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Abstract

In this paper, we propose a framework to analyze Markov reward models, which are commonly used in system

performability analysis. The framework builds on a set of analytical tools developed for a class of stochastic

processes referred to as Stochastic Hybrid Systems (SHS). The state space of an SHS is comprised of: i)

a discrete state that describes the possible con�gurations/modes that a system can adopt, which includes

the nominal (non-faulty) operational mode, but also those operational modes that arise due to component

faults, and ii) a continuous state that describes the reward. Discrete state transitions are stochastic, and

governed by transition rates that are (in general) a function of time and the value of the continuous state.

The evolution of the continuous state is described by a stochastic di�erential equation and reward measures

are de�ned as functions of the continuous state. Additionally, each transition is associated with a reset

map that de�nes the mapping between the pre- and post-transition values of the discrete and continuous

states; these mappings enable the de�nition of impulses and losses in the reward. The proposed SHS-based

framework uni�es the analysis of a variety of previously studied reward models. We illustrate the application

of the framework to performability analysis via analytical and numerical examples.

Keywords: Markov reliability models, Reward models, Performability analysis, Stochastic hybrid systems.

1. Introduction

Continuous-time Markov chains (CTMCs) are commonly used for system reliability/availability modeling

in many application domains, including: computer systems [9, 28, 41], communication networks [27, 29],
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electronic circuits [5, 42], power and energy systems [1, 2], and phased-mission systems [25, 47]. A Markov

reward model is de�ned by a CTMC, and a reward function that maps each element of the Markov chain

state space into a real-valued quantity [32, 40, 45]. The appeal of Markov reward models is that they provide

a uni�ed framework to de�ne and evaluate reliability/availability measures that capture system performance

measures of interest; in the literature, this is typically termed performability analysis [30, 31, 38, 40, 46,

18, 26, 17]. In this paper, we propose a framework that enables the formulation of very general reward

models, and uni�es the analysis of a variety of previously studied Markov reward models. The framework

foundations are a set of theoretical tools developed to analyze a class of stochastic processes referred to as

Stochastic Hybrid Systems (SHS) [21], which are a subset of the more general class of stochastic processes

known as Piecewise-Deterministic Markov processes [8].

The state space of an SHS is comprised of a discrete state and a continuous state; the pair formed by these

is what we refer to as the combined state of the SHS. The transitions of the discrete state are stochastic, and

the rates at which these transitions occur are (in general) a function of time, and the value of the continuous

state. For each value that the discrete state takes, the evolution of the continuous state is described by a

stochastic di�erential equation (SDE). The SDEs associated with each value that the discrete state takes

need not be the same; indeed, in most applications they di�er signi�cantly. Additionally, each discrete-state

transition is associated with a reset map that de�nes how the pre-transition discrete and continuous states

map into the post-transition discrete and continuous states. Within the context of performability modeling,

the set in which the discrete state takes values describes the possible con�gurations/modes that a system

can adopt, which includes the nominal (non-faulty) operational mode, but also those operational modes

that arise due to faults (and repairs) in the components that comprise the system. The continuous state

captures the evolution of some variables associated with system performance, and as such, can be used to

de�ne reward measures that capture a particular performance measure of interest. Finally, the reset maps

can de�ne instantaneous gains and losses in reward measures that result from discrete-state transitions

associated with failures/repairs.

In order to fully characterize an SHS-based reward model, we need to obtain the distribution of the

combined state. However, this is an intractable problem in general, due to the coupling between the evolution

of the discrete and continuous states and the presence of reset maps. In fact, this problem can only be solved

in a few special cases. For instance, if we assume that the discrete state does not depend on the continuous

state, the evolution of the former can be written as a CTMC; and as such, its probability distribution is

fully characterized by the solution of the Chapman-Kolmogorov equations. However, unless we also assume

that the resets do not change the value of the continuous state, it is not straightforward to obtain the

continuous-state probability distribution. Given the di�culty in obtaining the distribution of the combined

state, we settle for a method that allows the computation of any arbitrary number of their moments. To

this end, we rely on the extended generator of the SHS, which together with Dynkin's formula can be
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used to obtain a di�erential equation that describes the evolution of the expectation of any function of

the combined state, as long as such a function is in the domain of the extended generator. Following the

approach outlined in [20, 21], we show that under certain general assumptions, monomial functions are

always in the domain of the extended generator, and thus, Dynkin's formula holds. Additionally, for SHS

where the reset maps, transition rates, and the vector �elds de�ning the SDEs are polynomial, the generator

maps the set of monomial functions to itself. Therefore, Dynkin's formula gives a closed set of ordinary

di�erential equations (ODEs) that describes the evolution of each moment in terms of the values of the other

moments. Since there are in�nitely many monomial functions, this formally produces an in�nite-dimensional

system of ODEs in what is referred to in the stochastic process literature as a closure problem.

