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Abstract

A common concern with Markov reliability and reward models is that model parameters, i.e.,

component failure and repair rates, are seldom perfectly known. This paper proposes a numerical method

based on the Taylor series expansion of the underlying Markov chain stationary distribution (associated

to the reliability and reward models) to propagate parametric uncertainty to reliability and performability

indices of interest. The Taylor series coefficients are expressed in closed form as functions of the Markov

chain generator-matrix group inverse. Then, in order to compute the probability density functions of

the reliability and performability indices, random variable transformations are applied to the polynomial

approximations that result from the Taylor series expansion. Additionally, closed-form expressions that

approximate the expectation and variance of the indices are also derived. A significant advantage of

the proposed framework is that only the parametrized Markov chain generator matrix is required as an

input, i.e., closed-form expressions for the reliability and performability indices as a function of the

model parameters are not needed. Several case studies illustrate the accuracy of the proposed method

in approximating distributions of reliability and performability indices. Additionally, analysis of a large

model demonstrates lower execution times compared to Monte Carlo simulations.
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NOMENCLATURE

Λ Markov chain generator matrix

θ = [θ1, . . . , θm] Vector of generator-matrix parameters

π(θ) = [π0(θ), . . . , πn(θ)] Stationary distribution of the Markov chain

ξ, γ Reward and accumulated reward of a Markov reward model

Θ = [Θ1, . . . ,Θm] Vector of random variables that describes uncertain generator-matrix pa-

rameters

∆Θ Zero-mean random vector with the same distribution as Θ

Π = [Π0, . . . ,Πn] Vector of random variables that describes the stationary distribution of the

Markov chain

Ξ, Γ Random variables that describe reward and accumulated reward of a Markov reward

model

N ∼ N (mN , σ
2
N) Normally distributed random variable with mean mN and variance σ2

N

U ∼ U(aU , bU) Uniformly distributed random variable over the interval [aU , bU ]

e Row vector with all entries equal to 1

I. INTRODUCTION

Parametric uncertainty in Markov reliability and reward models is a significant concern as

component failure and repair rates are seldom perfectly known. In lieu of precise numbers, failure

and repair rates can be modeled as random variables with distributions determined by various

methods, e.g., utilizing known confidence intervals and distributions of aleatory uncertainties such

as the mean time to failure [1], applying the maximum entropy principle if only the range of the

uncertain parameters is known [2], or based on engineering experience and field data [3], [4].

Given the probability density functions (pdfs) of the uncertain parameters, this paper proposes

a framework to compute the pdfs of the Markov reliability model stationary distribution, and

Markov reward model performability indices, both for repairable systems in which the underlying

Markov chains are ergodic1.

1A Markov chain is said to be ergodic if it has a unique stationary distribution independent of initial conditions [5].
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Set-theoretic methods are an alternative to address the problem of parametric uncertainty in

Markov models. For instance, methods based on interval-arithmetic (see, e.g., [6]) have been

proposed in [7], [8]. In such works, it is assumed that no model parameter statistics are available,

but instead, model parameters are constrained to lie in a set (perhaps centered about a nominal

value), which is then propagated by set operations through the Markov model to relevant indices.

This approach represents a worst-case uncertainty analysis, as no parameter distributions are

assumed due to a lack of statistical information. In this regard, such methods are conceptually

very different from the method proposed in this paper, as we adopt a probabilistic model for the

values that the parameters can take.

The proposed framework involves the use of Taylor series expansions to approximate the

entries of the Markov chain stationary distribution vector, i.e., the steady-state occupational

probabilities of different states, as polynomial functions of the uncertain parameters, which are

modeled as random variables. A significant contribution of this work is the derivation of the

Taylor series coefficients, which are expressed in closed form as functions of the generator-matrix

group inverse [9]. Subsequently, random variable transformations are applied to numerically

compute the pdfs of the Markov chain steady-state probabilities and performability indices.

Additionally, closed-form expressions for the expectation and variance of these indices are

derived from a direct analysis of lower-order approximations of the Taylor series expansion. Note

that if closed-form expressions for the relevant indices as a function of the model parameters

were readily available, Taylor series expansions would be unnecessary; however, in general, it

is difficult to obtain these expressions in closed form.

The use of Taylor series expansions to study parametric uncertainty in Markov reward models

has been proposed in [2], [10]. In these works, the Taylor series coefficients are expressed

in terms of the inverse of the underlying Markov chain generator matrix. However, since the

generator matrix of ergodic Markov chains is singular, it is unclear how the ideas in [2], [10]

can be implemented in practice. Additionally, while the approach is sketched out, it is not

applied directly in the case studies. Methods to propagate uncertainty based on the Markov

chain transient solution sensitivity to model parameters are outlined in [4], [11], [12], and [13].
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By contrast, since we focus on repairable systems, our method focuses directly on the stationary

distribution of ergodic Markov chains which are used to model repairable systems. Note also that

our framework not only proposes closed-form approximations for the expectation and variance

of reliability and performability indices, but also provides a numerical method to derive the pdfs

of these indices. The sensitivities could be computed following alternative methods (see e.g.,

[4], [11] and the references therein) before applying the techniques proposed here to obtain the

pdfs of the reliability/performability indices. Finally, a significant advantage of the proposed

framework is that the only required input is the Markov chain generator matrix, i.e., closed-form

expressions for the stationary distribution and performability indices as a function of the model

parameters are not required a priori.

We demonstrate the application of the proposed framework in analyzing Markov reliability and

reward models with several case studies, including: i) a two-state model for a single component

with two operating modes, ii) a three-state model for a two-component load-sharing system with

common-cause failures, and iii) an n+1 state model for n components, each with two operating

modes. In the first two case studies, we illustrate the accuracy of the proposed method by

comparing results with Monte Carlo simulations (and the exact analytical result when available).

The expectation and variance derived from the analytical expressions are also compared with

those obtained numerically from the derived pdfs. The final case study compares the execution

time of the proposed approach with Monte Carlo simulations to compute the pdf of a particular

performability metric. The execution time of the proposed Taylor series method is noted to

be lower than Monte Carlo simulations for large models as long as there are a few uncertain

parameters.

The remainder of this paper is organized as follows. In Section II, we introduce Markov

reliability and reward model fundamentals, and present closed-form expressions for the sensitivity

of the Markov chain stationary distribution to model parameters as a function of the generator-

matrix group inverse. In Section III, we outline the numerical framework to compute the pdfs of

the stationary distribution and performability indices, and also provide pseudocode for computer

implementation of the framework. Case studies are presented in Section IV, and concluding
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remarks are provided in Section V.

II. PRELIMINARIES

A brief introduction to the fundamentals of Markov reliability and reward models, and the

group inverse of ergodic Markov chains is presented in this section. Interested readers are referred

to [14], [15], and [9], respectively, for a more detailed account on these topics.

A. Markov Reliability Models

Let X = {X(t), t ≥ 0} denote a stochastic process taking values in a countable set S. The

stochastic process X is called a continuous-time Markov chain if it satisfies the so called Markov

property, which is to say that

Pr {X(tn) = i|X(tn−1) = jn−1, . . . , X(t1) = j1} = Pr {X(tn) = i|X(tn−1) = jn−1} , (1)

for all i, j1, . . . , jn−1 ∈ S, and t1 < . . . < tn [16]. The chain X is said to be homogeneous if it

satisfies

Pr {X(t) = i|X(s) = j} = Pr {X(t− s) = i|X(0) = j} , ∀i, j ∈ S, 0 < s < t. (2)

Homogeneity of X implies that the times between transitions are exponentially distributed. The

chain X is said to be irreducible if for every pair i, j of states, we have

Pr {X(t) = i|X(0) = j} > 0 for some t > 0, i.e., every state in an irreducible chain is accessible

from every other state.

In this paper, we consider the class of continuous-time Markov chains that are homogeneous,

irreducible, and take values in a finite set S = {0, 1, 2, . . . , n}, where 0, 1, 2, . . . , n− 1 index

system configurations that arise due to component faults, and n indexes the nominal, non-faulty

configuration. Let X denote a chain belonging to this class; then since X is irreducible and takes

values in a finite set, it follows that X is also ergodic, i.e., it has a unique stationary distribution

independent of initial conditions [15]. Let π̃i(t), t ≥ 0, be the probability that the chain is in state
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i at time t, and define the corresponding probability vector as π̃(t) = [π̃0(t), π̃1(t), . . . , π̃n(t)].

