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Performance Metrics

Sairaj V. Dhople, Student Member, IEEE, and Alejandro D. Domínguez-García, Member, IEEE

Abstract—A framework to integrate reliability and perfor-
mance analysis of grid-tied photovoltaic (PV) systems is for-
mulated using Markov reward models (MRM). The framework
allows the computation of performance metrics such as capacity
and energy yield, and reliability metrics such as availability.
The paper also provides an analytical method to compute the
sensitivity of performance metrics to MRM-parameter variations.
The approach to sensitivity analysis is demonstrated to be
particularly useful to formulate optimal operational policies,
e.g., repair strategies, as the impact of variations in model
parameters on system performance can be rapidly evaluated.
Case studies demonstrate several applications of the proposed
framework, including analysis of residential and large utility-level
installations, and emerging distributed inverter architectures.

Index Terms—Reliability, Markov reward models, photo-
voltaics, generalized matrix inversion, sensitivity analysis.

I. INTRODUCTION

THERE has been a rapid growth in the deployment of
photovoltaic (PV) energy-conversion systems in recent

years. According to a National Renewable Energy Laboratory
report, the installed PV capacity in the U. S. increased by
43% from 0.77 GW to 1.1 GW in 2008 [1]. Aggressive
projections indicate that this number could increase up to 24
GW by 2015 [2]. To ensure continued growth, it is imperative
to address the high levelized cost of energy (LCOE) for PV
systems. The LCOE is defined as the ratio of the present value
of capital and operating costs to the energy yield over the
system’s lifetime and serves as a useful metric to gauge the
competitiveness of different sources of energy [1]. According
to [3], PV plants that begin operation in 2016 are expected
to have an LCOE of 210 $/MWhr (by comparison, the LCOE
for wind energy conversion systems and conventional coal-
fired plants was 97 $/MWhr and 94.8 $/MWhr, respectively).
In order to obtain PV system LCOE, it is necessary to
calculate, among other things, net annual energy production,
levelized operating and maintenance (O&M) expenses, and
levelized replacement/overhaul costs. The LCOE is inversely
proportional to the net annual energy production, and directly
proportional to O&M and replacement/overhaul costs [1].
Therefore, system reliability has a great impact not only on
O&M and replacement/overhaul costs, but also on annual
energy yield. This dependence has been evidenced by studies
that demonstrated that LCOE of PV sources increases expo-
nentially with a decrease in lifetime [4].

System reliability/performance models should provide ac-
curate energy-yield estimation, and aid in system design to
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ensure favorable economics. Additionally, an important aspect
is the impact of model-parameter uncertainty, which will in
turn propagate to the LCOE estimate. This paper addresses the
problems discussed above by providing: i) a modeling frame-
work to integrate reliability considerations into energy-yield
and cost estimations using Markov Reward Model (MRM)
formalisms [5]; and ii) an analytical approach for MRM
parameter sensitivity analysis based on generalized matrix
inversion techniques [6].

Markov reward models result from mapping every state
of a Markov chain to an appropriately defined, real-valued
quantity that defines a metric—the reward—for measuring
system reliability/performance. The underlying Markov chain
captures system failure and repair behavior as in a standard
reliability model. The appropriate choice of rewards yields
various metrics of interest. For instance, energy yield can
be obtained by defining the reward as the energy produced
per unit time. Similarly, choosing the reward as cost per unit
time allows computation of monetary gain (for PV electricity
sold to the grid), and O&M or replacement/overhaul costs (to
recover from failed states). Finally, reliability-related metrics
such as availability can be naturally obtained by setting to
one the reward corresponding to states of the Markov chain in
which the system is operational, and to zero otherwise. The
proposed modeling framework can be utilized to understand
the trade-offs between different repair policies and O&M and
replacement/overhaul costs.

The literature on system-level probabilistic reliability anal-
ysis for power systems is very extensive (see, e.g., [7],
[8], [9] and the references therein). Since the scope of this
paper is on PV energy-conversion-system reliability analysis,
we will focus the literature review on reliability modeling
of renewable energy systems, and only discuss system-level
references that are related to our work. Markov reliability
models for wind-energy systems, and small hydro power plants
are proposed in [10] and [11], respectively. In the context
of PV systems, combinatorial-based methods for PV system
reliability assessment have been attempted in [12], [13], but
they do not yield insight into other performance metrics such
as energy yield and are limited in scope and application.
Reliability-oriented design approaches for off-grid, remote PV
systems are explored in [14], where the authors use Markov
reliability models among other methods. The idea to utilize
Markov chains in PV-system reliability modeling was also
proposed in [15]. Our work is related to the ideas presented in
[16], where the authors develop a model to integrate economic
aspects in power system reliability and apply the concepts to a
two-transformer example. The Markovian framework proposed
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in this paper goes beyond standard Markov reliability models
which provide metrics such as availability and mean-time-
to-failure, and provides performance-related metrics such as
energy yield, although other metrics that, for example, include
cost as in [16] can be easily defined.