The examples and case studies in this work demonstrate how the proposed SHS-based framework applies

to reward models where the rate at which the reward grows is: i) constant�this case is referred as the

rate reward model [39], ii) governed by a �rst-order linear di�erential equation�we refer to this case as a

�rst-order reward model, and iii) governed by a linear SDE�this case is referred as the second-order reward

model [3, 23]. As demonstrated in Section 3.1, the SHS-based framework can specify even more general

reward models, but we restrict our attention to the above cases as they have been previously studied in the

literature; this allows us to validate and verify our results. We will show that the structure of the standard

reward models described above is such that there are �nite-dimensional truncations of the ODEs governing

the moment evolution that are closed, i.e., there are �nite subsets of moments such that the evolution of

any member of this subset is a function only of the other members of this subset. In other words, these

conventional reward models do not lead to a closure problem, and we only have to solve a �nite-dimensional

ODE to determine the evolution of the reward moments.

Several numerical methods have been proposed to compute the reward distributions for rate reward

models (see, e.g., [15, 36, 38, 33, 43, 6] and the references therein). However, for more general reward

models, e.g., second-order reward models with impulses and/or losses in the accumulated reward, it is very

di�cult to obtain explicit, closed-form, analytical solutions for the partial di�erential equations (PDEs) that

describe the evolution of the reward distributions [22]. In practice, in order to analyze such reward models,

numerical methods are utilized to integrate the PDEs governing the evolution of the accumulated reward

probability density function [10, 22] (see also [11, 44] for discussions on speci�c reward modeling and analysis

software packages). It is worth noting that systems with deterministic �ows and random jumps in the state

have been widely studied in the nuclear engineering community (in light of the description above, these are

a type of SHS). For instance, Chapman-Kolmogorov equations with appropriate Markovian assumptions are

utilized to derive the PDEs that govern the continuous states in [13, 12, 14]. However, even in this body of

work, it has been acknowledged that closed-form analytical solutions to the PDEs can be derived only for

simple models [12].

An alternative to numerical integration for characterizing the distribution of the reward is to compute its
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moments, which then can be used, e.g., to compute bounds on the probabilities of di�erent events of interest

using probability inequalities. In this regard, a number of methods have been proposed in the literature

for computing moments in reward models. For example, techniques based on the Laplace transform of

the accumulated-reward distribution are proposed in [16, 23, 24, 39]. In [32], the �rst moment of the

accumulated reward in these models is computed following a method based on the frequency of transitions

in the underlying Markov chain. A numerical procedure based on the uniformization method is proposed

to compute the moments of the accumulated reward in [7]. Methods from calculus of variations are used to

derive di�erential equations that provide moments of rewards for rate-reward models in [37]. In the same

vein of these earlier works, the SHS-based framework proposed in this paper provides a method to compute

any desired number of reward moments. The advantages of the SHS approach are twofold: i) it provides a

uni�ed framework to describe and analyze a wide variety of reward models (even beyond the rate-, �rst-, and

second-order reward models that our case studies focus on), and ii) the method is computationally e�cient

as it involves solving a linear ODE, for which there are very e�cient numerical integration methods.

The remainder of this paper is organized as follows. In Section 2, we provide a brief overview of Markov

reliability and reward models. In Section 3, we describe fundamental notions of SHS, and demonstrate how

the Markov reward models studied in this work are a type of SHS. Case studies are discussed in Section 4,

while Section 5 illustrates the moment closure problem in SHS. Concluding remarks and directions for future

work are described in Section 6.

2. Preliminaries

In this section, we provide a brief overview of Markov reliability and reward models, while in the process,

we introduce some relevant notation and terminology used throughout the paper. For a detailed account on

these topics, interested readers are referred to [40].