The evolution of π̃(t) is governed by the Chapman-Kolmogorov equations:

˙̃π(t) = π̃(t)Λ, (3)

with π̃n(0) = 1, π̃i(0) = 0, i = 0, 1, . . . , n− 1, and where Λ ∈ Rn+1×n+1 is the Markov chain

generator matrix whose entries are a function of component failure and repair rates [14]. By

construction, all the row sums in Λ are zero, which implies that Λ is not invertible. The steady-

state solution of (3) is referred to as the stationary distribution of the chain; it is denoted by π,

and is obtained as the solution of

πΛ = 0, πeT = 1, (4)

where e ∈ Rn+1 is a row vector with all entries equal to one. The stationary distribution of

an ergodic Markov chain is unique (independent of initial conditions), and a function of the

generator-matrix parameters (interchangeably referred to as model parameters) which are denoted

by θj, j = 1, 2, . . . , m. To explicitly represent parametric dependence, the generator matrix and

stationary distribution are expressed as Λ(θ) and π(θ) = [π0(θ), . . . , πn(θ)], respectively, where

θ = [θ1, θ2, . . . , θm].

B. Markov Reward Models

The terminology in this section is adopted from [15]. A Markov reward model is defined by

a Markov chain taking values in a finite set S and a reward function % : S → R that maps each

element i ∈ S into a real-valued quantity ρi, which captures some performance metric of interest

while in state i. At time t, the value that % takes can be described by a random variable P (t).

The instantaneous reward, denoted by ξ(t), is a probabilistic measure of system performance

given by the expected value of P (t):

ξ(t) ≡ E[P (t)] =
n∑
i=0

π̃i(t)ρi = π̃(t)ρT , (5)
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where ρ = [ρ0, ρ1, . . . , ρn]. The reward, denoted by ξ, is a long-term measure of system

performance, and it is defined as

ξ ≡ lim
t→∞

ξ(t) = lim
t→∞

n∑
i=0

π̃i(t)ρi =
n∑
i=0

πiρi = πρT , (6)

where π = [π0, π1, . . . , πn] is the Markov chain stationary distribution. If the values that the

reward function % takes are defined in per-unit time, then ξ describes the average rate at which

the system delivers/consumes some quantity that captures a measure of system performance.

The accumulated reward, denoted by γ, is a quantity measuring system performance in a period

[0, τ ], and it is defined as

γ ≡
τ∫

0

E[P (t)]dt =

τ∫
0

π̃(t)ρTdt. (7)

Let t0 be the time at which the effect of initial conditions in (3) has vanished, i.e., π̃(t) ≈ π ∀t ≥

t0. Then, for τ � t0, it follows that [17]:

γ =

τ∫
0

π̃(t)ρTdt =

t0∫
0

π̃(t)ρTdt+

τ∫
t0

π̃(t)ρTdt ≈
t0∫

0

π̃(t)ρTdt+ πρT (τ − t0). (8)

Now, by applying the mean-value theorem for integration to the first term of the last equality

above, we obtain

γ ≈ π̃(s)ρT t0 + πρT (τ − t0) =
(
π̃(s)ρT − πρT

)
t0 + πρT τ ≈ πρT τ, (9)

where π̃(s) = π̃(t)|t=s for some s ∈ [0, t0]. Since 0 ≤ π̃i(s) ≤ 1 and 0 ≤ πi ≤ 1, ∀i =

0, 1, . . . , n, and τ � t0, the term πρT τ dominates
(
π̃(s)ρT − πρT

)
t0, and as a result, γ ≈ πρT τ .

To explicitly represent the dependence of the reward and accumulated reward on the generator-

matrix parameters, they are expressed as ξ(θ) and γ(θ), respectively.

C. Numerical Computation of the Stationary Distribution and the Group Inverse

For ergodic Markov chains, the generator-matrix group inverse enables the numerical calcu-

lation of ∂kπi(θ)/∂θkj , i = 0, 1, . . . , n; j = 1, 2, . . . ,m; k > 0, as will be discussed in Section
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II-D. The group inverse of Λ = Λ(θ) for some θ is denoted by Λ#, and is given by the unique

solution of 
ΛΛ#Λ = Λ,

Λ#ΛΛ# = Λ#,

ΛΛ# = Λ#Λ,

(10)

if and only if rank(Λ) = rank(Λ2), which is a condition that always holds for generator matrices

of ergodic Markov chains [18]. A number of techniques amenable for computer implementation

have been proposed to compute the group inverse [9]. An approach involving the QR factorization

of Λ yields the stationary distribution π = π(θ), and the group inverse, Λ# [19]. In this method,

Λ is factored as Λ = QR, where, Q, R ∈ Rn+1×n+1. The matrix R is of the form

R =

 U −UeT

0 0

 , (11)

where U ∈ Rn×n is a nonsingular upper-triangular matrix, and e ∈ Rn is a row vector with all

entries equal to one. The stationary distribution can be derived by normalizing the last column

of Q:

πj =
qj+1,n+1

n+1∑
i=1

qi, n+1

, j = 0, 1, . . . , n. (12)

The group inverse is related to Q and R as follows:

Λ# = (I − eTπ)

 U−1 0

0 0

QT (I − eTπ). (13)

D. Sensitivity of the Stationary Distribution and Reward to Model Parameters

For Markov reliability models, the first-order sensitivity of stationary distributions to model

parameters was derived in [17]. We extend the ideas in [17] to obtain higher-order sensitivities,

which is a key result utilized extensively in the framework proposed subsequently. The k-order
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sensitivity of the stationary distribution π(θ1, θ2, . . . , θm) to the i parameter θi is given by

∂kπ(θ)

∂θki
= k! (−1)k π(θ)

(
∂Λ

∂θi
Λ#

)k
. (14)

The derivation of (14) is included in the Appendix. From (6) and (14), the sensitivity of the

reward to the i parameter can be expressed as

∂kξ(θ)

∂θki
=
∂kπ(θ)

∂θki
ρT = k! (−1)k π(θ)

(
∂Λ

∂θi
Λ#

)k
ρT . (15)

III. COMPUTATION OF PDFS FOR THE MARKOV CHAIN STATIONARY DISTRIBUTION AND

REWARD MODELS

In this section, we propose numerical methods to compute the pdfs of the stationary distribu-

tion, the reward, and the accumulated reward, given the parametrized Markov chain generator

matrix and the model-parameter pdfs. First, we demonstrate how the pdfs of the stationary

distribution can be derived for the case where a single parameter in the generator matrix is

uncertain. Then, for the more general multiple-parameter case, we leverage the results of the

single-parameter case to show how the pdfs of the stationary distribution, the reward, and the

accumulated reward can be computed.

Let Θ = [Θ1, Θ2, . . .Θm] be the vector of random variables that describes the model param-

eters, and let fΘj
(θj) denote the pdf of Θj , j = 1, 2, . . . , m. It is assumed that the Θj’s are

independent continuous random variables with known pdfs. Therefore, the steady-state prob-

abilities are random variables that can be collectively described by a random vector Π =

[Π0, Π1, . . . , Πn], where Πi = πi(Θ). Similarly, the reward, Ξ = ξ(Θ), and the accumulated

reward, Γ = γ(Θ) = Ξ · τ , are random variables with pdfs fΞ(ξ) and fΓ(γ), respectively.

If closed-form expressions for the stationary distribution as a function of the model parameters

were available and if the expressions were invertible, fΠi
(πi), fΞ(ξ), and fΓ(γ) could be deter-

mined through the well-known random-variable-transformation method stated in the following

Lemma (see [20] for a complete proof).

Lemma 1. Consider a random variable X with pdf fX(x) and a differentiable, real-valued
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function g(x). The pdf of the random variable Y = g(X), fY (y), is given by

fY (y) =
r∑
i=1

fX(xi)

|g′(xi)|
, g′(xi) ≡

dg

dx

∣∣∣∣
x=xi

6= 0, (16)

where x1, x2, . . . xr are r real roots of y = g(x).

The main impediment in directly applying the above Lemma to our problem is that it is

seldom possible to obtain closed-form expressions for the Markov chain stationary distribution,

π(θ) (g(x) in the context of Lemma 1). Furthermore, the number of roots of y = g(x) depends

on the value of y, and might not be finite unless g(x) is a polynomial.

