̄) are given by

∇2π1(θ̄) =

 4 3

3 2

 , ∇2π2(θ̄) =

 −18 0

0 −18

 . (25)

Suppose ∆θ1 = ∆θ2 ∈ [−0.9, 0.9]. The set X depicted in Fig. 3a, is tightly bound by the

intersection of the minimum-volume ellipsoid E , and ellipsoids E1 and E2 that are tight to X
along the directions specified by η1 = [1, 0]T and η2 = [0, 1]T, respectively (these are also

depicted in Fig. 3a). Corresponding to E , E1, and E2, and assuming a linear approximation as in

Section III-B, we obtain the bounding ellipsoids F , F1, and F2, that are depicted in Fig. 3b. The

set F ∩F1∩F2 captures the effect of the first order uncertainty in (23). In Fig. 3b, we also plot

a cloud of points that results from solving (23) for all possible values of θ1 and θ2. As expected,

since the system is second order, this bound fails to capture all possible values that ∆π can

take. To improve the linear bound, we follow the procedure in Section III-D to determine an

ellipsoidal bound for the second-order term in (23). First, the solution to (18)-(19) yields the sets

S1 and S2, and a corresponding minimum-volume ellipsoidal bound G, all illustrated in Fig. 3c.

In addition, we also depict the ellipsoids G1 and G2, that are tight to S in the directions specified

by ζ1 = [1, 0]T and ζ2 = [0, 1]T, respectively. Finally, for appropriate values of γ, we obtain a

family of ellipsoids, {Hi}, the elements of which upper bound each combination that results

from the Minkowski sum of the F’s and the G’s. Three of the ellipsoids in this set, i.e., H1,

H2, and H3, and their intersection in a bold red line, are shown in Fig. 3d, superimposed to the

exact values that π(θ) can take. Since the function is a second order polynomial, (23) is exact.

Therefore, each Hi captures the entire range of values that π(θ) can take, and the intersection

provides a tighter bound.
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(d) Exact solution to output uncertainty and ellipsoidal bounds
that capture second-order variations. Notice that ∩3

i=1Hi ⊂
Hi, ∀i = 1, 2, 3.

Figure 3. Results for second-order system studied in Example 2.

Example 3. Consider the following third-order system: π1(θ1, θ2) = 2θ1 + θ2
2 + θ1θ2,

π2(θ1, θ2) = θ2
1 + θ3

2.
(26)

Suppose θ1 and θ2 vary by up to 90% around their nominal values, θ̄1 = 1, θ̄2 = 1. Figure 4a

plots a cloud of points obtained by solving (23) for all possible values of θ1 and θ2, as well as

the linear bound F . As expected, this bound does not capture all possible values that π(θ) can

take, since the system is of third order. To improve the linear bound, we determine the ellipsoids

Hγ for a set of values γ chosen from the range (0, 1). These are plotted superimposed in Fig. 4b.
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Figure 4. Results for third-order system studied in Example 3.

Since the system is of third order, we see that the intersection of the Hγ’s—while significantly

better than the first-order bound—fails to capture all possible values of π(θ); in particular, there

is a single point (emphasized for clarity in Fig. 4b) that lies outside the intersection of the Hγ’s.

This example demonstrates that the validity of the proposed approach is contingent on how

closely a second-order Taylor-series expansion approximates the original function.

IV. CASE STUDIES

In this section, we examine the impact of parametric uncertainty in two reliability models

described in the Introduction. In all the case studies, we compare the results obtained using

the ellipsoidal-shaped sets with repeated simulations. The repeated simulations are performed

as follows. We first create vectors with evenly spaced values for each parameter θj (about the

nominal values θ̄j) ∀ j = 1, . . . , m . The set
{
θ̄
}
⊕ X , where θ̄ = [θ̄1, . . . , θ̄m], describes the

Cartesian product of all the θj’s. For each θ̂ ∈
{
θ̄
}
⊕X , we obtain the corresponding generator

matrix Λ(θ̂) by substituting the corresponding values of the parameters. Then, through a QR

factorization of Λ(θ̂), we obtain the stationary distribution of the chain π(θ̂) without having to

solve the Chapman-Kolmogorov equations (for the specific Λ(θ̂) as t→∞). This is repeated for

all elements in
{
θ̄
}
⊕X . For large number of parameters m, or as the number of values in each

April 7, 2013 DRAFT



19

Figure 5. System of two identical components with shared load and common-cause failures.

