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Synchronization of Nonlinear Oscillators in an LTI
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Abstract—Sufficient conditions are derived for the global
asymptotic synchronization of a class of identical nonlinear
oscillators coupled through a linear time-invariant network. In
particular, we focus on systems where oscillators are connected
to a common node through identical branch impedances. For
such networks, it is shown that the synchronization condition
is independent of the number of oscillators and the value of
the load impedance connected to the common node. Theoretical
findings are then applied towards the analysis and control of
voltage sourced inverters in a decentralized power system. The
ensuing paradigm i) does not necessitate communication between
inverters, ii) is independent of system load, and iii) facilitates a
modular design approach because the synchronization condition
is independent of the number of oscillators. We present both
simulation and experimental case studies to validate the analytical
results and demonstrate the proposed application.

Index Terms—inverter control, microgrids, nonlinear oscilla-
tors, synchronization.

I. INTRODUCTION

YNCHRONIZATION of coupled oscillators is relevant
S to several research areas including neural processes, co-
herency in plasma physics, communications, and electronic
circuits [1]-[7]. This paper presents a sufficient condition
for global asymptotic synchronization of a class of identical
nonlinear oscillators coupled through a linear time-invariant
(LTT) network. In particular, symmetric networks composed
of oscillators connected to a common node through iden-
tical branch impedances are examined. The synchronization
condition is independent of: i) the load impedance (i.e., the
impedance connected between the common node and electrical
ground), and ii) the number of oscillators in the network. This
result is used to formulate a control and analysis paradigm for
a decentralized power system composed of parallel voltage
source inverters serving a passive electrical load.
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Relevant to this work is a body of literature that has
examined synchronization conditions for diffusively coupled
oscillators using passivity theory [8]-[12]. For instance, in
[13], the notions of passivity and incremental passivity [8]—
[12] were used to establish synchronization conditions that
were applied to the control of inverters as nonlinear oscillators
in a power system. Passivity-based approaches require the
formulation of a storage function, which can be difficult
when the network contains energy-storage circuit elements
such as inductors and capacitors. Since power networks are
in general composed of a variety of LTI circuit elements
(resistors, capacitors, inductors, and transformers), passivity-
based approaches are difficult to apply in such systems. In
this work, we use Lo input-output stability methods, because
they facilitate analysis in settings where storage functions are
difficult to formulate. Our approach derives from previous
work in [14]-[16] where Lo methods were used to analyze
synchronization in feedback systems. To prove synchroniza-
tion, we reformulate the dynamics of the original system in a
corresponding differential system based on signal differences.
Stability of the differential system implies synchronization in
the original system.

The application focus of this work is a local control ap-
proach of power electronic inverters in a self-assembling ac
microgrid. A microgrid is a decentralized electrical power
system containing generation, storage, and loads that can
operate independent of the bulk power system [17], [18].
Microgrids are an enabling technology for decentralized power
systems since they provide a number of advantages including:
increasing renewable integration, reducing transmission and
distribution losses, and ensuring a reliable power supply to
loads in mission-critical applications. Design objectives of mi-
crogrids are generally focused on minimizing communication
[19], [20], maintaining stability [21]-[24], and ensuring that
inverters share the load in proportion to their ratings [25], [26].

Inverters perform the key task of power delivery in an
ac microgrid. With advances in digital control, they can be
programmed to behave as controllable voltage sources [27].
In this work, we propose inverters be controlled to behave as
nonlinear oscillators that are designed to synchronize in a mi-
crogrid. The control scheme does not require communication
between inverters (beyond the coupling inherently introduced
by the electrical network), is independent of the system
load (because the synchronization condition is independent of
load impedance), and facilitates a modular design approach
(because the synchronization condition is independent of the
number of oscillators). Also, the inverters share the load power
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demand with no supervisory control effort.

The state of the art method for inverter control in microgrids
is droop control. This method requires no communication
and is based on modulating the inverter output such that the
frequency and voltage amplitude are inversely proportional to
the real and reactive power output, respectively [20], [28], [29].
Recently, synchronization of droop-controlled inverters has
been analyzed with equivalent Kuramoto-oscillator models,
and sufficient conditions for convergence and stability have
been obtained [30]-[32]. The oscillator-based method we
propose differs from droop control in several respects. In par-
ticular, the proposed approach: i) does not require computation
of the real and reactive power output, ii) demonstrates minimal
deviations in system frequency from the rated value regardless
of fluctuations in the load impedance, and iii) does not require
an explicit frequency and amplitude command for the inverter
ac output.

It is foreseen that the analytical results in this work will
provide broad theoretical utility while outlining a compelling
application to the control of inverters in microgrids. To sum-
marize, the contributions of this work are as follows:

1) A sufficient global asymptotic synchronization condi-
tion is derived for a class of identical nonlinear os-
cillators connected to a common node through branch
impedances.