2.1. Markov Reliability Models

Let Q(t) denote a stochastic process taking values in a �nite set Q; the elements in this set index the

system operational modes, including the nominal (non-faulty) mode and the modes that arise due to faults

(and repairs) in the components comprising the system. The stochastic process Q(t) is called a Continuous-

Time Markov Chain (CTMC) if it satis�es the Markov property, which is to say that

Pr {Q(tr) = i|Q(tr−1) = jr−1, . . . , Q(t1) = j1} = Pr {Q(tr) = i|Q(tr−1) = jr−1} , (1)

for t1 < · · · < tr, ∀ i, j1, . . . , jr−1 ∈ Q [19]. The chain Q is said to be homogeneous if it satis�es

Pr {Q(t) = i|Q(s) = j} = Pr {Q(t− s) = i|Q(0) = j} , ∀i, j ∈ Q, 0 < s < t. (2)
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Homogeneity of Q(t) implies that the times between transitions (i.e., the sojourn times in the states) are

exponentially distributed.

Denote the probability that the chain is in state i at time t ≥ 0 by πi(t) := Pr{Q(t) = i}, and the

entries of the row vector of occupational probabilities by {πq(t)}q∈Q. The evolution of π(t) is governed by

the Chapman-Kolmogorov equations:

π̇(t) = π(t)Λ, (3)

where Λ ∈ R|Q|×|Q| is the Markov chain generator matrix whose entries are obtained from the failure and

repair rates of the system components. In the context of this work, the CTMC de�ned in (3) describes a

Markov reliability model.

2.2. Markov Reward Models

A Markov reward model is comprised of a Markov chain Q(t) taking values in the set Q (which, as

stated previously, describes the possible system operational modes,) and an accumulated reward Y (t), which

captures some performance measure of interest. The most commonly studied Markov reward models are

rate-reward models and second-order reward models (see, e.g., [22, 23], and the references therein). The

accumulated reward in rate-reward models evolves according to

dX(t)

dt
= a(Q(t)),

Y (t) = X(t), (4)

where a : Q → R is the (discrete-state-dependent) reward growth rate. In second-order reward models, the

accumulated reward evolves according to

dX(t) = a(Q(t)) dt+ c(Q(t)) dWt,

Y (t) = X(t), (5)

where a : Q → R, c : Q → R, and Wt : R+ → R is the Wiener process. Impulses in the accumulated reward

capture one-time e�ects due to failures/repairs of components in the system. As described in Section 1,

various methods have been proposed to tackle impulses in rate reward models.

3. Stochastic Hybrid Systems Formalism for Markov Reward Models Analysis

This section begins with a brief overview on the most general class of reward models that can be described

using the SHS formalism. Then, through straightforward simpli�cations, we recover Markov reward models

previously proposed in the literature. The main result presented in this section, which is adopted from

[20, 21], establishes that, for all the aforementioned reward models, it is possible to describe the evolution

of the accumulated-reward conditional moments by a set of ODEs. Then, the accumulated reward moments

can be obtained by applying the law of total expectation.
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3.1. General Reward Models De�ned as SHS

In the most general sense, an SHS is a combination of a continuous-time, discrete-state stochastic process

Q(t) ∈ Q, coupled with a continuous-time, continuous-state stochastic process X(t) ∈ Rd. Additionally, we

assume that this system is fully coupled, in the sense that the evolution of the continuous state depends on

the current value of the discrete state, and the transitions of the discrete state depend on the current value

of the continuous state. In the context of this paper, in addition to the two processes described above, we

include a third process Y (t), Y : R+ → R obtained as a function of X(t); this third process enables the

de�nition of di�erent reward measures.

We now give an intuitive, non-rigorous description of a general SHS; see AppendixA for a mathematically

rigorous de�nition. First, we de�ne the functions

λj : Q× Rd × R+ → R+, φj : Q× Rd × R+ → Q× Rd, j ∈ J , (6)

which we call the transition rates and the transition reset maps, respectively. The idea of these functions is

that at any time t, if the system is in state (Q(t), X(t)), it undergoes transition j with rate λj(Q(t), X(t), t),

and if it undergoes this transition, then it instantaneously applies the map φj(Q(t), X(t), t) to the current

values of Q(t) and X(t), and discontinuously changes their values at that moment.