In our method, to derive fΠi
(πi) and fΞ(ξ), the functions πi(Θ) and ξ(Θ) are first approximated

by polynomials by truncating their Taylor series expansions. Since we model these functions as

polynomials, we are guaranteed to have a finite number of roots. The Taylor series coefficients

are the sensitivities ∂kπi(θ)/∂θk and ∂kξ(θ)/∂θk. In general, obtaining these sensitivities is a

difficult task, however, they can be computed from the generator-matrix group inverse as shown

in (14)-(15). Once the polynomial characterization is available, Lemma 1 (and its extension to

the multiple-parameter case) can be applied to compute fΠi
(πi) and fΞ(ξ) by evaluating the roots

of the polynomial approximations, which are easy to obtain numerically. Since the accumulated

reward Γ is the product of the reward Ξ, and a constant τ , fΓ(γ) can be easily expressed as a

function of fΞ(ξ) and τ .

A. Single Parameter Case

Consider the case where a single parameter in the generator matrix is uncertain. This parameter

is denoted by θ and described by a random variable Θ, whose pdf fΘ(θ), is known2. To derive

the pdf of the steady-state probability Πi = πi(Θ), we begin by expressing Θ as

Θ = mΘ + ∆Θ, (17)

2While we have defined θ = [θ1, θ2, . . . , θm] as the vector of model parameters, in this subsection, we abuse notation and
denote the single uncertain model parameter by θ.
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where mΘ is the mean of Θ, and ∆Θ is a zero-mean random variable such that f∆Θ(∆θ) =

fΘ(mΘ + ∆θ). We can expand πi(Θ) around the mean of Θ using a Taylor series expansion as

follows:

Πi = πi(mΘ + ∆Θ) = πi(mΘ) +
∞∑
k=1

aki
k!

∆Θk. (18)

The k-order Taylor series coefficient, aki, follows from (14):

aki =
dkπi(θ)

dθk

∣∣∣∣
θ=mΘ

= k! (−1)k π(θ)

(
dΛ(θ)

dθ
Λ#

)k
eTi

∣∣∣∣∣
θ=mΘ

, (19)

where ei ∈ Rn+1 is a row vector with a 1 as the i entry and zero otherwise.

1) Probability density function of Πi: Since the exact, analytical, closed-form expression for

πi(∆Θ) is not known, to apply the result in Lemma 1, Πi is first expressed as Πi = pi(∆Θ),

where pi is a polynomial with real coefficients obtained by truncating the Taylor series in (18)

at the t term:

Πi = pi(∆Θ) = πi(mΘ) +
t∑

k=1

aki
k!

∆Θk. (20)

Then, applying (16), fΠi
(πi) can be computed as

fΠi
(πi) =

r∑
j=1

f∆Θ(∆θj)

|p′i(∆θj)|
, (21)

where ∆θ1, ∆θ2, . . . , ∆θr are the r ≤ t real roots of the polynomial equation πi = pi(∆θ), and

p′i(∆θj) ≡
dpi(∆θ)

d∆θ

∣∣∣∣
∆θ=∆θj

=
t∑

k=1

aki
(k − 1)!

∆θk−1
j . (22)

2) Computer Implementation: Algorithm 1 provides the pseudocode for computer implemen-

tation of the method outlined in (17)-(22) to compute fΠi
(πi), i = 0, 1, . . . , n. Since (21) has

to be evaluated point wise, πi is appropriately discretized between 0 and 1 in steps of dπi to

obtain the vector π̄i = [0 : dπi : 1]. A first-order Taylor series expansion can be utilized if the

function πi(θ) is not far from linear within one standard deviation away from the mean, mΘ [21].

Alternately, higher-order expansions can be utilized. Given the parametrized generator matrix, it

is easy to compute ∂Λ
∂θ

and obtain the QR factorization of the generator matrix at the mean of
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Θ, Λ(mΘ). Next πi(mΘ) is obtained as shown in (12) by normalizing the last column of Q, the

group inverse Λ# is obtained from (13), and the Taylor series coefficients, aki, k = 1, 2, . . . , t,

are computed using (19). In the for loop, fΠi
(πi) is evaluated point wise for each entry of π̄i.

This involves computing the r real roots of the equation π̄i(l) = pi(∆θ), ∀l, where π̄i(l) is the

l entry in π̄i,3 and then applying (21)-(22).

Algorithm 1 Computation of fΠi
(πi) for the single-parameter case.

define π̄i = [0 : dπi : 1]
define Taylor series order t
compute ∂Λ

∂θ
and QR = Λ(mΘ)

compute πi(mΘ) from (12), Λ# from (13), and aki, k = 1, 2, . . . , t from (19)
for π̂i = 0 : dπi : 1 do

compute real roots of πi(mΘ)− π̂i +
t∑

k=1

aki
k!

∆θk = 0, denote them by ∆θj , j = 1, . . . , r

for j = 1 to r do

compute f∆Θ(∆θj) and p′i(∆θj) =
t∑

k=1

aki
(k−1)!

∆θk−1
j

end for
compute fΠi

(π̂i) =
r∑
j=1

f∆Θ(∆θj)

|p′i(∆θj)|
end for

3) Expectation and Variance of Πi: While the method outlined in (17)-(22) provides the pdf

of the Markov chain stationary distribution, it might be sufficient—for the purpose of back-of-

the-envelope calculations—to compute the expected value and variance of Πi. These could then

be used together with Markov and Chebyshev inequalities to get accurate upper bounds on the

probabilities of various events of interest [22]. The expected value of Πi, denoted by mΠi
, can

be derived from (20) as

mΠi
≡ E[Πi] = πi(µΘ) +

t∑
k=1

aki
k!

E
[
∆Θk

]
. (23)

3In the pseudocode provided in Algorithms 1, 2, and 3, we denote the entries of the vector x̄ by the variable x̂
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Since the pdf of ∆Θ is known, it is easy to compute the expectations, E[∆Θk], k > 0. The

variance of Πi, denoted by σ2
Πi

, can be derived from (20) and (23) as

σ2
Πi
≡ Var (Πi) =

t∑
k=1

(aki
k!

)2

Var(∆Θk) +
t∑

k=1

t∑
m=1,m 6=k

aki
k!

ami
m!
· Cov

(
∆Θk,∆Θm

)
, (24)

where Var
(
∆Θk

)
, and Cov

(
∆Θk,∆Θm

)
are given by

Var(∆Θk) = E
[
∆Θ2k

]
−
(
E
[
∆Θk

])2
, (25)

Cov(∆Θk,∆Θm) = E
[
∆Θk+m

]
− E

[
∆Θk

]
E [∆Θm] . (26)

We now present an example that illustrates the ideas described so far.

Example 1. Consider a component with two possible operating states. In state 1, the component

performs its intended function, and in state 0, it has failed. The failure rate of the component

is denoted by λ, and the repair rate is denoted by µ. The state of the component (functioning

or failed) can be described by a two-state Markov chain. The generator matrix for this chain is

given by

Λ =

 −µ µ

λ −λ

 . (27)

Denote the stationary distribution of the chain by π = [π0, π1]. By solving (4) with Λ given in

(27), we obtain

π0 =
λ

µ+ λ
, π1 =

µ

µ+ λ
. (28)

Suppose the failure rate λ is uncertain and described by a normal random variable L with mean,

mL = 5.5 and standard deviation, σL = 0.5. The repair rate is assumed to be perfectly known

and given by µ = 5.5. Note that failure and repair rates have units of per-unit time. To streamline

the presentation, we omit the units in the following discussion. In this example, we focus on

how Algorithm 1 can be applied to compute fΠ1(π1). Subsequently, we will compare the result

obtained from Algorithm 1 with the exact analytical result.
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Figure 1 depicts the function π1 = µ
µ+λ

= µ
µ+(∆λ+mL)

and three polynomial approximations

(t = 1, 2, 3), from which it is clear that a third-order expansion is accurate enough. The QR

factorization of Λ(λ) for λ = mL = 5.5 and µ = 5.5, results in:

Q =

 −0.7071 −0.7071

0.7071 −0.7071

 ; R =

 7.7782 −7.7782

0 0

 . (29)

As described in (12), by normalizing the last column of Q, we obtain the stationary distribution

π(mL) = [π0(mL), π1(mL)] = [0.5, 0.5]. From (11) and (29), U = 7.7782. Then, applying (13),

we obtain the group inverse:

Λ# =

 −0.0455 0.0455

0.0455 −0.0455

 . (30)

Using (19) to compute the Taylor-series coefficients provides the following third-order polyno-

mial approximation

p1(∆λ) = π1(mL) + a11(∆λ) +
1

2
a21 (∆λ)2 +

1

6
a31 (∆λ)3

= 0.5− 0.0455(∆λ) + 0.0041(∆λ)2 − 3.7566e-4(∆λ)3. (31)

In order to numerically compute fΠ1(π1), 0 ≤ π1 ≤ 1, we discretize π1 as π̄1 = [0 : 0.0001 : 1].