The impact of parameter uncertainty on reliability and
performance metrics is an important aspect of system reli-
ability/performance analysis, because accurately determining
parameters such as failure and repair rates is difficult. Apart
from identifying model parameters that are likely to cause
modeling errors, such analyses also aid in optimal system
design [17], [18]. We propose an analytical method for para-
metric sensitivity analysis for MRM models. Our work extends
ideas for sensitivity analysis in discrete-time Markov chains
[19] that builds upon the theory of generalized matrix inversion
[6]. The case studies highlight how sensitivity analysis can
be used to formulate optimal maintenance policies, estimate
the impact of parameter variations, and aid in optimizing
PV economics. In the context of power systems, analytical
approaches to parametric sensitivity analysis for reliability
models have received rather limited attention. A common
problem that has been studied is the effect of generator
failure/repair rate uncertainty on reliability metrics such as loss
of load expectation [18], [20], [21]. Essentially, each generator
has two possible states (operational/failed) and is described by
a two-state Markov-reliability model, for which it is easy to
obtain analytical sensitivities of the stationary distributions.
However, if multiple generators or multiple failure modes are
considered in a single reliability model, analytical solutions to
the sensitivities cannot be obtained easily. In [22], sensitivity
analysis requiring repeated simulations determines the factors
that have the most effect on the availability of spare trans-
formers in distribution stations. In other fields, e.g., computer
systems, there is some work on parameter sensitivity analysis
for Markov reliability models. For example, in [17], sensitivity
analysis for acyclic Markov chains based on uniformization is
applied to the study of multiprocessor systems.

The remainder of this paper is organized as follows. Section
II formulates Markov reward models for reliability and per-
formance evaluation, and proposes a method to compute the
stationary distribution of the MRM underlying Markov chain,
and its sensitivity to model parameters variations. Case studies
in Section III demonstrate how the proposed framework can be
employed to formulate optimal repair strategies in residential
and utility-scale installations, aid in system-level design, and
predict the performance of emerging distributed PV system
architectures. Concluding remarks are presented in Section IV.

II. FRAMEWORK FORMULATION

This section establishes a framework for PV system relia-
bility and performance evaluation using MRMs, and proposes
an analytical method for quantifying the effect of parameter
variations on the MRM solution. Additionally, several metrics
to measure the performance of PV systems are defined.

A. MRMs for Reliability and Performance Evaluation
A MRM model consists of a Markov chain taking values

in some finite set S, and a reward function that maps each

element of S into a real-valued quantity which captures some
performance metric of interest. In the context of this work,
the Markov chain describes system stochastic behavior due to
failures and repairs. Additionally, it is assumed that the system
is perfectly repairable [23], and thus the resulting Markov
chain is ergodic, which essentially means that every state in
the Markov chain is accessible from every other state [24].

Let X = {X(t), t ≥ 0} denote a Markov chain tak-
ing values in a finite set S = {0, 1, 2, . . . , n}, where
0, 1, 2, . . . , n − 1 index PV system configurations that arise
due to component faults, and n indexes the nominal, non-faulty
configuration. Let πi(t), t ≥ 0, be the probability that the
system is in state i, and define the corresponding probability
vector as π(t) = [π0(t), π1(t), . . . , πn(t)]. The evolution of
π(t) is defined by the Chapman-Kolmogorov equations

π̇(t) = π(t)Λ, (1)

with πn(0) = 1, πj(0) = 0, j = 0, 1, . . . , n − 1, and
where Λ is the Markov-chain generator matrix. To determine
the Markov-chain generator matrix, the first step is to list
all possible states that arise from different component fault
sequences. Transitions between states involve failures and
repairs and are hence governed by a combination of failure
and repair rates [23]. The Markov-chain generator matrix is
given by Λ = [λij ], where λij is the rate at which the process
makes a transition from state i to j, and λii = −

∑
j 6=i

λij .

While smaller models can be constructed manually, software
packages can be used to model and analyze larger and more
complicated systems [25], [26], [27].

Let % : S → R be a reward function that maps each
PV system configuration i = 0, 1, 2, . . . , n into a real-
valued quantity ρi that quantifies system performance while
in configuration i.