More speci�cally, for any time t > 0, we say that the probability of transition j occurring in the time

domain [t, t+ ∆t) is

λj(Q(t), X(t), t)∆t+ o(∆t), (7)

and if it does occur, then we de�ne

(Q(t+ ∆t), X(t+ ∆t)) = φj(Q((t+ ∆t)−), X((t+ ∆t)−), t+ ∆t), (8)

thus obtaining new values for Q(t) and X(t).3 From this, we see that the probability of no transition

occurring in [t, t + ∆t) is 1 − ∆t
∑
j∈J λj(Q(t), X(t), t). Finally, between transitions, we prescribe that

X(t), Y (t) evolve according to

dX(t) = f(Q(t), X(t), t) dt+ g(Q(t), X(t), t) dWt,

Y (t) = h(Q(t), X(t), t), (9)

where Wt : R+ → Rl is the l-dimensional Wiener process, f : Q×Rd ×R+ → Rd, g : Q×Rd ×R+ → Rd×l,

and h : Q× Rd × R+ → R.

The main reason that the above description is only intuitive is that it is only an asymptotic description,

and it is not a priori clear at this stage that a sensible limit exists when ∆t is taken to zero. In fact, such

3We use the notation a(t−) = lim
s↗t

a(s) to denote the left-hand limit of the function a.
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a limit does exist (as we show in AppendixA), and, moreover, the asymptotic description given above is a

standard method one would use to numerically simulate realizations of the stochastic process (as is done in

the case studies in Section 4).

For the class of SHS studied in [20], the vector �elds that govern the evolution of the continuous state (f ,

g, and h), the reset maps (φj), and the transition rates (λj), are required to be polynomial functions of the

continuous state. In general, as illustrated in Section 5, the evolution of the moments of the continuous state

is governed by an in�nite-dimensional system of ODEs, and moment closure methods have to be applied to

obtain truncated state-space descriptions [21]. For the numerical examples of the reward models we study in

this paper, the vector �elds that govern the evolution of the continuous state and the reset maps are linear,

and, moreover, the transition rates are not assumed to be functions of the continuous state. As we show

below, this implies that the di�erential equations that govern the evolution of the conditional moments in

these models are e�ectively �nite dimensional, and moment-closure methods are unnecessary.

3.2. Markov Reward Models De�ned as SHS

Although the formalism outlined in Section 3.1 provides a uni�ed and generalized modeling framework

to tackle a wide variety of reward models, in the remainder of the paper we restrict our attention to a class

of Markov reward models that can be formulated as a special case of this general SHS model. In particular,

we assume that i) the SDEs describing the evolution of the continuous state are linear (or, more precisely,

a�ne) in the continuous state X(t), ii) the transition rates governing the jumps of Q(t) are independent of

X(t), and iii) the reward Y (t), is a linear function of the continuous state X(t). More precisely, the SDE

governing X(t) (and therefore Y (t)) is given by

dX(t) = A(Q(t), t)X(t)dt+B(Q(t), t)dt+ C(Q(t), t) dWt,

Y (t) = R(Q(t), t)X(t), (10)

where Wt : R+ → Rl is the l-dimensional Wiener process, A : Q × R+ → Rd×d, B : Q × R+ → Rd,

C : Q× R+ → Rd×l, and R : Q× R+ → R1×d.

We �rst note that under these assumptions, the discrete process Q(t) is a CTMC�in particular, one

can understand the pathwise evolution of Q(t) without knowing X(t), Y (t). If we further assume that the

transition rates are not a function of time, i.e., if λj : Q → R+, the Markov chain is homogeneous. In the

context of this work, and as discussed in Section 2, the CTMC Q(t) describes a Markov reliability model,

while (Q(t), X(t), Y (t)) describes a Markov reward model.

It should be noted that rate, �rst-order, and second-order reward models are all subsumed in this

framework. In fact, to realize rate reward models, we choose A = C = 0 in (10); to realize �rst-order reward

models, we choose C = 0 in (10). Expressed as such, (10) describes a second-order reward model; this is the

most general model we explore in the numerical examples of Section 4.
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Figure 1: State-transition diagram for the Markov reward model studied in Example 1.