2) It is shown that the synchronization condition is in-
dependent of the number of oscillators and the load
impedance.

3) These results are applied towards the coordination of
inverters in a single-phase microgrid to achieve a control
and design paradigm that is robust (independent of load)
and modular (independent of number of inverters).

The remainder of this paper is organized as follows: Notation
and background material are presented in Section II. We
describe the network topology of interest in Section III, and
derive sufficient conditions for global asymptotic synchroniza-
tion of the nonlinear oscillators in Section IV. In Section
V, we formulate an oscillator model for inverter control and
present simulations and experimental case studies. Concluding
remarks are given in Section VI.

II. PRELIMINARIES

For the N-tuple (us,...,uy), denote u = [uq,...,un]"
to be the corresponding column vector, where T indicates
transposition. The N-dimensional column vectors of all ones
and all zeros are denoted by 1 and 0, respectively.

The Laplace transform of the continuous-time function f(¢)
is denoted by f(s), where s = p+jw € C, and j = /—1.
Transfer functions are denoted by lower-case z(s), and transfer
matrices are denoted by upper-case Z(s).

The Euclidean norm of a real or complex vector, u, is
denoted by ||u||, and is defined as

[ully = Vuru, (1)

where * indicates the conjugate transpose. For some

continuous-time function u(t), u : [0,00) — RY, the L5 norm

of u is defined as

o0

lullz, = / () u(t) dr, @

0

and the space of piecewise-continuous and square-integrable
functions where [Ju|| ., < oo is denoted by £ [33]. A causal
system, H, with input u and output y, is said to be finite-gain
Lo stable if there exist finite, non-negative constants, v and
7, such that

19z, = 1H @, <vllull, +1, YueLs ()

The smallest value of v for which there exists a 7 such that (3)
is satisfied is called the Lo gain of the system and is denoted
by v (H). If H is a linear system and can be represented by
the transfer function H (s), it can be shown that the £5 gain
of H is equal to its H-infinity norm, denoted by ||H||_, and
defined as

[ () u ()l
luGe)lly

where ||u (jw)||, = 1, provided that all poles of H(s) have
strictly negative real parts [34]. Note that if H (s) is a single-
input single-output transfer function then v (H) = ||H|| =
sup [H (w)ll,-
we

The electrical system of oscillators which interface to a
common node corresponds to a network with all-to-all cou-

pling. The Laplacian matrix of such a network is denoted as
I € RV*N and given by

N-1 -1 - -1

-1 N-1 - -1
[i=NIy-11"=| | — G

v(H) = |H|, = sup
weR

“4)

-1 -1 N -1
This particular Laplacian has the following properties: 1)
rank(I') = N — 1, ii) the eigenvalues of I' are denoted by
A < A2 = --- = Ay, where Ay = 0 and \; = N for
7 =2,...N,iii) T' is symmetric with row and column sums
equal to zero such that 'l = I'T1 = 0, iv) the eigenvector ¢,
(corresponding to A\; = 0) is given by q; = \/Lﬁl, and v) T’
can diagonalized as QAQT, where it follows that @~ = QT
because I' = I'T. See [15], [35], [36] for proofs and additional
discussion.

A useful construct that will be employed to compare indi-
vidual oscillator outputs with the average of all N oscillator
outputs is the projector matrix, 11, defined as [9], [11], [15]

1
O=1Iy— NllT. (6)

For some vector u € RY, we will denote % = Iu, and refer to
u as the corresponding differential vector (in previous work,
see, e.g., [9], [11], [14]-[16], the quantity u is referred to as
an incremental quantity). A causal system, H, with input u
and output y, is said to be differentially finite-gain Lo stable
if there exist finite, non-negative constants, v and 77, such that

191z, < lullz, +7, V€ L, )
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Figure 1: The oscillator model in this work is composed of a
linear subsystem, zos.($), and a nonlinear voltage-dependent
current source, g(v).

where iy = IIy. The smallest value of ¥ for which there exists
a 77 such that (7) is satisfied is called the differential Lo gain
of the system and is denoted by 7 (H).

III. SYSTEM OF COUPLED OSCILLATORS

In this section, a system of N nonlinear coupled oscillators
is introduced. We consider a network topology where all
oscillators are connected to a common node through identi-
cal impedances. A corresponding differential system is then
developed to facilitate synchronization analysis.

Our interest in this particular topology stems from the fact
that inverters in a microgrid are often connected in parallel
to serve a load [20], [37]. In the forthcoming section, we
will show that the synchronization condition for this network
is independent of the number of oscillators and the load
impedance. This is a useful result, because it implies the
system can be designed without a priori information of the
load parameters and number of inverters.