1) Performance Metrics Definition: At each time t, the
values that the reward function % takes can be described by
a random variable P(t) with the same probability density
function as X(t), i.e., π(t) = [π0(t), π1(t), . . . , πn(t)]. Thus,
a probabilistic measure of system performance at time t is
given by the expected value of P(t):

Ξ(t) = E[P(t)] =

n∑
i=0

ρiπi(t) = π(t) · ρ′, (2)

where ρ = [ρ0, ρ1, . . . , ρn]. A long-term measure of system
performance is given by

Ξ = E[P] =

n∑
i=0

ρiπi = π · ρ′, (3)

where π = [π0, π1, . . . , πn] is the Markov-chain stationary
distribution. If the values that the reward function % takes are
defined in per-unit time, e.g., energy produced per unit time,
then Ξ describes the average rate at which the system will
deliver/consume some quantity that measures the system per-
formance, e.g., energy production. Then, it is possible to obtain
the accumulated quantity measuring system performance in
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some period of time [0, T ], T � t0 as

Γ =

T∫
0

E[P(t)]dt =

T∫
0

π(t) · ρ′dt ≈ π · ρ′ · T, (4)

where t0 is such that the effect of initial conditions in (1)
has vanished. For example, if the entries in ρ are defined in
units of power generated by the PV system, then Γ yields the
expected energy yield in T units of time. A short note on the
validity of the approximation in (4) is given in the Appendix.

2) Reliability/Performance Metrics of Interest: A wide va-
riety of metrics can be defined by MRMs by appropriately
formulating % [5]. We provide a few examples of these
performance/reliability metrics, some of which will be used
in the PV system case studies discussed in Section III. In all
these examples, it is assumed that the stochastic behavior due
to component failures and repairs is described by an ergodic
Markov chain, (i.e., the system is perfectly repaired) with
states i = 0, 1, 2, . . . , n − 1 indexing system configurations
that arise due to faults, and i = n indexing the non-faulty
configuration.

Expected System Capacity: Consider a PV system with
power rating P . Denote by πi the long-term probability that
the system is operating in configuration i, and the corre-
sponding power rating by Pi. The expected system capacity
is denoted by Ξ, and following (3), it can be defined as

Ξ = πρ′ = [π0 π1 ...πn] [P0 P1 ...Pn]
′
. (5)

Effectively, this metric ensures that PV systems with the same
power rating but different reliability models can be uniformly
and unambiguously compared.

Energy Yield: Consider a grid-tied PV system installed at
a location characterized by a capacity factor CF which is
defined as

CF =
(h/day of 1-sun)

24 h/day
, (6)

where 1-sun is defined as an insolation of 1 kW/m2 [28]. For
example, if the average incident PV energy density at a given
location is 5 kWh/m2-day, this corresponds to 5 h/day of 1-sun
insolation, and a capacity factor of 20.8 %. Average capacity
factors for different locations are computed using historical
PV data and can be obtained from a variety of sources (see,
e.g., [28]). Over some period of time T , if the system satisfies
the conditions in (4), an estimate of its energy yield is given
by

Γ = Ξ · CF · T. (7)

Multiplying the energy yield by the average price of electricity
yields the monetary gain over the period T . In Section IV-A,
we describe a method for explicitly considering uncertainty
in the PV source and how it can be propagated to reliability
and performance metrics. This method reformulates the entries
of the reward vector as random variables whose distributions
are derived from those of incident insolation and ambient
temperature, the uncertain inputs to the PV system.

System Availability: By appropriate choice of the reward
function, a MRM can also provide standard reliability metrics.
For example, system availability for an n+ 1 state model can

be recovered by choosing ρ so that ρi = 1 if the system is
operational in state i and ρi = 0 otherwise.

B. Analytical Approach to Parametric Sensitivity Analysis

The stationary distribution of an ergodic Markov chain is
a function of the generator matrix parameters. In the context
of this work, the generator matrix parameters are the failure
and repair rates, which are assumed to be not perfectly known.
Let the elements in Θ = {θ1, θ2, . . . , θm} denote the param-
eters of the generator matrix, and define the corresponding
parameter vector θ = [θ1, θ2, . . . , θm]. Given the functional
dependence of the generator matrix on θ, i.e., Λ(θ), we are
interested in studying the functional dependence of the station-
ary distribution on θ, i.e., π(θ) = [π1(θ), π2(θ), . . . πn(θ)].