We then compute the roots of the equation π̄1(l) = p1(∆λ), ∀l, where π̄1(l) denotes the l entry

of π̄1. The real roots are subsequently used in (21) to obtain fΠ1(π1). For example, for π̂1 = 0.5,

the real root is ∆λ1 = 0, and there are two complex roots, ∆λ2,3 = 5.5 ± 9.5263 j (which are

discarded). Since L (and hence ∆L) is normally distributed, it follows that

f∆L(∆λ1) =
1√

2πσ2
L

exp

(
−∆λ2

1

2σ2
L

)
= 0.7979. (32)

From (31) we obtain

p′1(∆λ1) =
dp1(∆λ)

d∆λ

∣∣∣∣
∆λ=∆λ1

= −0.0455 + 0.0082(∆λ1)− 0.0011(∆λ1)2 = −0.0455. (33)

May 9, 2012 DRAFT



15

Substituting (32) and (33) in (21), we get fΠ1(π̂1 = 0.5) = 17.5363. This procedure is repeated

for all other entries of π̄1 and the results are plotted in Fig. 2.

We can also compare the numerical solution with the exact solution obtained by applying

random-variable transformation to the function Π1 = µ/ (µ+ L), which results in

fΠ1(π1) = fL(λ̃)

(
λ̃+ µ

)2

µ
; λ̃ =

µ(1− π1)

π1

. (34)

Figure 2 also depicts fΠ1(π1) computed using the exact analytical expression in (34). The results

show a very good match between the approximation and the exact solution. 0
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Figure 1. Polynomial approximations to model π1.
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Figure 2. Taylor series and exact analytical results compared.

B. Multiple-Parameter Case

In this section, we consider the case where the generator matrix is a function of m parameters,

θ1, θ2, . . . , θm, described by random variables, Θ1, Θ2, . . . , Θm. We assume that the Θj’s are

independent, and that the pdfs fΘj
(θj), j = 1, 2, . . . , m are known.

1) Probability density function of Πi: To derive the pdf of Πi, we propose a method that

builds upon the single-parameter case. First, we pick a parameter, say Θ1, and seek the Taylor

series expansion of Πi around the mean of Θ1, mΘ1 , with the other parameters fixed. Along

these lines, express Θ as

Θ = mΘ + ∆Θ, (35)
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where mΘ = [mΘ1 , θ2, . . . , θm], and ∆Θ = [∆Θ1, 0, . . . , 0]. We can expand πi(Θ) around mΘ

using a Taylor series expansion as follows

Πi = πi(Θ) = πi(mΘ + ∆Θ) = πi(mΘ) +
∞∑
k=1

bki
k!

∆Θk
1. (36)

The k-order Taylor series coefficient, bki, is given by:

bki =
∂kπi(θ)

∂θk1

∣∣∣∣
θ=mΘ

= k! (−1)k π(θ)

(
∂Λ(θ)

∂θ1

Λ#

)k
eTi

∣∣∣∣∣
θ=mΘ

, (37)

where ei ∈ Rn+1 is a row vector with 1 as the i entry and zero otherwise. We then express

Πi = pi(∆Θ1), where pi is a polynomial function with real coefficients obtained by truncating

the Taylor series in (36) at the t term:

Πi = pi(∆Θ1) = πi(mΘ) +
t∑

k=1

bki
k!

∆Θk
1. (38)

Analogous to (21), we can derive the conditional pdf

fΠi|Θ2,...,Θm (πi|θ2, . . . , θm) =
r∑
j=1

f∆Θ1(∆θ1,j)

|p′i(∆θ1,j)|
, (39)

where ∆θ1,1, ∆θ1,2, . . .∆θ1,r are the r ≤ t real roots of πi = pi(∆θ1) and4

p′i(∆θ1,j) =
dpi(∆θ1)

d∆θ1

∣∣∣∣
∆θ1=∆θ1,j

=
t∑

k=1

bki
(k − 1)!

∆θk−1
1,j . (40)

The derivation of (39) is provided in the Appendix. Applying the total probability theorem, and

acknowledging the independence of Θ2, . . . ,Θm, it follows that

fΠi
(πi) =

∫
θ2

. . .

∫
θm

fΠi|Θ2,...,Θm (πi|θ2, . . . , θm) fΘm(θm)dθm . . . fΘ2(θ2)dθ2. (41)

Remark 1. In the development above, the assumption of parameter independence is made from

a modeling perspective. The proposed method is still mathematically tractable if the model

4Once the other parameters are fixed, pi is a function of a single parameter ∆θ1.
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parameters are dependent, and their joint distribution is known. In particular, the conditional pdf

fΠi|Θ2,...,Θm (πi|θ2, . . . , θm) in this case is given by:

fΠi|Θ2,...,Θm (πi|θ2, . . . , θm) =
r∑
j=1

f∆Θ1|Θ2,...,Θm(∆θ1,j|θ2, . . . , θm)

|p′i(∆θ1,j)|
, (42)

where ∆θ1,1, ∆θ1,2, . . .∆θ1,r are the r ≤ t real roots of πi = pi(∆θ1). Appendix C includes

a short note on the computation of f∆Θ1|Θ2,...,Θm(∆θ1,j|θ2, . . . , θm) from the joint distribution

of the model parameters, and the subsequent derivation of fΠi
(πi) from the total probability

theorem.

2) Computer implementation: Algorithm 2 provides the pseudocode for computer implemen-

tation of the method outlined in (35)-(41) to compute fΠi
(πi), i = 0, 1, . . . , n given fΘj

(θj),

j = 1, 2, . . . , m. The vectors θ̄j =
[
θstartj : dθj : θendj

]
, j = 2, . . . , m are defined so that each

vector spans several standard deviations on both sides of mΘj
, the mean of Θj . The nested for

loops ensure that the conditional pdf in (39) is evaluated point wise for the entries in θ̄j . The

QR factorization of the generator matrix is evaluated for every5 θ̂ =
[
mΘ1 , θ̂2, . . . , θ̂m

]
, where

θ̂j , j = 1, 2, . . . , m, denotes an entry of the vector θ̄j . Next πi(θ̂) is obtained from (12) by

normalizing the last column of Q, the group inverse Λ# is obtained from (13), and the Taylor

series coefficients, bki, k = 1, 2, . . . , t are computed using (37). The r real roots of the equation

π̂i = pi(∆θ1) are computed and the conditional fΠi|Θ2,...,Θm

(
π̂i|θ̂2, . . . , θ̂m

)
follows from (21)-

(22). The integrals at the end of each nested for loop can be implemented using some numerical

integration scheme, e.g., the trapezoidal method.

3) Expected Value and Variance of Πi: To derive an expression for the expectation and

variance of Πi, consider the multiple-variable version of the Taylor series expansion

Πi = πi(Θ) = πi(mΘ + ∆Θ) = πi(mΘ) +
∞∑
k1=1

. . .

∞∑
km=1

∆Θk1
1 . . .∆Θkm

m

k1! . . . km!
· ∂

k1+...kmπi(θ)

∂θk1
1 . . . ∂θkmm

∣∣∣∣
θ=mΘ

,

(43)

5Recall that in the pseudocode, we use the variable θ̂j to denote an entry in the vector θ̄j , i.e., θ̂j = θ̄j(l), for some l.
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Algorithm 2 Computation of fΠi
(πi) for the multi-parameter case

define π̄i = [0 : dπi : 1], θ̄2 =
[
θstart2 : dθ2 : θend2

]
, . . ., θ̄m =

[
θstartm : dθm : θendm

]
define Taylor series order t
compute ∂Λ

∂θj
, j = 2, . . . ,m

for π̂i = 0 : dπi : 1 do
for θ̂2 = θstart2 : dθ2 : θend2 do

...
for θ̂m = θstartm : dθm : θendm do

compute QR = Λ(θ̂), where θ̂ =
[
mΘ1 , θ̂2, . . . , θ̂m

]
compute πi(θ̂) from (12), Λ# from (13), bki, k = 1, 2, . . . , t from (37)

compute real roots of πi(θ̂)−π̂i+
t∑

k=1

bki
k!

∆θk1 = 0, denote them by ∆θ1,j , j = 1, . . . , r

for j = 1 to r do

compute f∆Θ1(∆θ1,j), and p′i(∆θ1,j) =
t∑

k=1

bki
(k−1)!