A. System Description

As shown in Fig. 1, the electrical oscillator under consid-
eration has: i) a linear subsystem composed of passive circuit
elements with impedance zs(s), and ii) a nonlinear voltage-
dependent current source g(-). We will require that g(-) be
continuous and differentiable, and additionally impose
< 0. (8)

ig(V)

0 1= sup 3
v

vER

Figure 2 depicts an electrical network of N such oscillators
connected to a common (load) node through identical branch
impedances, znet(s) (which may contain any combination of
linear circuit elements). The N oscillators deliver power to a
passive LTI load, zj0,4(s), which is connected at the common
node. The coupling between oscillators is captured by

i(s) =Y (s)v(s), 9)

where i(s) = [i1(s),...,in(s)]T is the vector of oscillator
output currents, v(s) = [v1(s),...,vn(s)]T is the vector of
oscillator terminal voltages, and Y'(s) is the network admit-
tance matrix.

A closed-form expression for Y (s) will now be derived.
Towards this end, notice from Fig. 2 that the j*"' oscillator
output current is given by

1

Znet (5)

ij (s) = (v (8) = Vioad (5)) (10)

Oscillator #1 Electrical Network: Y (s)

NN N

. | |

Zosc TY'srcl —+ : :

?;L g(v1)| v |
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Figure 2: N parallel oscillators interconnected through an LTI
electrical network containing a passive load.

where the load voltage, vjoaq ($), can be expressed as

N
Vload (8) = Zload (8) ) ik (5). (11)
k=1
Substituting (11) in (10) yields
1 N
ij(s) = ——= (v (8) = 210aa (8) ) ir(s) ], (12)
from which v; (s) can be isolated to obtain
N
05 (5) = Znet(8)i; () + Z1oaa (5) > ik (5). (13)
k=1
Collecting all terminal voltages,
0 (8) = (2net (8) IN + Z10aa (5) 117) i (s) . (14)
Comparing (14) with (9) indicates
Y7 (8) = 2znet (8) In + Zloaa (s) 117, (15)
The above expression can be inverted to obtain
Y (s) = a(s)In + B(s)T, (16)
where a(s), 5(s) € C are given by
o(s) = (zu(s) + Natoaa(s) ' =iz (), (1)
6(8) = Zload(s) (Znet(s)zeq(s))_

See Appendix A for a proof of the above result. Using the
expressions for Y (s) in (16)—(17), it is possible to redraw the
microgrid network in Fig. 2 as another equivalent network
containing admittances «(s) and 5(s).
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lsrc

Figure 3: Representation of coupled oscillator system. The
linear and nonlinear portions of the system are compartmen-
talized in F (-,-) and g(-), respectively.

We now seek a representation of the system in Fig. 2, where
the linear and nonlinear portions of the system are clearly
differentiated. Towards this end, first note that the terminal
voltage of the jth oscillator, v; (s), can be expressed as

0;(8) = Zosc(s) (isrej (s) — 45(s)) - (18)
Writing all v;’s in matrix form yields
v(s) Zose() (isre(s) — i(s))
- Zosc(s)isrc(s) - Zosc (5) Y (S) v (S) ) (19)
where  Zos.(s) zmc(s) Iy € CVYN g(s) =

[isie1(8), - - -y isren(8)]T, and in the second line of (19), we
have substituted i(s) = Y(s)v(s) from (9). We can isolate
v(s) from (19) as follows:

v(s) = (IN+ Zose (5) Y (8)) ™" Zose (5) isre (5)
F (Zose (5), Y (8)) sc (5) 5

where F : CVXN x CNXN 5 CNXN s the linear fractional
transformation, and represents Zy (s) in negative feedback
with Y (s) [38]. In general, for some A, B of appropriate
dimension and domain, the linear fractional transformation is
defined as

(20)

F(A,B):=(Iy+ AB)" " A. (21)

Using (20), the system of coupled oscillators admits the
compact block-diagram representation in Fig. 3. The linear and
nonlinear portions of the system are clearly compartmental-
ized by F (Zosc (5),Y (s)) and g(v) := [g(v1), ..., g(vn)]",
respectively.

B. Corresponding Differential System Description

Global asymptotic synchronization of the coupled oscillator
system in Section III-A corresponds to the condition

75lim vj(t) —ve(t) =0 Vj,k=1,...,N. (22)
bde el

For ease of analysis, we will find it useful to transform to a
coordinate system based on signal differences. Towards this
end, we employ the projector matrix in (6), noting that [14],
[15]

N N
(ITo(0))" (ITe() = 5233 (v

j=1k=1

o(t)To(t) =

(23)
Therefore, it is evident that the synchronization condition in
(22) is equivalent to requiring v(t) = Mwv(¢t) — 0 as t —
oo. Henceforth, we will refer to the system where all vectors
are transformed by the projector matrix as the corresponding
differential system.