For ergodic Markov chains, the generator-matrix group
inverse enables the analytical calculation of ∂πi(θ)/∂θj ∀i, j.
The group inverse Λ# of Λ = Λ(θ) , for some θ, is the unique
solution of  ΛΛ#Λ = Λ,

Λ#ΛΛ# = Λ#,
ΛΛ# = Λ#Λ,

(8)

if and only if rank(Λ) = rank(Λ2). The sensitivity of the
stationary distribution to the i parameter, θi, is given by

∂π(θ)

∂θi
= −π(θ)

∂Λ(θ)

∂θi
Λ#. (9)

The proof of (9) is included in the Appendix. The sensitivity
of the performance metric Ξ to the i parameter θi can be
obtained from (3) and (9) as

∂Ξ

∂θi
=
∂π(θ)

∂θi
ρ′. (10)

C. Numerical Computation of the Stationary Distribution and
the Group Inverse

A number of techniques have been proposed to compute the
group inverse [6]. An approach involving the QR factorization
of Λ, yields π and Λ# [19]. In this method, Λ is expressed as
Λ = QR, where, Q, R ∈ Rn+1xn+1. The matrix R is of the
form

R =

[
U −Ue′
0 0

]
, (11)

where U ∈ Rnxn is a nonsingular upper-triangular
matrix, and e ∈ Rn is a row vector with all
elements equal to one. The stationary distribution
is obtained by normalizing the last column of
Q = [q1, q2, . . . , qn+1], i.e.,

π =
q′n+1

n+1∑
i=1

qi,n+1

, (12)

The group inverse is related to Q and R as follows:

Λ# = (I − e′π)

[
U−1 0

0 0

]
QT (I − e′π). (13)

We illustrate the concepts presented in this section with a
simple example.
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Figure 1. State-transition diagram for Example 1

Example 1. Consider a component with two possible opera-
tional states. In state 1, the component performs its intended
function, and in state 0, it has failed. The failure rate of the
component is denoted by λ, and the repair rate is denoted by
µ. The state of the component (functional or failed) can be
described by a two-state Markov chain. The state-transition
diagram for this chain is illustrated in Fig. 1, from which it
follows that the generator matrix is given by

Λ =

[
−µ µ
λ −λ

]
. (14)

The stationary distribution of the chain, π = [π0, π1], obtained
by solving π ·Λ = 0 with π · e′ = 1, where e = [1 1], is given
by

π0 =
λ

µ+ λ
, π1 =

µ

µ+ λ
, (15)

from which the following sensitivities can be derived

∂π0

∂µ
= −∂π1

∂µ
= − λ

(λ+ µ)2
, (16)

∂π0

∂λ
= −∂π1

∂λ
=

µ

(λ+ µ)2
. (17)

We will now verify that by using (9), the same result is
obtained. The QR factorization of Λ is

Q =
1√

λ2 + µ2

[
−µ λ
λ µ

]
, (18)

R =

[ √
λ2 + µ2 −

√
λ2 + µ2

0 0

]
. (19)

As described in (12), the stationary distribution can be ob-
tained by normalizing the last column of Q in (18). Comparing
(19) and (11), we see that U =

√
λ2 + µ2. Substituting U ,

(15) and (18) in (13) yields

Λ# =
1

(λ+ µ)2

[
−µ µ
λ −λ

]
. (20)

The sensitivity of the stationary distribution to µ and λ can
be derived from (9) as

∂π

∂µ
= −π∂Λ

∂µ
Λ# =

[
− λ

(λ+µ)2
λ

(λ+µ)2

]
(21)

∂π

∂λ
= −π∂Λ

∂λ
Λ# =

[
µ

(λ+µ)2 − µ
(λ+µ)2

]
(22)

where ∂Λ
∂µ =

[
−1 1
0 0

]
, ∂Λ
∂λ =

[
0 0
1 −1

]
, π = [π0, π1]

is given by (15), and Λ# is given by (20). Note that the
sensitivities match those computed directly from the closed-
form stationary distribution in (16)-(17). `

Figure 2. Block diagram of utility-scale system discussed in the case study.

III. CASE STUDIES

The first case study applies to a utility-level system, and ex-
plores the impact of parameter variations and repair strategies
on system capacity and energy yield. Next, sensitivity analysis
is utilized to optimize repair rates for a residential-scale
system. Finally, the sensitivity approach is utilized for design
trade off analysis of emerging distributed PV architectures.

A. Utility-Scale Installations

Utility-owned installations constituted 8% of grid-tied PV
systems in 2008 [29]. This number is expected to increase
as federal legislation has incentivized utilities to own PV
projects without separate tax investors [1]. The average in-
stalled capacity in utility installations is typically in the range
of hundreds of kilowatts. While economies of scale guarantee
lower operation and maintenance (O&M) costs (0.12% as
compared to 1.47% for residential systems according to [1]),
the large size and complexity of these systems presents various
challenges to ensure high reliability.