∆θk−1
1,j

end for
compute fΠi|Θ2,...,Θm

(
π̂i|θ̂2, . . . , θ̂m

)
=

r∑
j=1

f∆Θ1
(∆θ1,j)

|p′i(∆θ1,j)|
end for
compute fΠi|Θ2,...,Θm−1

(
π̂i|θ̂2, . . . , θ̂m−1

)
=
∫
θm
fΠi|Θ2,...,Θm

(
π̂i|θ̂2, . . . , θ̂m

)
fΘm(θ̂m)dθm

...
end for
compute fΠi

(π̂i) =
∫
θ2
fΠi|Θ2

(
π̂i|θ̂2

)
fΘ2(θ̂2)dθ2

end for

where mΘ = [mΘ1 , µΘ2 , . . . , µΘm ]. While closed-form expressions for the partial derivatives

∂kπi(θ)/∂θ
k are available (see Theorem 1 in the Appendix), derivation of analytical expressions

for the mixed partial derivatives of the form ∂k1+...kmπi(θ)/∂θ
k1
1 . . . ∂θkmm is the focus of ongoing

research. Therefore, we will focus on lower-order Taylor series expansions to approximate the

expectation and variance of Πi. Let us consider a second-order expansion for πi(Θ):

Πi ≈ πi(mΘ) + ∆Θ ∇πi(θ)T
∣∣
θ=mΘ

+
1

2
∆Θ ∇2πi(θ)

∣∣
θ=mΘ

∆ΘT , (44)

where mΘ = [mΘ1 , µΘ2 , . . . , µΘm ], and the gradient ∇πi(θ), and Hessian ∇2πi(θ), are given by

∇πi(θ) =

[
∂πi(θ)

∂θ1

,
∂πi(θ)

∂θ2

, . . . ,
∂πi(θ)

∂θm

]
, (45)
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∇2πi(θ) =



∂2πi(θ)

∂θ2
1

∂2πi(θ)
∂θ1∂θ2

. . . ∂2πi(θ)
∂θ1∂θm

∂2πi(θ)
∂θ2∂θ1

∂2πi(θ)

∂θ2
2

. . . ∂2πi(θ)
∂θ2∂θm

...
... . . . ...

∂2πi(θ)
∂θm∂θ1

∂2πi(θ)
∂θm∂θ2

. . . ∂2πi(θ)
∂θ2

m


. (46)

Substituting the gradient and Hessian in (44) and taking into account: i) the independence of the

Θj’s and, ii) the fact that E[∆Θj] = 0∀j = 1, 2, . . . , m, the expected value of Πi is given by

mΠi
= πi(mΘ) +

1

2

m∑
k=1

E[∆Θ2
k] ·

∂2πi(θ)

∂θ2
k

∣∣∣∣
θ=mΘ

+
m∑
j=1

m∑
k=1, k 6=j

E[∆Θj] · E[∆Θk] ·
∂π2

i (θ)

∂θj∂θk

∣∣∣∣
θ=mΘ

= πi(mΘ) +
1

2

m∑
k=1

E[∆Θ2
k] ·

∂2πi(θ)

∂θ2
k

∣∣∣∣
θ=mΘ

. (47)

Similarly, assuming a first-order expansion for πi(Θ),

Πi ≈ πi(mΘ) + ∆Θ ∇πi(θ)T
∣∣
θ=mΘ

, (48)

the variance of Πi is given by

σ2
Πi

=
m∑
k=1

Var[∆Θk]

(
∂πi(θ)

∂θk

)2
∣∣∣∣∣
θ=mΘ

. (49)

C. Uncertainty in Markov Reward Models

In this section, we show how the pdfs of the reward Ξ = ΠρT , and accumulated reward Γ =

Ξ · τ—denoted by fΞ(ξ) and fΓ(γ), respectively—can be computed for the multiple-parameter

case. We also propose closed-form approximations for the expectation and variance of Ξ and Γ.

1) Probability density function of Ξ and Γ: To derive the pdf of Ξ, we follow a procedure

similar to the one outlined in Section III-B. First, we pick a parameter, say Θ1, and seek the

Taylor series expansion of ξ around the mean of Θ1, with the other parameters fixed. As before,

splitting Θ as

Θ = mΘ + ∆Θ, (50)

where mΘ = [mΘ1 , θ2, . . . , θm] and ∆Θ = [∆Θ1, 0, . . . , 0], we can express
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Ξ = ξ(Θ) = ξ(mΘ + ∆Θ) = ξ(mΘ) +
∞∑
k=1

ck
k!

∆Θk
1 = π(mΘ)ρT +

∞∑
k=1

ck
k!

∆Θk
1. (51)

The k-order Taylor series coefficient, ck, is given by

ck =
∂kξ(θ)

∂θk1

∣∣∣∣
θ=mΘ

=
∂kπ(θ)

∂θk1
ρT
∣∣∣∣
θ=mΘ

= k! (−1)k π(θ)

(
∂Λ(θ)

∂θ1

Λ#

)k
ρT

∣∣∣∣∣
θ=mΘ

. (52)

We then express Ξ = x(∆Θ1), where x is a polynomial function with real coefficients obtained

by truncating the Taylor series in (51) at the t term:

Ξ = x(∆Θ1) = π(mΘ)ρT +
t∑

k=1

ck
k!

∆Θk
1. (53)

Then, analogous to (39), we get

fΞ|Θ2,...,Θm (ξ|θ2, . . . , θm) =
r∑
j=1

f∆Θ1(∆θ1,j)

|x′(∆θ1,j)|
, (54)

where ∆θ1,1, ∆θ1,2, . . .∆θ1,r are the r ≤ t roots of ξ = x(∆θ1). Applying the total probability

theorem, and acknowledging the independence of Θ2, . . . ,Θm, it follows that

fΞ (ξ) =

∫
θ2

. . .

∫
θm

fΞ|Θ2,...,Θm (ξ|θ2, . . . , θm) fΘm(θm)dθm . . . fΘ2(θ2)dθ2. (55)

From the definition of Γ = Ξ · τ , it follows that

fΓ(γ) =
fΞ(γ/τ)

τ
. (56)

2) Computer Implementation: Algorithm 3 provides the pseudocode for computer imple-

mentation of the method outlined in (50)-(56) to compute fΞ(ξ) and fΓ(γ) given fΘj
(θj),

j = 1, 2, . . . , m. The pseudocode follows along similar lines to that in Algorithm 2. Note that

the vectors ξ̄ = [0 : dξ : ‖ρ‖1] and γ̄ = [0 : dγ : τ · ‖ρ‖1] are formulated based on the one-norm

of ρ, since ξ = πρT , γ = ξ · τ = π · ρT · τ and 0 ≤ πi ≤ 1, ∀i = 0, 1, . . . , n.
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Algorithm 3 Computation of fΞ(ξ) and fΓ(γ) for the multiple-parameter case
define ρ = [ρ0, ρ1, . . . , ρn], τ , ξ̄ = [0 : dξ : ‖ρ‖1], γ̄ = [0 : dγ : τ · ‖ρ‖1], θ̄2 =[
θstart2 : dθ2 : θend2

]
,. . ., θ̄m =

[
θstartm : dθm : θendm

]
define Taylor series order t
compute ∂Λ

∂θj
, j = 2, . . . ,m

for ξ̂ = 0 : dξ : ‖ρ‖1 do
for θ̂2 = θstart2 : dθ2 : θend2 do

...
for θ̂m = θstartm : dθm : θendm do

compute QR = Λ(θ̂) where θ̂ =
[
mΘ1 , θ̂2, . . . , θ̂m

]
compute ξ(θ̂) = π(θ̂) · ρT using (12), Λ# from (13), ck, k = 1, 2, . . . , t from (52)

compute real roots of ξ(θ̂)− ξ̂+
t∑

k=1

ck
k!

∆θk1 = 0, denote them by ∆θ1,j , j = 1, . . . , r

for j = 1 to r do

compute f∆Θ1(∆θ1,j), and x′(∆θ1,j) =
t∑

k=1

ck
(k−1)!