—Uk )2.

Hisrc = fgrc IIv =2

Figure 4: Block-diagram representation of the corresponding
differential system. The linear and nonlinear portions of the
system are compartmentalized in F (-,-) and g, respectively.

We will now use the dynamics of the original system to
construct the corresponding differential system, the stability of
which will imply synchronization in the sense of (22). Towards
this end, the differential terminal-voltage vector, ¥(s), can be
expressed as

o(s) = —i(s)))
= Zosc 3) (strc( ) HY(S)U( ))

(
= Zoels) (i) = Y(9)0(5))

where in the first line, we have substituted for v(s) from (19);
in the second line, we have used the relation i(s) = Y (s)v(s)
from (9) and the fact that IZu(s) = Mzes () In =
Zose (8) INTL = Zos(s)IT; and in the last line, we have used the
property that the projector and admittance matrices commute,

H’U(S) =1II (Zosc(s) (isrc (3)

(24)

ie., IIY (s) = Y (s)II (this follows straightforwardly from the
fact that I'Il = IIT"). We can now isolate v(s) in (24) as
follows:

ﬂ(S) = (IN + Zosc(S)Y(SN))71 Zosc(s)’zsrc(s)
= F(Zosc(5),Y(8)) g (5)-

Notice the similarity between (25) and (20); i.e.,

fractional transformation also maps ig.(s) to v(s).
Finally, we can define a map g that captures the impact of

g(v) in the corresponding differential system as follows:

(25)

the linear

G0 = —lge. (26)
We now have a complete description of the corresponding
differential system. In particular, this system admits the block-
diagram representation in Fig. 4, where, as in Fig. 3, the linear
and nonlinear subsystems are compartmentalized using F (-, -)
and g, respectively.

IV. GLOBAL ASYMPTOTIC SYNCHRONIZATION

In this section, we derive a sufficient condition that ensures
global asymptotic synchronization in the sense of (22) for the
system of oscillators described in Section III-A.

First, we present a lemma that will establish an upper bound
on the differential £, gain of g.

Lemma 1. The differential Lo gain of g is finite and upper
bounded by o:

7(9) <o =sup
veR

d
dyg(y) < 0. 27)

Proof: By definition of o, for any pair of terminal voltages
v; and vy, and the corresponding currents igc; and dgck,
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where j,k € {1,...,
be applied to give

N7}, the mean-value theorem [34] can

o> |isr0j (t) — Isrck (t)|

o (8) — ok (1))
= 02 (v (1) — v (£)% > (issej () — et (1))° .

Summing over all indices, j,k € {1,..., N}, we arrive at

(28)

N N
02 Z - 'Ulc Zsrcy — Tsrck (t))2 y
j=1k=1 _]=1 k=1
(29)
which can be rearranged and simplified as
N N . . 2
o> Zj:l Zk:l (Zsfcj (t) = srek (t)) (30)

S Y (v () — vk (1)°

Since (30) holds for any set of terminal voltages, we obtain

ﬁ Zjvzl Z}]f\lzl (iSrcj (t) - Z‘sr(:k' (t )2
2 21 St (v (1) = o (1)

which can be rewritten compactly using the projector-matrix
notation in (23) as follows:

o > sup
vERN

, 3D

sre (8) Ve
o> sup o) oelD)liset) (32)
verny | 0()T0(t)
By definition of the differential Lo gain, we have
e > e (1) T (1) d
7(9) = sup —=—2 = sup VI O . (33)
vERN ||UHL2 vERN foooﬁ(t)Tﬂ(t)dt
Applying (32) in the definition above, we attain
o2 [T t)dt
¥ < su 0 =0 < 00, 34
v(g)_veRpN = tdt =0 <00 (34)

which completes the proof. [ |

We now prove the main result of this work: a sufficient
condition for global asymptotic synchronization in the network
of oscillators described in Section III-A.

Theorem 1. The network of N oscillators coupled through
(9) with the admittance matrix as defined in (16)—(17), syn-
chronizes in the sense of (22), if

Znet (jw)zosc (Jw)
sup - -
weR || Znet (Jw) + Zose (Jw) ||5

Proof: Consider the block-diagram of the differential
system in Fig. 4. Denoting the differential Lo gain of the linear
fractional transformation by 7 (F (Zosc(s), Y (s))), we have

19l 2, <7 (F (Zose(s), Y (s)))

for some non-negative 7. From Lemma 1, we also have

o<1 (35)

+ 1, (36)

src
Lo

e|| < o[l - 37
2
Combining (36) and (37), we arrive at
191z, <7 (F (Zose(5), Y () o [0l g, + 1. (38)