The benchmark installation considered here is a P =225
kW grid-tied inverter analyzed in [30]. The system architecture
is depicted in Fig. 2, where it can be seen that the inverter has
nine string blocks (with rated power, Ps = P/9 = 25kW),
each of which consist of ten strings of series-connected PV
modules. Each string has twelve series-connected modules.
In this case study, we assume there are two different failure
modes: inverter and string blocks failures, with failure rates
denoted by λi and λs, respectively. The inverter and string
blocks are repairable with repair rates denoted by µi and
µs, respectively, and repair brings the system back to its full
functionality (although alternate repair strategies are explored
subsequently). The state-transition diagram for the system
stochastic behavior due to failures and repairs is depicted in
Fig. 4. Note that other failure mechanisms including: failures
in series strings (e.g. due to arc faults), individual PV modules
(e.g. due to faulty junction boxes or bypass diodes), blocking
diodes, and protection equipment, can be incorporated in the
model by appropriately defining additional states. If appro-
priate transition rates can be identified, phenomena such as
soiling and partial shading can also be modeled similarly.

1) Base Case: The performance metrics of interest are
system capacity Ξ, and energy yield Γ. Following the notation
in (5), it follows that ρi = Pi = (i − 1)Ps = (i − 1)P/9,
i = 1, ..., 10, and ρ0 = 0 (this configuration corresponds
to inverter failure, which takes the whole system down at
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once). The failure and repair rate values for the base case are
λi = (1/3) yr−1, λs = (1/270) yr−1, µi = (365/15) yr−1,
and µs = (365/8) yr−1 which are adopted from [30]. The
system capacity is Ξ = 221.94 kW. Then, assuming a capacity
factor, CF = 18%, and for a period T = 10 yr, an estimate
of the energy yield is Γ = 3.51 GWhr.

2) Failure/Repair Rate Uncertainty Analysis: Given the
uncertainty in accurately determining transition rates [4], sen-
sitivity analysis can reveal what parameters have the largest
impact on system capacity (and therefore energy yield). Fig-
ures 3 (a)-(d) depict the system capacity sensitivity with
respect to transition rates. Notice that system capacity is most
sensitive to the inverter failure rate, followed by the string
failure rate, inverter repair rate, and string repair rate. This
follows intuitively as a failure in the inverter brings the system
down, whereas the system still delivers power if several strings
have failed. Also, note that ∂Ξ/∂µs and ∂Ξ/∂µi vary by
over two orders of magnitude over the range of µs and µi,
respectively. This suggests that accurate estimates of repair
rates (or at least an accurate estimate on their range) are
required for any analysis that employs sensitivity analysis. To
validate the accuracy of the analytical results on sensitivity, we
plot on the same figures the sensitivities computed numerically
(∂Ξ/∂θi ≈ ∆Ξ/∆θi) which are seen to match those computed
using the analytical approach very well.

3) Impact of Repair Strategy on Repair Costs: Denote by
ns, the largest number of operational strings for which repair
is initiated. Figure 5 depicts the investigated repair strategies
as ns is varied from 8 to 1. Transitions due to inverter failure
still exist but are not depicted in the figure for simplicity.
The energy yield is calculated using (7) for the different
repair strategies over a period of T =10 yr and capacity
factor 18%. The results are plotted in Fig. 6. As expected,
if more strings are allowed to fail before repair is initiated,
the expected energy yield is reduced. Energy-yield estimates
can be used to determine an alternative to the perfect repair
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Figure 3. Capacity sensitivity as a function of transition rates

Figure 4. State-transition diagram for utility-scale installation

strategy (corresponding to ns = 8). To do so, we introduce
the marginal utility of repair for the j repair strategy which is
denoted by MURj and defined as

MURj =
p(Γ8 − Γj)

CF · T
$

yr
, (23)

where Γj is the energy yield in kWhr when ns = j, p is the
price of electricity in $/kWhr. Essentially the marginal utility
of repair suggests the added dollar amount by which the cost
of the repair strategy when ns = j can be relaxed with no
monetary loss to the system operator. Hence, one way to pick
a repair strategy (or pick an ns) given an added repair cost cr
$/yr over the perfect repair strategy, is to solve the optimization
problem

Maximize j
Such that cr < MURj

1 ≤ j ≤ 8.
(24)

The MUR for the example above is plotted in Fig. 7 assuming
that the price of electricity is 8.7 cents/kW-hr. For the illustra-
tive repair cost (denoted by cr and sketched as a dashed line
in the figure), we would pick the repair strategy corresponding
to ns = 6.

Figure 5. Alternate repair strategies
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Figure 6. Energy yield as a function of repair strategy

Figure 7. Marginal utility of repair utilized to pick repair strategy

B. Optimum Repair Strategies for Residential PV Systems

Residential-scale systems had an average rating of 4.9
kW and constituted 27% of all new grid-connected systems
installed in 2008 [29]. While traditionally such systems have
been installed and operated by the homeowner, utilities have
started to enter this sector. For example, San Diego Gas and
Electric owns multi-family residential-scale PV systems, and
Southern California Edison has similar initiatives to deploy
utility-owned PV systems [2]. To encourage growth in this
sector, technical advances have to be coupled with improve-
ments in economics. Focusing on this aspect, this case study
demonstrates how the proposed framework—especially the
approach to sensitivity analysis—can optimize repair rates for
residential-scale systems.