∆θk−1
1,j

end for
compute fΞ|Θ2,...,Θm

(
ξ̂|θ̂2, . . . , θ̂m

)
=

r∑
j=1

f∆Θ1
(∆θ1,j)

|x′(∆θ1,j)|

end for
compute fΞ|Θ2,...,Θm−1

(
ξ̂|θ̂2, . . . , θ̂m−1

)
=
∫
θm
fΞ|Θ2,...,Θm

(
ξ̂|θ̂2, . . . , θ̂m

)
fΘm(θ̂m)dθm

...
end for
compute fΞ(ξ̂) =

∫
θ2
fΞ|Θ2(ξ̂|θ̂2)fΘ2(θ̂2)dθ2

end for
for γ̂ = 0 : dγ : τ · ‖ρ‖1 do

fΓ(γ̂) = fΞ(γ̂/τ)
τ

end for

3) Expected Value and Variance of Ξ and Γ: Similar to (47), assuming a second-order

expansion for ξ(Θ), we can express the expected value of Ξ, denoted by mΞ, as follows

mΞ ≡ E[Ξ] = π(mΘ)ρT +
1

2

m∑
k=1

E[∆Θ2
k]
∂2π(θ)

∂θ2
k

∣∣∣∣
θ=mΘ

ρT . (57)

Additionally, similar to (49), assuming a first-order expansion for ξ(Θ), the variance of Ξ, denoted

by σ2
Ξ, is given by

σ2
Ξ ≡ Var(Ξ) =

m∑
k=1

Var (∆Θk)

(
∂π(θ)

∂θk
ρT
)2
∣∣∣∣∣
θ=mΘ

(58)
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From the definition of Γ = Ξ ·τ , we can estimate the expected value and variance of Γ, (denoted

by mΓ and σ2
Γ, respectively) as follows

mΓ ≡ E[Γ] = E[Ξ · τ ] = mΞ · τ, (59)

σ2
Γ ≡ Var(Γ) = Var(Ξ · τ) = σ2

Ξ · τ 2. (60)

IV. CASE STUDIES

The first case study returns to the two-state Markov model discussed in Example 1. While the

example explored a single uncertain parameter, in this case study, we consider the case where

both parameters are uncertain. It is still fairly straightforward to derive an analytical expression

for the pdfs of the stationary distribution, the reward, and hence the accumulated reward, because

the steady-state probabilities are simple functions of the model parameters. The availability of

an analytical solution allows us to validate the Taylor series approach. The second case study

explores a two-component load-sharing system with common-cause failures [14]. In this case,

it is not possible to derive the pdfs of the steady-state probabilities and the reward from the

analytical expressions of the stationary distribution. Therefore the results from the Taylor series

approach are compared with those obtained from repeated Monte Carlo simulations. In the final

case study, we examine computer execution times for an n+ 1 state reward model for a system

of n identical components, each with two operating modes.

In all the case studies that follow, we model the failure rates with normal distributions and

repair rates with uniform distributions. This is based on the presumption that typically the mean

and variance of the failure rate might be available from field data; however, due to the involvement

of myriad human factors, only a range of repair times might be known. Also, note that failure

and repair rates have units of per-unit time. To streamline the presentation, we omit the units in

the following discussion.
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A. Single Component with Two Operating States

Consider the component reliability model of Example 1. The generator matrix and stationary

distribution of the chain are given by (27) and (28), respectively. We define a reward model by

choosing a reward vector ρ = [ρ0, ρ1], where ρ0 and ρ1 are constants that capture some notion

of performance while in states 0 and 1, respectively. As described in (6), the long-term reward is

given by ξ = ρ0π0 + ρ1π1, and as described in (7), the accumulated reward at time τ , γ = ξ · τ .

Since the failure and repair rates are not perfectly known, it is assumed that they are described

by random variables L and M with (known) pdfs fL(λ) and fM(µ), respectively. Further, it is

assumed that L and M are independent. Consequently, the stationary distribution is described

by random variables Π0 and Π1, and the reward and accumulated reward are described by

random variables Ξ and Γ, respectively. Through random variable transformations, the following

expressions for fΠ0(π0), fΠ1(π1), and fΞ(ξ) can be derived from the closed-form expressions

for π0 and π1 given in (28):

fΠ0(π0) =

∫
λ

λ

π2
0

· fM
(
λ(1− π0)

π0

)
· fL(λ)dλ, (61)

fΠ1(π1) =

∫
λ

λ

(1− π1)2 · fM
(

λπ1

(1− π1)

)
· fL(λ)dλ, (62)

fΞ(ξ) =

∫
λ

∣∣∣∣λ (ρ1 − ρ0)

(ρ1 − ξ)2

∣∣∣∣ · fM (λ (ξ − ρ0)

(ρ1 − ξ)

)
· fL(λ)dλ. (63)

Recall that fΓ(γ) can be obtained from fΞ(ξ) using (56).

For illustration, let us consider that the failure rate is normally distributed and that the repair

rate is uniformly distributed, i.e., L ∼ N (mL, σ
2
L), M ∼ U(aM , bM). Figures 3, 4 depict the pdfs

fΠ0(π0), fΠ1(π1), fΞ(ξ), and fΓ(γ) computed: i) numerically using a third-order Taylor series

expansion with the methods outlined in Sections III-B2 and III-C2, ii) analytically through (61),

(62), (63), and iii) numerically from a 1,000,000-sample Monte Carlo simulation performed

as follows. We first sample the distribution of the random vector Θ that describes the values
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that the model parameters can take. For each sample θ, we obtain the corresponding generator

matrix Λ(θ) by substituting for the corresponding values. Then, by using a QR factorization

of Λ(θ), we obtain the stationary distribution of the chain π(θ) without having to solve the

Chapman-Kolmogorov equations (for the specific Λ(θ) as t → ∞). The simulation parameters

are: mL = 0.55, σ2
L = 0.12, aM = 1, bM = 10, ρ = [ρ0, ρ1] = [0.25, 0.75], and τ = 6. The

results indicate that the pdfs computed via the Taylor series method accurately match the exact

analytical results and those from Monte Carlo simulations.

Table I lists the analytically computed expectations and variances for Π0, Π1, Ξ, and Γ for

two sets of parameter distributions: L ∼ N (0.55, 0.12), M ∼ U(1, 10), and L ∼ N (0.55, 0.12),

M ∼ U(100, 109). Recall that the analytical expressions for the expectation and variance are

based on lower-order approximations derived in Sections III-B3 and III-C3. For comparison, the

expectations and variances computed numerically from their pdfs—derived using the third-order

Taylor series expansion—are also computed. The expectations computed analytically match those

computed numerically in both cases. However, the analytically computed variance matches the

exact numerical result only when the mean repair rate is several orders of magnitude larger than

the mean failure rate. Note that since the expectation and variance are computed assuming second-

and first-order truncations of the Taylor-series expansion, there might be an error introduced in

the computed values if higher-order terms are dominant. For the examples we explore in the case

studies, the higher-order terms are negligible if the mean repair rate is several orders of magnitude

higher than the mean failure rate—consequently, the analytical results match the numerical values

better in these cases. While the results may be inaccurate, the analytical expressions can be

evaluated with minimum effort, and thus serve useful for back-of-the-envelope calculations. On

the other hand, the pdfs computed following the Taylor-series method are accurate (even if the

analytically computed moments are not accurate). This is because the method proposed to obtain

the pdfs of the reliability indices does not constrain the order of the Taylor-series expansion.

We obtain very accurate estimates for the mean and variance of the indices from the computed

pdfs—at the expense of computation time.
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Figure 3. fΠ0(π0), fΠ1(π1) for L ∼ N (0.55, 0.12) and M ∼ U(1, 10).
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Figure 4. fΞ(ξ), fΓ(γ) for L ∼ N (0.55, 0.12), M ∼ U(1, 10), ρ = [0.25, 0.75], and τ = 6.

B. Two-Component Load-Sharing System with Common-Cause Failures

Figure 5. State-transition diagram for load-sharing system with common-cause failures.
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Table I
ANALYTICAL AND NUMERICAL EXPECTATIONS AND VARIANCES COMPARED FOR CASE A

Case R.v. m: Analytical m: Numerical σ2: Analytical σ2: Numerical

Π0 0.1019 0.1167 0.0012 0.0053

L ∼ N (0.55, 0.12) Π1 0.8981 0.8833 0.0012 0.0053

M ∼ U(1, 10) Ξ 0.6991 0.6916 3.1151e-4 0.0013

Γ 4.1943 4.1328 0.0112 0.0477

Π0 0.0052 0.0052 9.1312e-7 9.1501e-7

L ∼ N (0.55, 0.12) Π1 0.9948 0.9948 9.1312e-7 9.1501e-7

M ∼ U(100, 109) Ξ 0.7474 0.7474 2.2828e-7 2.2875e-7

Γ 4.4843 4.4954 8.2181e-6 8.1940e-6

This example, adapted from [14], explores a system composed of two identical components

that share a common load. The component failure rate is denoted by λ, and the repair rate

is denoted by µ. In addition, the system is susceptible to common-cause failures which cause

all operational components to fail at the same time. The common-cause failure rate is denoted

by λC . The state transition diagram for this system is depicted in Fig. 5. Both components

are operational in state 2, a single component is operational in state 1, and in state 0, both

components have failed. Repairs restore the operation of one component at a time. From the

state-transition diagram in Fig. 5, the generator matrix can be derived as

Λ =


−µ µ 0

λ+ λC −(λ+ λC + µ) µ

λC 2λ −(2λ+ λC)

 . (64)

Denote the stationary distribution of the chain by π = [π0, π1, π2]. Solving (4), we obtain [14]

π0 =
(λ+ λC)(2λ+ λC) + λCµ

(λ+ λC + µ)(2λ+ λC) + λCµ+ µ2
, (65)

π1 =
(2λ+ λC)µ

(λ+ λC + µ)(2λ+ λC) + λCµ+ µ2
, (66)
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π2 =
µ2

(λ+ λC + µ)(2λ+ λC) + λCµ+ µ2
. (67)

Notice how involved the analytical closed-form expressions are even for this simple system. Con-

sider that the performance of the system is proportional to the number of operational components.