Let us assume that

Y (F (Zose(5),Y (8))) o < 1. (39)
Isolating [|9]| ., from (38), we can write
~ N

which implies that v € L. It follows from Barbalat’s lemma
[14]-[16], [34] that

tlirgloﬂ(t) =0 = tlir&vj(t) —v(t) =0Vj,k=1,...,N.
41
That is, if the system of oscillators satisfies the condition in
(39), global asymptotic synchronization can be guaranteed.
We will now derive the result in (35) by showing
Y (F (Zose(5),Y (3))) = ’mfzj;%” . From the defini-
tion of the linear fractional transformation in (21) and the
general form of the admittance matrix in (16), note that

F (Zosc(8), Y (8)) = (IN + Zose(8)Y (s ) ZOSC(S)
= (IN + Zose(s) (a(s)In + B(s)T ) Zosc(8)
o Zosc(s) s -t Zosc( )IN
= (1 TP OT) et
= F (C(s)In, B(s)T), (42)
where we have defined
(o) = el (43)

1+ a(s)zosc(s)

with «(s) and S(s) given in (17). Now, by definition of the
differential L5 gain of the linear fractional transformation, we
can express

3 (F (Zuse(), Y (5)) = 7 (F () B(s)D))
F () I, BT e ()
)
(I + C()B)D) ™" )i ()]
)
Q (I + ()8 2) ™ ¢(10) Qe ()|
oo,

where, we have diagonalized I' = QAQT and recognized
that QQT = Iy. We will now make two key observations
to simplify (44):

i) The first column of () is given by ¢; = i
thermore, 1TI1 = OT. Therefore, the vector QTigc(s) =
Qi (s) is given by

= sup
w€eR

= sup
w€eR

= sup 2. (44)

w€eR

L 1. Fur-

QT{srC(S) = QTHisrc(S) = [07 D(S)]T7 (45)
where D(s) € CV=1*1 is made up of the non-zero elements
of QT Mige(s).

ii) Denote the diagonal matrix with entries made up of the
non-zero eigenvalues of I' by Ay_;. By definition of T' in
Section II, we see that Ay_; = N - Iy_; € RVN-IXN-1
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(@ (b)

Figure 5: The functions (a)f(v) and (b)g(v) illustrated for
the Van der Pol (dashed lines) and dead-zone (solid lines)

d
oscillators. For the dead-zone oscillator, sup |—g(v)
veER dv

= 0.

Using the two observations highlighted above, we can now
simplify (44) as follows:

5 (F (¢(s)In, B(s)T))
| (s + € BGAN-1) ™ ) D),
D)1l 1
( 1 ¢(w)D"(w) D >>2
D™(jw)D(jw) (1 + ¢(jw)B(jw)N)?
sup (14 ¢(w)Bw)N) " ¢(jw)

IF(¢(5), B (s) Nl oo -

Finally, for the «(s) and §(s) in (17), we can simplify
F (¢(s),B(s) N) as follows:

F({(5),8(s) N) = (1+(5)B(s)N) " ((s)
ZoscReq (Zosc + Zeq)71

—-1_-1
1+ ZoscZeq (zosc + Zeq) ZloadZnet “eq N

= sup
w€eR

= sup
weR

(46)

- Zosc
- -1 -1 -1
Zeq (Zosc + Zeq) + ZoscZeq Zload Znet N
o Zosc
- —1 —1
1 4 Zosc2eq (1 + Zload Znet IV )
Rosc Zosc (8) Znet (3)
= 1 1N\ ) “47)
1+ ZoscZeq (Zqunet ) Znet(8) + Zosc($)
which completes the proof. [ |

The condition for synchronization in (35) is independent of
the number of oscillators, N, and the load impedance, 2jad(s).
It depends only on the impedance of the parallel combination
of Zose(8) and zper(s).

In Appendix C, we discuss how the results presented above
can be extended to the case where the oscillators are not
homogeneous, and the network branch impedances are not
identical.

V. CASE STUDIES

The proposed microgrid control is grounded on program-
ming inverters to emulate nonlinear oscillators. Towards that
end, we first present the particular oscillator model which will
form the basis of the inverter control. Next, we describe the pa-
rameter selection approach to ensure the inverters synchronize
while ensuring the load voltage and system frequency meet

v

(@ (b)

Figure 6: Phase plot of steady-state limit cycles in the (a)
dead-zone and (b) Van der Pol oscillators for varying ¢ =

Ve %)

performance objectives. We also describe how the controller
can be implemented on a digital platform. Finally, simulation
and experimental case studies that demonstrate the analytical
results as applied to inverters in a microgrid are presented.