The results presented in [21] for SHS apply directly to the Markov reward models examined in this

work. Of particular interest is the method to obtain the moments of X(t) (from which we can recover the

accumulated-reward moments). As described subsequently in Section 3.3, this method is based on de�ning

appropriate test functions and formulating the extended generator for the underlying stochastic processes.

We end this section by illustrating the notation introduced so far with a simple example. We will revert to

this example in Section 3.4 to demonstrate how the moments of the accumulated reward are obtained from

appropriately de�ned test functions.

Example 1. Consider the Markov reward model in Fig. 1, which is commonly obtained by aggregation of
many-state CTMCs [9]. In this model, the underlying CTMC Q(t) takes value 0 whenever the system is in
a failed mode, and takes values 1 whenever the system is operational. Associated with this Markov chain,
we consider a �rst-order reward model. To this end, de�ne X(t) = [X1(t), X2(t), . . . , Xd(t)]

T , which evolves
according to

dX(t)

dt
= A(Q(t))X(t) =: AQ(t)X(t), (11)

where AQ(t) = A0 ∈ Rd×d if Q(t) = 0, and AQ(t) = A1 ∈ Rd×d if Q(t) = 1. The accumulated reward Y (t) is

given by Y (t) = R(Q(t))X(t) =: RQ(t)X(t), where RQ(t) = R0 ∈ R1×d if Q(t) = 0, and RQ(t) = R1 ∈ R1×d

if Q(t) = 1. Now choose two numbers α, β ∈ R+ and two vectors v, w ∈ Rd. Basically, α, v will govern the
transitions from state 1 → 0, so that we transition from operational mode 1 to 0 with (failure) rate α, and
when we do so, we reset the value of X(t) to v, and similarly for β,w in the other direction. Following the
notation introduced in Section 3.1, de�ne the set of transitions by J = {0, 1}, with transition rates4

λ0(q, x) = δq,1α, λ1(q, x) = δq,0β, (12)

and reset maps
φ0(q, x) = (0, δq,1v), φ1(q, x) = (1, δq,0w). (13)

It turns out that there is a more compact way to formulate this in the SHS-based framework. To this end,
we can say that there is exactly one transition, and de�ne the following transition rate and reset map

λ(q, x) =

{
α, q = 1,

β, q = 0.
, φ(q, x) =

{
(0, v), q = 1,

(1, w), q = 0,
, (14)

4In subsequent developments we use standard Kronecker delta notation, i.e., δi,j = 1 if i = j and = 0 if i 6= j.
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which can be written more compactly using the Kronecker delta notation as follows:

λ(q, x) = δq,1α+ δq,0β, φ(q, x) = (1− q, δq,1v + δq,0w). (15)

These models are equivalent with probability one, since a transition with a zero rate occurs with probability
zero (see AppendixA for details). Also, note that as long as we assume that our model has only one way to
transition out of any given discrete state, then we can always represent our system with one transition.

3.3. Test Function and Extended Generator of the Stochastic Processes

For the reward model introduced in (10), de�ne a test function ψ(q, x, t), ψ : Q×Rd×R+ → R, where q

represents the discrete state of the CTMC, and x represents the continuous state from which the accumulated

reward is recovered. The extended generator (referred interchangeably as generator subsequently) is denoted

by (Lψ) (q, x, t), and de�ned as

(Lψ)(q, x, t) :=
∂

∂x
ψ(q, x, t) · (A(q, t)x+B(q, t)) +

∂

∂t
ψ(q, x, t)

+
1

2

∑
i,j

(
(CCT )i,j(q, t)

∂2

∂xixj
ψ(q, x, t)

)
+

∑
j∈J

λj(q, x, t) (ψ (φj (q, x, t))− ψ(q, x, t)) , (16)

where ∂ψ/∂x ∈ R1×d and ∂2ψ/∂x2 ∈ Rd×d denote the gradient and Hessian of ψ(q, x, t) with respect

to x, respectively; and the summation (in the third line) is over all transitions of the underlying CTMC

[8, 21]. The evolution of the expected value of the test function E [ψ(Q(t), X(t), t)], is governed by Dynkin's

formula, which can be stated in di�erential form [8, 21] as follows:

d

dt
E[ψ(Q(t), X(t), t)] = E[(Lψ)(Q(t), X(t), t)]. (17)