θj is increased (to increase the accuracy of the results), this process can get computationally

expensive as demonstrated in the second case study.

A. Two Components with Shared Load

This example, adapted from [10], explores the Markov reliability model for a system of two

identical components that share a common load. The failure and repair rate of the components

are denoted by λ and µ, respectively. Additionally, the system is susceptible to common-cause

failures which cause both components to fail at a rate λC . The state-transition diagram of the

Markov chain describing the availability of this system is depicted in Fig. 5. Both components

are operational in state 2, a single component is operational in state 1, and in state 0, both

components are failed. Repairs restore the operation of one component at a time. From the

state-transition diagram, the Markov chain generator matrix can be derived as

Λ =


−µ µ 0

λ+ λC −(λ+ λC + µ) µ

λC 2λ −(2λ+ λC)

 . (27)

Solving (4) with Λ given in (27), it can be shown that [10]

π0 =
(λ+ λC)(2λ+ λC) + λCµ

(λ+ λC + µ)(2λ+ λC) + λCµ+ µ2
, (28)
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Figure 6. Ellipsoidal upper bounds to parameters with (a) 20% and (b) 30% uncertainty.

π1 =
(2λ+ λC)µ

(λ+ λC + µ)(2λ+ λC) + λCµ+ µ2
, (29)

π2 =
µ2

(λ+ λC + µ)(2λ+ λC) + λCµ+ µ2
. (30)

This illustrates a major advantage of our proposed framework in that closed-form expressions

of the sort in (28)-(30)—which are difficult to obtain in general—are not required a priori.

Additionally, even if the expressions are available, given the information that the parameters λ,

µ, and λc belong to some set, it is difficult to compute bounds on the stationary distribution

without repeatedly solving (4) for all possible parameter values in the set.
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Figure 7. Linear- and second-order ellipsoidal bounds to stationary distribution assuming (a) 20% and (b) 30% uncertainty.
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Figure 8. Uncertainty in reward as a function of parametric uncertainty.

The nominal values of the failure rate, repair rate, and common-cause failure rate are given

by: λ̄ = 1.6× 10−4 hr−1, µ̄ = 1.25× 10−1 hr−1, and λ̄c = 2× 10−5 hr−1, respectively [10]. The

nominal steady-state probabilities are given by π̄0 = 1.63×10−4, π̄1 = 0.0027, and π̄2 = 0.9971.

Let θ1 = λ, θ2 = µ, θ3 = λc, and consider that each parameter θi ∈ [θ̄i − (p/100)θ̄i, θ̄i +

(p/100)θ̄i], i = 1, 2, 3, where θ̄i is the nominal value of the i parameter, and p describes the %

variation in the value that the i parameter θi can take. Figures 6a and 6b depict the sets X and

corresponding upper-bounding minimum-volume ellipsoids E that the parameters are constrained

to, assuming uncertainty p = 20% and p = 30%, respectively. Figures 7a and 7b depict linear and

second-order ellipsoidal bounds (F and Hγ , respectively) on the uncertainty in the steady-state

probabilities. In both cases, we see that a linear approximation is insufficient. The intersection

of the Hγ’s accurately captures all possible variations for 20% uncertainty in the parameters.

For 30% uncertainty, there is a single point that lies outside the intersection of the Hγ’s.

Now, suppose that the performance of the system depends on the number of operational com-

ponents. To model system performance, define a reward model by choosing ρ = [ρ0, ρ1, ρ2]T =

[0, 1, 2]T . The long-term reward is then given by ξ = πTρ = π1 + 2π2. Since the parameters

are uncertain, we can obtain bounds on ξ by simply projecting the ellipsoidal bounds for the

stationary distribution onto the direction defined by ρ. Figure 8 depicts upper and lower bounds
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Figure 9. Reliability model for transformer with deterioration and preventative maintenance.

to the values that ξ can take as a function of the level of uncertainty p. Results from repeatedly

solving (4)-(5) for all possible parameter values are superimposed. Notice that the ellipsoidal

bounds accurately capture the impact of uncertainty on the values that ξ can take.