A. Nonlinear Oscillator Description

In this work, we utilize a dead-zone oscillator, in which the
nonlinear voltage-dependent current source is given by

9(v) = f(v) = ov,

where f(-) is a continuous, differentiable dead-zone function
with slope 20, and f(v) = 0 for v € (—¢, +¢). Furthermore,
the linear subsystem is a parallel RLC circuit:

(48)

Zose(8) = R||sL|| (sC)~1. (49)

The functions f(v) and g(v) are illustrated in Fig. 5." The
terminal voltage of the dead-zone oscillator satisfies

2
LCdv+L(df(”)+1—a)d”+v=0.

de? dv R dt (50)

The existence of a stable and unique limit cycle can be
determined with the aid of Liénard’s Theorem, which is stated
below.

Theorem 2. (Liénard’s Theorem [4]) Consider the system
b4r@w)o+mv) =0,

where v : [0,00) — R and r(v),m(v) : R — R are
differentiable, even and odd functions, respectively. Define

R(v) == /OUT(T) dr.

The system in (51) has a unique and stable limit cycle if:
i) m(v) > 0Vv > 0, ii)) R(v) has one positive zero for

61V

(52)

IThe proposed dead-zone oscillator is very similar to the well-known Van
der Pol oscillator. To facilitate comparison, the functions f(v) and g(v) for
the Van-der-Pol oscillator are superimposed in Fig. 5.
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Figure 7: Controller implementation that ensures the H-bridge
inverter emulates the behavior of the nonlinear dead-zone
oscillator.

'°

some v = p, iii) R(v) < 0 when 0 < v < p, and iv) R (v)
monotonically increases for v > p and lim R (v) = oco.
v— 00

We can rewrite (50) by expressing the derivatives of v with
respect to £ :=t/+v/ LC to yield

i)+\/g(dj;iv)+;—a>b+v=0, (53)
which is of the form in (51), with
m(v) = v,
{r<v>=ﬁ(dﬁ5}” thoo) Y

For the case o > 1/R, it is easy to see that m(v), r(v), and
R(v) satisfy the conditions in Liénard’s theorem, implying that
the dead-zone oscillator has a stable and unique limit cycle.

The steady-state limit cycles of the dead-zone oscillator for

different values of ¢ = \/% (o0 — %) are plotted in Fig. 6(a).

For comparison, the limit cycles of the Van der Pol oscillator
for the same set of parameters are shown in Fig. 6(b). When
€ < 1, it can be shown that the steady-state oscillation will
have a frequency approximately equal to 1/+/LC [34], and as
shown in Fig. 6(a), the limit cycle is approximately a circle
in the current-voltage space.

B. Parameter Selection and Controller Implementation

In all the case studies, we consider a network with the
topology in Fig. 2. The network branch impedance is given
by Znet () = SLnet + Rnet, Where Lye; and Rye; equal
the series combination of the line and inverter-output-filter
inductance and resistance, respectively (the inverter output-
filter inductance reduces harmonics which arise due to switch-
ing [27]). Finally, we assume the load is resistive such that
Zload (8) = Rioaq (note that our result applies in general to
any passive LTI load). For this system, the linear fractional
transformation is given by

a232 +ais

= 55
b383+b252+615+b07 ( )

F (ZOSC(5)7 zn_etl (5))

where ay = Lyei, @1 = Rper, b3 = LpetC, by = (Lnet/R) +
RpetC, by = (Lnet /L) + (Ryet/R) + 1, and by = Ryet/ L.

The design objective is to guarantee that the inverters
synchronize their voltage outputs, and oscillate at the desired
frequency. Additionally, in steady-state we will require vjoaq
to stay within £5% of the rated voltage across the entire load
range (no-load to maximum rated load). For a given filter
impedance, 2,0t (), the above design objective can be satisfied
by proper selection of the oscillator linear- and nonlinear
subsystem parameters including: R, L, C, o, and .

To ensure oscillations at the rated system frequency, wrated,
the values of R, L, and C' must be selected such that
R > 1/o, LC = 1/w? 4. Further, we must ensure that

e=1/% (0 — %) is minimized to guarantee that the terminal

inverter voltages are sinusoidal, and o is picked so that
| F (2osc(jw), 2net (iw)|| . & < 1 to guarantee synchroniza-
tion. The value of ¢ can be tuned with an open-circuit test
to ensure that the inverter output voltage is no more than the
peak allowed load voltage.

Figure 7 illustrates how the oscillator-based controller is
implemented for a single-phase H-bridge inverter. As shown,
the terminal current of the inverter is measured, and extracted
from the virtual oscillator. The modulation signal, m, is
the scaled oscillator voltage. The inverter switching signals
are generated by comparing the modulation signal with a
triangle carrier waveform [27]. With the proposed method,
the inverter emulates the dynamics of the nonlinear dead-zone
oscillator. Discretization of the virtual oscillator differential
equations is straightforward, and the proposed controller can
be implemented on a standard microcontroller.