Then, we can define a reward model for this system by choosing ρ = [ρ0, ρ1, ρ2] = [0, 1, 2].

The long-term reward is given by ξ = π · ρT = π1 + 2π2.

Suppose the failure rate, repair rate, and common-cause failure rate are described by random

variables L, M , and LC with (known) pdfs fL(λ), fM(µ), and fLC
(λC), respectively. Addi-

tionally, it is assumed that L, M , and LC are independent. Consequently, the components of

the stationary distribution Π = [Π0 ,Π1, Π2] are random variables with distributions fΠ0(π0),

fΠ1(π1), and fΠ2(π2). Similarly, the reward, Ξ = Π · ρT = Π1 + 2Π2 is a random variable with

distribution fΞ(ξ). Unlike the two-state example explored in Section IV-A, it is clear from the

expressions of the steady-state probabilities that closed-form expressions for the pdfs cannot be

obtained easily. Therefore, we recourse to the Taylor series approach to derive the pdfs of the

steady-state probabilities and the reward.

Let us consider L ∼ N (0.5, 0.12), LC ∼ N (0.05, 0.012), and M ∼ U(1, 10). Figure 6 depicts

the pdfs fΠ0(π0), fΠ1(π1), fΠ2(π2), and fΞ(ξ), all computed using a third-order Taylor series

expansion with the methods outlined in Sections III-B2 and III-C2. Additionally, results from

a 1,000,000-sample Monte Carlo simulation are also shown. The figures indicate that the pdfs

computed via the Taylor series method accurately match those obtained through Monte Carlo

simulations.

Table I lists the analytically computed expectations and variances for Π0, Π1, Π2, and Ξ for

two sets of parameter distributions: L ∼ N (0.5, 0.12), LC ∼ N (0.05, 0.012), M ∼ U(1, 10), and

L ∼ N (1.6e-4, (25e-6)2), LC ∼ N (2e-5, (5e-6)2), M ∼ U(0.1, 0.15). Recall that the analytical

expressions for the expectation and variance are based on lower-order approximations derived in

Sections III-B3 and III-C3. For comparison, the expectations and variances computed numerically

from their pdfs—derived by the third-order Taylor series approach—are also computed. As

before, while the expectations computed analytically match those computed numerically in both
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cases, the analytically computed variance matches the exact numerical result only when the mean

repair rate is several orders of magnitude larger than the mean failure rate.
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Figure 6. fΠ0(π0), fΠ1(π1), fΠ2(π2), and fΞ(ξ) for L ∼ N (0.5, 0.12), LC ∼ N (0.05, 0.012), M ∼ U(1, 10), ρ = [0, 1, 2].

C. System of n Components

The final case study compares the execution time, te, of the proposed Taylor series method

with Monte Carlo simulations for a system of n identical components, each with two operating

modes (functioning/failed). The state-transition diagram that models the reliability of this system

is depicted in Fig. 7. The component failure rate is denoted by λ, and the repair rate is denoted by

µ. Repairs restore the operation of all failed components simultaneously. The performance of the

system is proportional to the number of operational components. A reward model for this system

is formulated by choosing ρ = [ρ0, ρ1, . . . ρi, . . . , ρn] =
[
0, 1

n
, . . . i

n
, . . . , 1

]
. The long-term
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Table II
ANALYTICAL AND NUMERICAL EXPECTATIONS AND VARIANCES COMPARED FOR CASE B

Case R.v. m: Analytical m: Numerical σ2: Analytical σ2: Numerical

Π0 0.0330 0.0430 3.8745e-5 0.0024

L ∼ N (0.5, 0.12) Π1 0.1777 0.1822 6.6013e-4 0.0070

LC ∼ N (0.05, 0.012) Π2 0.7892 0.7748 0.0010 0.0167

M ∼ U(1, 10) Ξ 1.7562 1.7318 0.0014 0.0312

Π0 1.6579e-4 1.6683e-4 1.9755e-9 2.1305e-9

L ∼ N (1.6e-4, (25e-6)2) Π1 0.0027 0.0027 2.5731e-7 2.6977e-7

LC ∼ N (2e-5, (5e-6)2) Π2 0.9971 0.9968 2.7533e-7 2.8889e-7

M ∼ U(0.1, 0.15) Ξ 1.9969 1.9964 2.9730e-7 3.1215e-7

reward is given by ξ = πρT = 1
n
π1+ 2

n
π2+. . .+ i

n
πi+. . .+πn. Suppose the failure rate and repair

rate are described by random variables L ∼ N (0.55, 0.12) and M ∼ U(1, 10), respectively.

Consequently, the components of the stationary distribution Π = [Π0, Π1, . . . , Πi, . . . , Πn] are

random variables, and the reward, Ξ = ΠρT is a random variable with pdf fΞ(ξ).

This case study explores the impact of the number of samples in the Monte Carlo simulation,

ns, and the dimension of the state space, n, on the time to compute fΞ(ξ) through: i) third-

order Taylor series approach following the pseudocode outlined in Section III-C2, ii) Monte

Carlo simulations involving repeated sampling from ns-length random samples of the failure

and repair-rate distributions. The experiment is performed on a PC with a 2.66 GHz Intel R©

Figure 7. State-transition diagram for system of n components.
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CoreTM2 Quad CPU processor with 4 GB memory in the MATLAB R© environment. Figure 8

plots the percentage difference in the variance of Ξ, σΞ, as a function of ns for n = 2 for one

experimental run. The result demonstrates the significance of ns on the accuracy of Monte Carlo

simulations. In the Monte Carlo simulation, for 100 runs (with 75,000 samples in each run),

the mean percentage error is 0.58%. Figure 9 plots the execution time of the two methods as

a function of n and ns. In the experiment, n is increased from 2 to 20 in steps of 2, and ns is

increased from 65,000 to 75,000 in steps of 500. The Taylor series method execution time is

lower than Monte Carlo simulations over a wide range of ns (prominent for ns > 70, 000). For

large models (n > 20) and a sufficiently large number of samples (ns > 75, 000), Fig. 9 clearly

indicates that the proposed Taylor series method outperforms Monte Carlo simulation.

Figure 8. Percentage error in σΞ as a function of ns, n = 2.
Figure 9. Execution time te, as a function of model order n,
and number of samples ns.

V. CONCLUDING REMARKS

A numerical method based on the Taylor series expansion of the Markov chain stationary

distribution is proposed to propagate parametric uncertainty to reliability and performability

indices in Markov reliability and reward models. The proposed method allows the computation

of the probability distributions of these indices given distributions of the uncertain parameters.

Closed-form approximations for the expectation and variance of the indices are also proposed.
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The main advantage of the proposed framework is that only the generator matrix is required as

the input. Additionally, for large models with few uncertain parameters, the proposed method

demonstrates significantly lower execution time when compared to Monte Carlo simulations.

As part of future work, we could further investigate the multivariate Taylor-series expansion.

Comparing the efficiency and accuracy of the method proposed here to compute the sensitivities

to that suggested in prior work (e.g., [11], [4] and the references therein), is another aspect that

can be investigated.

APPENDIX

A. Derivation of stationary distribution sensitivity

Theorem 1. The k-order sensitivity of the stationary distribution, π(θ) of an ergodic continuous

time Markov chain (CTMC) described by (3) with respect to the i model parameter, θi, is given

by
∂kπ(θ)

∂θki
= k! (−1)k π(θ)

(
∂Λ

∂θi
Λ#

)k
, (68)

where Λ# is the group inverse of the generator matrix Λ.