The benchmark PV installation studied here is installed in
the Gable Home—a net-zero solar-powered home constructed
by the University of Illinois for the 2009 Solar Decathlon
Competition [31]. The system is comprised of a 9 kW PV
array with forty 225 W modules. Two 5 kW inverters are
utilized to interface with the utility grid. A block diagram
of the system architecture is shown in Fig. 8. The PV system
could operate (albeit at a lower power rating) with a single
inverter should one fail. The Markov model developed to study
this system focuses on inverter reliability as inverter failure has
been singled out as one of the chief reasons for low energy
yield in grid-connected PV systems [32]. Figure 9 depicts the
Markov-model state-transition diagram that captures inverter

Figure 8. Gable Home electrical system block diagram

failures and repairs. Each state in the diagram represents the
number of functional inverters. The failure rate of the inverters
is denoted by λ. The repair rates corresponding to state 0 (the
failed state) and state 1 (single functional inverter) are denoted
by µ0 and µ1, respectively. This model captures the possibility
that the time taken to repair two inverters could be longer than
that to repair a single inverter. From the above description, it
follows that ρ = [ρ0 ρ1 ρ2] = [0 P/2 P ], P = 10 kW.

To demonstrate how repair rates might be chosen, let us
begin by assuming that the mean time to inverter failure is
10 yr (λ = (1/10) yr−1) [1]. Assume that the mean time to
repair the inverters is 10 days (µ0 = µ1 = (365/10) yr−1).
The sensitivities of the system capacity to the failure and repair
rates are: ∂Ξ/∂λ = −2.724x10−2, ∂Ξ/∂µ1 = 7.424x10−5,
and ∂Ξ/∂µ0 = 4.068x10−7. From these numbers it is clear
that Ξ is not sensitive to the mean time to repair both inverters.
This makes intuitive sense, as the inverters are very reliable
and restored to operation rather quickly. These observations
suggest that µ0 need not equal µ1. The quantities ∂Ξ/∂µ0

and Ξ are plotted in Fig. 10 as a function of µ0. The capacity
is normalized as Ξ = Ξ · (100/P ) to express it in %. Notice
that the performance of the system is unaffected as long as
the mean time to repair both inverters is between 10 and 30
days (corresponds to µ0 between 36.5 yr−1 and 12.16 yr−1).
This suggests that the mean time to repair two inverters could
be relaxed to 30 days without affecting the energy yield.

Similar case studies can provide invaluable insight to man-
ufacturers and installers in determining replacement, repair,
and shipment policies to minimize costs. On the other hand,
system owners can not only compare the performance of
several different systems with a unified performance metric
but also negotiate power purchase agreements, warranties and

Figure 9. State-transition diagram capturing Gable Home inverter reliability.
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Figure 10. System capacity and its sensitivity to time to repair both inverters.

(a) (b)

Figure 11. Block diagrams of the (a) central and (b) distributed inverter
architectures.

repair policies. With proper data, the models can easily be
extended to include a detailed economic analysis by coupling
the repair rates with shipping and wage-related costs.

C. Emerging Distributed Inverter Systems

Conventional installations where large PV arrays were con-
nected to central inverters (Fig. 11(a)) are expected to be
replaced by distributed systems in which PV modules are
coupled with module-integrated microinverters (Fig. 11(b)).
Proponents of such systems have touted various advantages
to justify the added installed cost over central systems [33].
Of particular interest is the reliability of microinverter-based
architectures. The main goals of this case study are to evaluate
the impact of failure and repair rates on system capacity.

Consider a grid-tied PV system built with n microinverters.
The state-transition diagram for this system is shown in
Fig. 12. As before, each state corresponds to the number of
operational microinverters. Repairs in each state are assumed
to restore the operation of all failed microinverters. The mean
time to repair the microinverters is denoted by µ, and their
failure rate is denoted by λ. Such a repair model is reasonable
if the shipping time (which is ideally independent of the
number of microinverters) is greater than the time taken to
replace the faulty units. The stationary distribution for this
chain is

π0 =

[
1 +

n∑
i=1

(
i∏

k=1

µ+ (k − 1)λ

kλ

)]−1

, (25)

πi =
µ+ (i− 1)λ

iλ
πi−1 ∀ 1 ≤ i ≤ n. (26)

Figure 12. State-transition diagram for an n-microinverter PV system.