B. Preventative Transformer Maintenance

This example examines the preventative maintenance of an electric-power distribution trans-

former (see [20], [21] and the references therein for a detailed description of this model). Note

that similar models have been used to study the impact of preventative maintenance in operational

software systems [22]. The state-transition diagram that describes the Markov reliability model

is depicted in Fig. 9. The transformer has an ideal operating state denoted by D1, and two

deteriorated states, denoted by D2 and D3, respectively. Denote the rate at which complete failure

due to deterioration is expected by λ1, which implies that transitions between the deterioration

states occur at the rate 3λ1. Transformer failure due to deterioration is denoted by state F1. Once

in this state, repair at the rate µ1 restores the transformer to the ideal operating state. Apart from

gradual deterioration, a transition to a catastrophic failure state, denoted by F0, at the rate λ0

is possible from any of the deteriorated states. From this state, repair restores operation at a

rate µ0. Preventative maintenance can be performed on the transformer when it is in states Di,

i = 1, 2, 3. Preventative maintenance in state Di (i > 1) restores operation to state Di−1 after

passing through the maintenance state Mi. Preventative maintenance is performed at a rate λm
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Figure 12. Transformer availability as a function of preventative maintenance rate assuming 10% parametric uncertainty.

and the time required for maintenance is captured by µm. The availability of the transformer,

ξ = π7+π6+π5, i.e., the sum of the steady-state probabilities in states D1, D2, and D3. Note that

the availability is given by ξ = πTρ, where π is the stationary distribution and the reward vector

ρ = [0, 0, 0, 0, 0, 1, 1, 1]T . The problem of interest is to determine the optimal preventative

maintenance rate λm, that maximizes the availability, while taking into account the effect of

parametric uncertainty. We show that the proposed method to uncertainty analysis can provide

further insight into the problem.

The nominal parameter values are given by: λ̄1 = 1/1000 days−1, µ̄1 = 1/14 days−1, µ̄m =

1/0.5 days−1, λ̄0 = 1/500 days−1, and µ̄0 = 1/7 days−1. Suppose the parameters λ1, µ1, and µm
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are unknown but bounded around their nominal values. Assuming 10% uncertainty around the

nominal values, Fig. 10 depicts the set X (and corresponding upper-bounding minimum-volume

ellipsoid E) that contains all values that the parameters can take. Following the methods outlined

in Section III-C, we determine bounds on the stationary distribution. Figure 11 depicts linear

and second-order ellipsoidal bounds (F and Hγ , respectively) on the values that the steady-state

probabilities can take (without loss of generality, we just depict variability in π7, π6, and π0). The

exact solution—determined by repeated simulation—is superimposed on the ellipsoidal bounds.

We see that a linear approximation is insufficient, and the second-order approximation provides

a better (albeit conservative) bound. For 10% uncertainty around the nominal parameter values,

Fig. 12 plots the availability of the transformer as a function of λm. From this figure, we see

that a maintenance rate in the order of 0.005 days−1 maximizes the transformer availability.

Notice that the second-order bound is more conservative, and in general lower bounds are more

accurate than upper bounds.

Now, consider the state-transition diagram depicted in Fig. 9, except with an arbitrary number

of deterioration states. We compare the execution time of the proposed method with the execution

time involved in obtaining the solution by running repeated simulations as the model order is

increased (i.e., as the number of deterioration states is increased). We utilize a first-order Taylor

series expansion for this experiment because the programs in (18)-(19) are not optimized for exe-

cution time (this is grounds for future work). Consider that all parameters λm, µm, λ1, µ1, λ0, µ0

are uncertain up to 5% around their nominal values. To perform the repeated simulations, for each

parameter we sample the nominal value and two extreme values. The experiment is performed

on a PC with a 2.66 GHz Intel R© CoreTM2 Quad CPU processor with 4 GB memory in the

MATLAB R© environment. The execution time as a function of the number of deterioration states

for the two methods is plotted in Fig. 13. Figure 14 superimposes the bounds obtained with

the ellipsoidal method to the results of the repeated simulations. The results indicate that for

large models (as the number of states is increased beyond (approximately) 60 in this case), the

proposed method has lower execution time compared to exhaustive simulation of all possible

parameter values.
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Figure 13. Execution time for the ellipsoidal method compared
to exhaustive simulations as a function of model order.