Said in words, (17) implies that the time rate of change of the expected value of a test function evaluated

on the stochastic process is given by the expected value of the generator. We also point out that the formula

for the generator is plausible on intuitive grounds: if we �turn o�� the transitions between discrete states

and only had a simple di�usion, then the generator would be the �rst two lines. In contrast, if we �turn

o�� the SDE evolution for the continuous state, then the transitions between modes is generated by the

third line. An appeal to the in�nitesimal nature of (17) and linearity tells us that we should add these two

operators together to obtain the generator for the entire process. This argument is informal and intuitive;

a rigorous argument demonstrating (17) for SHS can be found (in various forms) in [8, 21, 35].

Dynkin's formula holds for every ψ that is in the domain of the extended generator L. We point out that

in the current work, we will only consider those ψ that do not explicitly depend on time, and so the second

term in line one of (16) does not appear. Describing the domain of this operator is, in general, technically

di�cult [8]. However, following [21], we show in AppendixB that in the current framework (namely, SDEs

that have a�ne drifts with additive noise, and state-independent transition rates), all functions polynomial
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in x are in the domain of L and, moreover, that Dynkin's formula holds for all such polynomials.

3.4. Recovering Di�erential Equations for Conditional Moments from Test Functions

Next, we summarize the procedure outlined in [21] to specify a family of test functions from which the

moments of the accumulated reward can be recovered by using (16) and (17). For a Markov reward model

where the underlying CTMC takes values in the set Q, we de�ne a family of test functions of the form

ψmi (q, x) := δi,qx
m =

 xm if q = i

0 if q 6= i
, ∀i ∈ Q, (18)

where m := (m1, m2, . . . ,md) ∈ N1×d, and xm := xm1
1 xm2

2 . . . xmd

d . We also de�ne the conditional moments

at time t, µ
(m)
i (t), ∀i ∈ Q, by

µ
(m)
i (t) := E

[
ψ

(m)
i (q, x)

]
= E [Xm(t)|Q(t) = i] · Pr {Q(t) = i} , (19)

and for everym ∈ N1×d, the entries of the (row) vector of conditional moments are denoted by {µ(m)
q (t)}q∈Q.

The last equality in (19) follows from the de�nition of the test functions in (18). By appropriately picking

the mi's, we can isolate the conditional moments of interest. We demonstrate this next, in the context of

the system considered in Example 1.

Example 2. Recall the Markov reward model introduced in Example 1; associated with the two discrete
states, de�ne the following test functions

ψ
(m)
0 (q, x) = δq,0x

m =

{
xm if q = 0
0 if q = 1

,

ψ
(m)
1 (q, x) = δq,1x

m

{
0 if q = 0
xm if q = 1

, (20)

where m ∈ N1×d and xm = xm1
1 xm2

2 . . . xmd

d . As stated previously, by appropriately picking m, we can
recover many conditional moments of interest. For instance, note that choosing m = (0, 0, . . . , 0) recovers
the discrete-state occupational probabilities

µ
(0,0,...,0)
i (t) = Pr {Q(t) = i} = πi(t). (21)

Similarly, picking m = (2, 0, . . . , 0) isolates the second-order conditional moment of X1(t):

µ
(2,0,...,0)
i (t) = E

[
X(2,0,...,0)(t)|Q(t) = i

]
· Pr {Q(t) = i}

= E
[
X2

1 (t)|Q(t) = i
]
· πi(t). (22)

Finally, picking m = (1, 1, . . . , 1) yields the conditional expectation of the product
∏d
`=1X`(t):

µ
(1,1,...,1)
i (t) = E

[
X(1,1,...,1)(t)|Q(t) = i

]
· Pr {Q(t) = i}

= E

[
d∏
`=1

X`(t)|Q(t) = i

]
· πi(t). (23)
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Other moments of interest can be recovered similarly.