For a system rated at P W comprising n microinverters, the
reward vector and system capacity are given by

ρ = [ρ0 ρ1 . . . ρi . . . ρn] =

[
0
P

n
. . .

iP

n
. . . P

]
, (27)

Ξ =

n∑
i=1

ρi · πi =

n∑
i=1

i

n
· P · πi, (28)

where the stationary distribution follows from (25)-(26). In
light of the complicated expressions above, the utility of the
proposed numerical method in computing the stationary dis-
tribution and its sensitivity to variations in system parameters
is immediately obvious.

1) Performance Metrics Variation with Number of Invert-
ers: We evaluate the relationship between the number of
inverters, n, and the system capacity Ξ. Figure 13 depicts the
system capacity as a function of the number of microinverters
for three cases. In case 1, λ and µ are assumed to be the same
as the base values, λ = 1/10 yr−1 and µ = 365/10 yr−1, for
all n. In case 2, λ is fixed to the base value, while µ is varied
as shown in Fig. 14. In case 3, µ is fixed to the base value,
while λ is varied as shown in Fig. 14. The monotonic reduction
in λ captures possible circuit-level reliability improvements,
while the monotonic increase in µ aims to quantify better
repair policies. It emerges that with invariant failure and repair
rates, Ξ is not a function of the number of microinverters, n.
Improvements can only be made by reducing the failure rates
or increasing the repair rates.

5
10

15

1 2 3

99.7

99.75

99.8

99.85

Case
Number of inverters, n

Ξ [%]

Figure 13. System capacity as a function of number of inverters.
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Figure 14. Illustrative failure and repair rates as a function of number of
inverters adopted for case study.

2) Application of Sensitivity Analysis to System Design:
Consider the design of a grid-tied 5 kW PV array to be imple-
mented with microinverters. Suppose the system is built with
twenty module-integrated microinverters. System capacity is
plotted as a function of λ and µ in Fig. 15. A particularly
useful application of the sensitivity analysis is to suggest nec-
essary failure and repair rates to meet a specified performance
requirement. To the first order, the sensitivity formulation
implies that

∆Ξ ≈ ∂Ξ

∂θ
∆θ′ =

[
∂Ξ

∂θ1

∂Ξ

∂θ2
. . .

∂Ξ

∂θm

]
[∆θ1 ∆θ2 . . .∆θm]

′
.

(29)
For instance, a performance change due to variations in failure
rate can be estimated through

Ξ1 ≈ Ξ0 +
∂Ξ

∂λ
(λ1 − λ0) , (30)

where variables subscripted by 0 are the nominal values.
Referring to the 5 kW system considered above, it was noted
that λ0 = 1/10 yr−1 and µ0 = 365/10 yr−1, yielded Ξ0 =
99.73%. Suppose this were to be improved to Ξ1 = 99.90%
(with the same repair rate), (30) suggests that the required fail-
ure rate, λ1 = 1/26.667 yr−1. This can be verified numerically
by calculating Ξ through (5).

10
20

30
40 0.04

0.06
0.08

0.1

99  

99.5

100 

 

λ [yr−1]µ [yr−1]
 

Ξ 
[%

]

Figure 15. System capacity as a function of failure and repair rates for a
microinverter system.

IV. EXTENSIONS AND FUTURE WORK

In this section, we propose extensions to this work and
provide an insight into possible avenues for future work.

A. Propagation of PV Source Uncertainty to Reliability and
Performance Metrics

The power produced by the PV system is uncertain primar-
ily because the incident insolation and ambient temperature—
the inputs that determine the PV power output—are uncertain.
As an alternative to the energy-yield estimation approach
presented in Section II-A2 (which implicitly addressed un-
certainty through the capacity factor), this section explores
an explicit method to propagate input uncertainty to relia-
bility metrics and PV energy-yield estimates. The first step
is to reformulate the reward vector ρ = [ρ0, ρ1, . . . , ρn] as
R = [R0, R1, . . . Rn], where Ri, i = 0, 1, . . . n, are random
variables. Then, we seek the mapping

Ri = fi(S, ∆), (31)

where S and ∆ are also random variables describing the inci-
dent insolation and ambient temperature at the given location.
The function fi captures the PV-system output in the i state
and it can be formulated from standard PV performance mod-
els (see, e.g., [34]). Subsequently, system capacity, Ξ = π ·R′,
and energy yield, Γ = Ξ · T are also random variables. The
probability density functions (pdfs) of S and ∆, fS(s) and
f∆(δ) can be determined from field data or from analytical
models. Then, the pdfs of the reward vector, system capacity,
and energy yield, (fR(ρ), fΞ(ξ), and fΓ(γ), respectively)
can be determined through the method of transformation of
random variables (see e.g., [24]).