C. Simulation and Experimental Results

We now present simulation and experimental results to
validate the analytical methods in a microgrid application. In
particular, we demonstrate that a system of inverters controlled
as deadzone oscillators satisfying (35) synchronize and deliver
power to a load.

100 200 300

—300—200—100 O
v [V]

Figure 8: Evolution of oscillator state variables during startup
in the presence of a load. Waveforms for only 10 inverters out
of 100 simulated are shown for clarity.
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Figure 10: Inverter output currents, voltages, and voltage
synchronization error when ||.7-' (zosc(jw),z,;ll (Jw)”oo c>1
and synchronization is not guaranteed.

In case studies I and II, a microgrid consisting of 100 par-
allel inverters which are each rated for I0kW was simulated.
The RMS voltage and frequency ratings of the system are
220V and 60 Hz, respectively, and the maximum load power
is 1MW. In case study III, we provide experimental results
for a laboratory prototype which consists of three parallel
inverters. The system parameters used in the case studies are
summarized in Table I in Appendix B.

Case Study 1 (Simulation): Substituting the parameter
values from Table I into (55), it can be shown that
||f(zosc(jw),z;et1(jw)”ooa = 0.77 < 1, which guarantees
synchronization. At ¢ = 0, all currents are zero and the
oscillator capacitor voltages are randomly selected between
+10V. Initially, the system contains no load. After successful
synchronization, the load is abruptly added at ¢ = 300 ms. As
shown in Fig. 9, the voltage stays within £5% of the rated
value in steady state.

control
ant Rnet i1
100V F W
control
ant Rnet
100V tiL W
_ +
control Ripad< Vioad
100V

L net Rnet g» -

Figure 11: Schematic of the electrical circuit in the experi-
mental setup.
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Figure 12: Oscilloscope screenshot for measured inverter out-
put currents and load voltage.

A second simulation was conducted to demonstrate synchro-
nization in the presence of the load (in other words, the load
is connected at ¢ = 0s). Given the same initial conditions
as above, Fig. 8 illustrates the trajectories of the oscillator
state variables (only 10 out of 100 waveforms are shown for
clarity). The inductor current within the oscillator RLC circuit
is denoted as i1,. As shown in Fig. 8, the state-variables reach
a stable limit cycle.

Case Study II (Simulation): All parameters, except Ryet,
were reused. The value of R,.; was reduced such that
| F (2ose (jw), znet (jw)||, & = 2.78 £ 1, and synchronization
is not guaranteed. As illustrated in Fig. 10, the inverters do
not synchronize.

Case Study IIlI (Experimental): We have built a hardware
prototype comprising three parallel H-bridge inverters and a
resistive load. A schematic of the experimental hardware setup
is given in Fig. 11. The switches in the schematic are N-
channel power MOSFETs. Each inverter is rated to deliver
50 W and supplied by a 100V dc voltage source at the input.
The controllers in Fig. 11 regulate the switching action such
that each inverter behaves like a dead-zone oscillator. Cor-
responding parameters in Table I were selected such that the
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system oscillates at 60 Hz while maintaining a 60 V+5% RMS
voltage for all load conditions. Furthermore, synchronization
is guaranteed since ||f(zosc(jw),zn_et1(jw)uooa =093 < L
Figure 12 shows the output currents and load voltages during
startup with a 72 W load. The oscillator capacitor voltages
were initialized to v (0) = [5V,4V,3V]T within each con-
troller to demonstrate synchronization in spite of non-identical
intitial conditions.

VI. CONCLUDING REMARKS AND DIRECTIONS FOR
FUTURE WORK

A synchronization condition for nonlinear oscillators cou-
pled through a symmetric LTI network was derived. The
condition was shown to be independent of the number of
oscillators and the load parameters. We also proposed that par-
allel inverters in a microgrid be controlled to act as dead-zone
oscillators. The resulting microgrid design is modular and does
not require communication between inverters. Simulation and
experimental results were used to substantiate the analytical
results and illustrate the merit of the proposed application.

An important direction for future work is to extend the
method presented to address synchronization in three-phase
inverters with constant-power loads. Additionally, synchro-
nization in other network topologies can be investigated with
the general approach that we have outlined in this work.
Finally, the power quality delivered to the load needs to be
investigated by studying the impact of oscillator parameters
on the harmonic content in the inverter output waveforms.
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APPENDIX
A. Derivation of Y (s) in (16)
Diagonalizing 11T = PZPT, we can express (15) as
follows:
Y7 (s) = zuyet (8)IN + Zioad (5) PEPT
= Zpa(s)P <IN + Zl““d(s)E) P'. (56)
Znel(s)

It is easy to show that = = diag{0,...,0, N} € RV*V,
Substituting this in (56), we then obtain

Y =1(s) = znet (s) Pdiag {1, L1 Z“’ad(s)N} PT.