Proof: Consider that the ergodic CTMC is associated with a discrete time Markov chain

(DTMC) whose distribution is governed by

p[k + 1] = p[k]P, (69)

where P = I + δΛ is a row-stochastic, irreducible, and primitive matrix (with an appropriate

choice of δ). Define the matrix

A = I − P = −δΛ, (70)

and denote the group inverse of A by A#. The stationary distribution of the DTMC satisfies

pA = 0. If we consider linear perturbations, i.e., ∂kA/∂θki = 0, ∀k > 1, differentiating the
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expression pA = 0 a total of k times yields

∂kp

∂θki
A = −k∂

k−1p

∂θk−1
i

∂A

∂θi
. (71)

Following along the lines of Theorem 3.2 in [19], since dimN(A) = 1 (the null space of a

matrix A is denoted by N(A)), we can express

∂kp

∂θki
= −k∂

k−1p

∂θk−1
i

∂A

∂θi
A# + αp for some α. (72)

We can determine α by noting that peT = 1⇒ ∂kp/∂θki e
T = 0. Since eT ∈ N(A) = N(A#),

∂kp

∂θki
eT = −k∂

k−1p

∂θk−1
i

∂A

∂θi
A#eT + αpeT = αpeT = 0⇒ α = 0. (73)

Thus the k-order sensitivity of the stationary distribution of the DTMC to the i parameter is

given by
∂kp

∂θki
= −k∂

k−1p

∂θk−1
i

∂A

∂θi
A#. (74)

Expressing ∂k−1p/∂θk−1
i as a function of ∂k−2p/∂θk−2

i and so on, we get

∂kp

∂θki
= k!(−1)k−1 ∂p

∂θi

(
∂A

∂θi
A#

)k−1

= k!(−1)kp(θ)

(
∂A

∂θi
A#

)k
, (75)

which follows from the result
∂p

∂θi
= −p(θ)∂A

∂θi
A#, (76)

derived in Theorem 3.2 in [19]. Now, consider that the group inverse of the CTMC generator

matrix, Λ, denoted by Λ#, is given by

Λ# = −δA#, (77)

which can be shown by noting that Λ# satisfies the definition of the group inverse given in (10).
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From (77) and (70),

∂Λ(θ)

∂θi
Λ# =

(
−δ−1∂A(θ)

∂θi

)(
−δA#

)
=
∂A(θ)

∂θi
A#. (78)

Since the stationary distributions of the CTMC and the DTMC match, from (75) and (78):

∂kπ(θ)

∂θki
= k! (−1)k π(θ)

(
∂Λ

∂θi
Λ#

)k
. (79)

B. Derivation of result in (39)

The expression in (39) can be derived as follows6:

Pr {πi ≤ Πi ≤ πi + ∆(πi) |Θ2 = θ2, Θ3 = θ3, . . . , Θm = θm}

=
∑
j∈J−

Pr {∆θ1,j + ∆(∆θ1,j) < ∆Θ1 < ∆θ1,j |Θ2 = θ2, Θ3 = θ3, . . . , Θm = θm}

+
∑
j∈J+

Pr {∆θ1,j < ∆Θ1 < ∆θ1,j + ∆(∆θ1,j) |Θ2 = θ2, Θ3 = θ3, . . . , Θm = θm} , (80)

where ∆θ1,j , j = 1, . . . , t are the roots of the equation πi = pi(∆θ1), with pi(∆θ1) defined in

(38), and

J + = {j : p′i(∆θ1,j) > 0} , J − = {j : p′i(∆θ1,j) < 0} . (81)

It follows that ∆(∆θ1,j) > 0 ∀j ∈ J + and similarly, ∆(∆θ1,j) < 0 ∀j ∈ J −. Using this fact

and the independence of the Θi’s, we can simplify (80) as

Pr {πi ≤ Πi ≤ πi + ∆(πi) |Θ2 = θ2, Θ3 = θ3, . . . , Θm = θm}

=
∑
j∈J−

Pr {∆θ1,j − |∆(∆θ1,j)| < ∆Θ1 < ∆θ1,j}

+
∑
j∈J+

Pr {∆θ1,j < ∆Θ1 < ∆θ1,j + |∆(∆θ1,j)|} . (82)

6The operator ∆(x) denotes an incremental change (possibly negative) in the quantity x
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Further, since Pr {x ≤ X ≤ x+ |∆(x)|} = Pr {x− |∆(x)| ≤ X ≤ x} ≈ fX(x) · |∆(x)|, it

follows from (82) that

fΠi|Θ2,...,Θm(πi | θ2, . . . , θm) ·∆πi =
∑
j∈J−

f∆Θ1(∆θ1,j) · |∆(∆θ1,j)|

+
∑
j∈J+

f∆Θ1(∆θ1,j) · |∆(∆θ1,j)|

=
t∑

j=1

f∆Θ1(∆θ1,j) · |∆(∆θ1,j)|. (83)

By construction, ∆πi > 0, which implies |∆πi| = ∆πi, and therefore

fΠi|Θ2,...,Θm(πi | θ2, . . . , θm) =
t∑

j=1

f∆Θ1(∆θ1,j) ·
|∆(∆θ1,j)|
|∆πi|

=
t∑

j=1

f∆Θ1(∆θ1,j) ·
∣∣∣∣ ∆πi
∆(∆θ1,j)

∣∣∣∣−1

. (84)

In the limit, as ∆(∆θ1,j)→ 0,

fΠi|Θ2,...,Θm(πi | θ2, . . . , θm) =
t∑

j=1

f∆Θ1(∆θ1,j) · lim
∆(∆θ1,j)→0

∣∣∣∣ ∆πi
∆(∆θ1,j)

∣∣∣∣−1

=
t∑

j=1

f∆Θ1(∆θ1,j) ·
∣∣∣∣ lim
∆(∆θ1,j)→0

∆πi
∆(∆θ1,j)

∣∣∣∣−1

=
t∑

j=1

f∆Θ1(∆θ1,j)

|p′i(∆θ1,j)|
· (85)

C. Dependent model parameters

In order to obtain fΠi
(πi), (pdfs of the other indices follow similarly), we first compute

fΠi|Θ2,...,Θm(πi|θ2, . . . , θm) as follows:

fΠi|Θ2,...,Θm (πi|θ2, . . . , θm) =
r∑
j=1

f∆Θ1|Θ2,...,Θm(∆θ1,j|θ2, . . . , θm)

|p′i(∆θ1,j)|
, (86)

where ∆θ1,1, ∆θ1,2, . . .∆θ1,r are the r ≤ t real roots of πi = πi(mΘ)+
∑t

k=1
bki
k!

∆Θk
1, and mΘ =

[mΘ1 , θ2, . . . , θm]. Note that the above result follows from (82). Since the model parameters are
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dependent, the numerator in (86) does not simplify to f∆Θ1(∆θ1,j) (as was the case in (39)). If

the joint pdf of the model parameters is known, f∆Θ1|Θ2,...,Θm(∆θ1,j|θ2, . . . , θm) can be obtained

as follows

f∆Θ1|Θ2,...,Θm(∆θ1|θ2, . . . , θm) = fΘ1|Θ2,...,Θm(mΘ1 + ∆θ1|θ2, . . . , θm)

=
fΘ1,Θ2,...,Θm(mΘ1 + ∆θ1, θ2, . . . , θm)

fΘ2,...Θm(θ2, . . . , θm)

=
fΘ1,Θ2,...,Θm(mΘ1 + ∆θ1, θ2, . . . , θm)∫

θ1
fΘ1,Θ2,...,Θm(θ1, θ2, . . . , θm)dθ1

. (87)

The last step in the derivation above is necessary, since we assume only the joint distribution

is known. Once fΠi|Θ2,...,Θm (πi|θ2, . . . , θm) is computed, it is straightforward to obtain fΠi
(πi)

from the total probability theorem as follows:

fΠi
(πi) =

∫
θ2

. . .

∫
θm

fΠi|Θ2,...,Θm (πi|θ2, . . . , θm) fΘ2,...Θm(θ2, . . . θm)dθ2 . . . dθm

=

∫
θ2

. . .

∫
θm

fΠi|Θ2,...,Θm (πi|θ2, . . . , θm)

∫
θ1

fΘ1,...,Θm(θ1, . . . θm)dθ1

 dθ2 . . . dθm.(88)

Since fΠi|Θ2,...,Θm (πi|θ2, . . . , θm) does not depend on θ1, we can express (88) as follows:

fΠi
(πi) =

∫
θ1

∫
θ2

. . .

∫
θm

fΠi|Θ2,...,Θm (πi|θ2, . . . , θm) fΘ1,...Θm(θ1, . . . θm)dθ1dθ2 . . . dθm. (89)
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