Figure 14. Ellipsoidal bounds and results from exhaustive
simulations as a function of model order.

V. CONCLUDING REMARKS AND DIRECTIONS FOR FUTURE WORK

A set-theoretic method based on the Taylor series expansion of the Markov chain stationary

distribution is proposed to propagate parametric uncertainty to reliability and performability

indices in Markov reliability models. The proposed method allows estimating bounds on reli-

ability/performability indices of interest given bounds on the uncertain model parameters. The

main advantage of the proposed framework is that only the generator matrix is required as the

input. Additionally, the method eliminates the need for repeated simulations as the Taylor-series

coefficients need to be evaluated just once at the nominal parameter values.

Future work could include tailoring the method to the case where more general sets are used

to describe parametric uncertainty. Optimization of the methods proposed to handle the second-

order terms for computational speed could also be explored further. In addition to parametric

uncertainty analysis, the sensitivities and the ellipsoidal set propagation methods could be em-

ployed in other application areas. For example, similar to the methods in [2], we could explore

identifying model aspects that are most prone to errors, as well as bottleneck analysis and optimal

system design.
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APPENDIX

A. Derivation of result in (12)

Consider that the ergodic CTMC is associated with a discrete time Markov chain (DTMC)

whose distribution is governed by

pk+1 = pkP, (31)

where P = I + δΛ is a row-stochastic, irreducible, and primitive matrix (with an appropriate

choice of δ). Define the matrix

A = I − P = −δΛ, (32)

and denote the group inverse of A by A#. The stationary distribution of the DTMC satisfies

pA = 0. Differentiating the expression pA = 0 with respect to the parameter θi, i = 1, . . . ,m,

yields
∂p

∂θi
A+ p

∂A

∂θi
= 0. (33)

Now differentiate (33) with respect to θj, j 6= i to obtain

∂2p

∂θj∂θi
A+

∂p

∂θi

∂A

∂θj
+
∂p

∂θj

∂A

∂θi
+ p

∂2A

∂θj∂θi
= 0. (34)

From the construction in (32), it is clear that the entries of A can be expressed as a linear

combination of the model parameters θi, i = 1, . . . ,m. Consequently, ∂2A/∂θiθj = 0,∀i, j,
which allows us to simplify (34) as follows:

∂2p

∂θj∂θi
A = p

∂A

∂θi
A# ∂A

∂θj
+ p

∂A

∂θj
A#∂A

∂θi
, (35)

where we have used ∂p/∂θi = −p(∂A/∂θi)A# (this expression for the first-order sensitivity of

the stationary distribution follows from [15]). Following along the lines of Theorem 3.2 in [15],

it follows that
∂2p

∂θj∂θi
= p

∂A

∂θi
A# ∂A

∂θj
A# + p

∂A

∂θj
A#∂A

∂θi
A#, (36)
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where A# is the group inverse of A. Since the stationary distributions of the CTMC and DTMC

match, we get
∂π2

∂θj∂θi
= πT

(
∂Λ

∂θj
Λ# ∂Λ

∂θi
Λ# +

∂Λ

∂θi
Λ# ∂Λ

∂θj
Λ#

)
. (37)

B. Computing the stationary distribution and group inverse

The stationary distribution π, and group inverse Λ#, are obtained by a QR factorization of

the generator matrix Λ [15]. Factor Λ as Λ = QR, where, Q, R ∈ Rn+1×n+1. We have

R =

 U −Ue
0 0

 , (38)

where U ∈ Rn×n is a nonsingular upper-triangular matrix, and e ∈ Rn is a column vector with

all elements equal to one. The stationary distribution is obtained by normalizing the last column

of Q = [q1, q2, . . . , qn+1], i.e.,

π =
qn+1

n+1∑
i=1

qi,n+1

, (39)

The group inverse is related to Q and R as follows:

Λ# = (I − eπT )

 U−1 0

0 0

QT (I − eπT ). (40)
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