Znet(s)
(57)
Inverting (57), we get
From the definition of z.q(s) in (17), we can write
1
Y(s) = ———Pdiag {1, o, 11— Z‘Oad(S)N} pT
Znet(S) Znel(s)
1
= p (IN _ Zond(5) E) P, (59)
Znet(s) Zeq(s)

This can be simplified as follows:

Yie) = an(s)lzeq(s)P(zeCI(S)IN ~ Zona(5)Z) PT

= ey (o) & Nt Iy = zna()117)
- Zﬂet(s)lch( 7 () Iv + 2100a(s) (NI —117))

- Znet(s)lzq(s) (znet(8) I + 210 (s)T) , (60)

where in the last line, we have used the definition of I" from
(5). Notice that (60) is in the same form as (16), with a(s)
and ((s) given in (17).

B. Parameters for Simulations and Experiments

The inverter and electrical network parameters used in the
simulation and experimental case studies are given below.

Table I: System parameters used in the case studies.

Case Study I, IT | Case Study III
Simulation Experiment

N 100 3

R 8.66 €2 95.46 2

L 433.2 uH 4.77mH

C 16.2 mF 1.47 mF

o 1.15S 104.8 mS

) 146.1V 39.8V

€ 0.17 0.17
Rnet 0.1, 0.02Q2 1Q
Lnet 500 pH 6 mH
Rioad 91.96 mS2 50Q

C. Heterogeneous Oscillators and Nonidentical Branch

Impedances

For real-world microgrid applications, it is unlikely that
the branch impedances of the network are identical, and the
oscillators (inverters) are homogeneous. However, we can
incorporate these sources of uncertainty in the synchronization
condition straightforwardly.

First, we attempt to give conditions under which small
differences among oscillators leads to small synchronization
errors. Towards this end, replace the matrix Z,s.(s) with
Zosc(8) = Zose(8) + A(8) = Zosc(8)I + A(s), where Zose(s)
represents the nominal oscillator impedance and A(s) is a
diagonal matrix that captures deviations of each actual oscil-
lator impedance from the nominal value. With this setup, (25)
is modified to

U(5) = F(Zosc(s), Y (5))isre(s) + e(s),
where e(s) = ITA(S)(isre(s) — Y(s)v(s)). Combining (61)
with the nonlinear subsystem g(-), we find that if the condition
| F (Zose(s), Y(s))H2 o < 1 (which follows from Theorem 1),
is satisfied, then the feedback combination of (61) with ig,. =

—g(v) will synchronize when e(s) = 0. Furthermore, taking
the L., norm of both sides of (61)

(61)

92 < IF(Zose, V)l llisecllco + llellca +m0 (62)
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for some constant 7 that depends on initial conditions. In ad-
dition, it is straightforward to see that the nonlinear subsystem
is such that ||igc|z.. < 0]|7||z.. - Using the same small-gain
argument employed in the case of identical oscillators, the
synchronization error in ¥ will be in £, if network solutions
are bounded such that e € Lo, and if || F(Zose, V)| z,0 < 1
since this would guarantee

||;EH£<>C < He”foo +1
1- H}—(Zosc,Y)”LlU
In other words, for a network of inverters with different
Zosc(8), the maximal synchronization error over all time
will be upper bounded so long as the small gain condi-
tion || F(Zose, Y)||z,0 < 1 holds, and all network signals
are bounded. Further, this bound will be governed by the
maximum value of e over time, according to the relation
(63). Since e depends directly on A(s) (which quantifies the
differences between network nodes), smaller A(s) will reduce
the maximal asymptotic synchronization error in v to the
extent that if A(s) is equal to the zero matrix, this error will
also reduce to zero, retrieving the original result of Theorem 1.
Now consider that the branch impedances are not identically
equal to znet(s) € C, but for the system of N inverters, they
are given by the vector zpne;(5) = [2Znet1(5), - - - Znetn (8)]T €
CN. For the m-th branch impedance, we will denote
Znetm (8) = KmZnet(s), where k,,, € R, and Zet(s) is some
nominal branch impedance. We will also find it useful to define
the vector k = [k ",. N

< 0. (63)

kT € RN, In this case, with
reference to Fig. 7, we would design the controller for the
m-th inverter to extract the current x,,7,,. With this setup, it
is straightforward to show that the admittance matrix is given
by the following:

Y(s) = a(s)Iy + B(s)T, (64)
where G(s) = (Znet(s) + NE' = 221(s) and B(s) =

€ Cner (8)20q()) "1, With € = 2100 (s)(KTi(s))/(1Ti(s)).

Using the admittance matrix in (64) and applying the same
analysis in Theorem 1, we get the synchronization condition:

znct (jw)zosc (JW)

— - o<1
Znet (Jw> + Zosc (JUJ)

2

sup
weR

(65)
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