B. Consideration of Extenuating Distribution-System Condi-
tions and Common-Cause Failures

PV inverters are designed to meet the IEEE 1547 stan-
dard, which prescribes active power curtailment in case there
are sustained over-voltage, under-voltage, over-frequency, or
under-frequency conditions in the distribution system. The
Markov reward modeling framework can be easily extended
to accommodate these phenomena as described next. Consider
Fig. 16, which depicts a three-state example (similar to the
one presented in Section III-B of the manuscript) augmented
with an additional state 0F in which the power output is
curtailed due to the extenuating phenomena described above.
The power output is ρi in state i, ρj in state j and zero in
state 0F and state 0—which corresponds to the state in which
no power is produced due to component failures. Transitions
between the states i, j and state 0F are introduced at the
rates λF and µF , which can be determined from statistics of
field data. As in the models described in the case studies,
transitions between the states i, j and state 0 are due to
component failure and repair (governed by transition rates
λi, λj , and µ). Finally, catastrophic failures that cause the
entire system to fail (e.g., failure in protection equipment,
simultaneous failure in multiple inverters) can be modeled
by introducing common-cause failures at the rate λC . Now,
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Figure 16. Addressing common-cause failures and under/over volt-
age/frequency conditions.

the system capacity Ξ = π · ρ′ = πiρi + πjρj factors in
the probability of over/under voltage/frequency conditions that
cause active power curtailment, as well as common-cause
failures.

V. CONCLUDING REMARKS

A Markov-reward-model based framework to evaluate PV-
system reliability and performance has been formulated. Tools
from generalized matrix inversion were utilized to derive the
stationary distributions of the underlying Markov chains and
their sensitivity to model parameters. Case studies demon-
strated how the proposed framework can be utilized to drive
system-level reliability and performance improvements. Future
extensions can incorporate phenomena such as partial shading
by introducing additional states in the Markov model and in-
clude capital and operational expenditure into the framework.

APPENDIX

A. Derivation of Result in (4)

The integral over which the accumulated reward is com-
puted can be broken into two parts as

Γ =

T∫
0

π(t) · ρ′dt =

t0∫
0

π(t) · ρ′dt+

T∫
t0

π · ρ′dt, (32)

where t0 is such that the effect of initial conditions in (1)
has vanished. For t ≥ t0, the transition probability vector
π(t) = π, the stationary distribution π. Applying the mean-
value theorem [35], the above integral can be expressed as

Γ =

t0∫
0

π̄ ·ρ′dt+
T∫
t0

π ·ρ′dt = π̄ ·ρ′ · t0 +π ·ρ′ ·(T − t0), (33)

where π̄ = π(t)|t=τ for some τ ∈ [0, t0]. If T � t0, the
second term in (22) dominates, and as a result,

Γ ≈ π · ρ′ · T (34)

B. Derivation of Result in (9)

The result in (9) follows from a similar theorem for discrete-
time ergodic Markov chains presented in [19]. Theorem 3.2
in [19] considers an n-state, finite, homogeneous, ergodic
Markov chain with transition matrix P (θ) and stationary

distribution p. The sensitivity of the stationary distribution is
given by

∂p(θ)

∂θi
= −p(θ)∂A(θ)

∂θi
A#, (35)

where A = I − P , and A# is the group inverse of A. As
this work is concerned with continuous-time Markov chains,
the result in [19] can not be applied directly to establish (9),
because the matrix I−Λ is not row stochastic. We will prove
(9) by demonstrating that the stationary distribution of the
underlying discrete-time Markov chain (DTMC) associated
with the CTMC satisfies (35). Then, because the limiting
behaviors of the DTMC and CTMC should match, (9) would
follow. Consider that the CTMC is associated with a DTMC
whose distribution is governed by

p[k + 1] = p[k]P, (36)

where P = I + δΛ is a row-stochastic, irreducible, and
primitive matrix (with an appropriate choice of δ). Define the
matrix A = I−P = −δΛ. The group inverse of Λ is denoted
by Λ#, and given by

Λ# = −δA#. (37)

This can be shown by noting that Λ# satisfies the definition
of the group inverse given in (8). As the stationary solution
of the DTMC and CTMC is the same, and

∂Λ(θ)

∂θi
Λ# =

(
−δ−1 ∂A(θ)

∂θi

)(
−δA#

)
=
∂A(θ)

∂θi
A#, (38)

the result in (9) follows from (35). Existence of the group
inverse can be verified quite easily. Since the DTMC is
assumed to be ergodic, the Perron-Frobenius theorem implies
that 1 is a simple eigenvalue of P . Consequently, 0 is a simple
eigenvalue of Λ and the Jordan form of Λ can be expressed
as

J Λ =

[
0 0
0 B

]
, (39)

where B ∈ Rn−1xn−1 is non-singular. It immediately follows
that rank(Λ) = rank(Λ2), which proves the existence of the
group inverse [36].
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