3.5. Evolution of the Accumulated Reward

For a given m (which, as shown previously, can be de�ned to isolate the conditional moment of interest),

we apply (16) to obtain expressions for the extended generators,
(
Lψ

(m)
i

)
(q, x), i ∈ Q. From Dynkin's

formula in (17), we then obtain a set of di�erential equations that govern the conditional moments:

d

dt
µ

(m)
i (t) =

d

dt
E
[
ψ

(m)
i (q, x)

]
= E

[(
Lψ

(m)
i

)
(q, x)

]
, ∀i ∈ Q. (24)

The problem of interest is to obtain the p-order moment of the accumulated reward E[Y p(t)], from the con-

ditional moments de�ned above. Recall that the accumulated reward is given by Y (t) = R(Q(t), t)X(t) =
d∑
s=1

rs(Q(t), t)Xs(t), which implies that Y p(t) is a polynomial function of Xs(t), s = 1, 2, . . . , d. In partic-

ular, applying the multinomial theorem, we obtain

Y p(t) =
∑

m1+m2+···+md=p

(
p

m1, m2, . . . , md

) ∏
1≤s≤d

(rs(Q(t), t)Xs(t))
ms , (25)

i.e., Y p(t) can be expressed as a polynomial function of Xs(t), s = 1, 2, . . . , d. There is a more compact

way to write the multinomial theorem that we will �nd useful subsequently. Given m = (m1, . . . ,md) ∈ Nd,

we de�ne

|m| :=
d∑
s=1

ms,

(
p

m

)
:=

(
p

m1, m2, . . . , md

)
; (26)

then (25) can be compactly expressed as

Y p(t) =
∑
|m|=p

(
p

m

)
(R(Q(t), t)X(t))m, (27)

where we use the following notation

(R(Q(t), t)X(t))m = Rm(Q(t), t)Xm(t) = (r1(Q(t), t)X1(t))m1 · · · · · (rd(Q(t), t)Xd(t))
md

=
∏

1≤s≤d

(rs(Q(t), t)Xs(t))
ms . (28)

11



Thus, the pth order moment of Y is given by

E [Y p(t)] =
∑
|m|=p

(
p

m

)
E [(R(Q(t), t)X(t))

m
]

=
∑
|m|=p

(
p

m

)∑
i∈Q

E [(R(Q(t), t)X(t))
m |Q(t) = i] Pr{Q(t) = i}

=
∑
|m|=p

(
p

m

)∑
i∈Q

(R(i, t))mE [Xm(t)|Q(t) = i] Pr{Q(t) = i}

=
∑
|m|=p

(
p

m

)∑
i∈Q

(R(i, t))mµ
(m)
i (t) =

∑
i∈Q

∑
|m|=p

(
p

m

)
(R(i, t))mµ

(m)
i (t). (29)

Therefore, to compute E [Y p(t)], all we need to know are the moments µ
(m)
i (t) with i ∈ Q and |m| = p.

Remark 1. As a special case, consider the Markov reward model described by the following scalar system
(i.e., d = 1)

dX(t) = (a(Q(t), t)X(t)dt+ b(Q(t), t)) dt+ C(Q(t), t) dWt,

Y (t) = r ·X(t), (30)

where Wt is the l-dimensional Wiener process, a : Q× R+ → R, b : Q× R+ → R, C : Q× R+ → R1×l, and
r ∈ R. Using (29), we have that

E [Y p(t)] = rp
∑
i∈Q

µ
(p)
i (t), (31)

which is notably simpler than (29). �

We revert to Example 1 to illustrate how (29) applies in practice.

Example 3. Let us consider Example 1 for the case when d = 2; then, the accumulated reward is given
by Y (t) = R(Q(t))X(t) = r1(Q(t))X1(t) + r2(Q(t))X2(t). Suppose we are interested in computing the
second-order moment of the reward, E

[
Y 2(t)

]
. Using (29), we have

E
[
Y 2(t)

]
=

1∑
i=0

(
r2
1(i)µ

(2, 0)
i (t) + r2

2(i)µ
(0, 2)
i (t) + 2r1(i)r2(i)µ

(1, 1)
i (t)

)
. (32)

Note that there is no technical restriction to considering higher dimensional continuous state spaces (i.e.,

d > 2), but this would give many more terms in (32). All that remains is to compute the evolution of µ
(m)
i (t)

with |m| = 2, for which we use (24); this derivation is detailed next.
First, by substituting the transition rate and reset map from (15) in the de�nition of L from (16), we

obtain two terms5 in the generator, namely:

(Lψ)(q, x) =
∂

∂x
ψ(q, x) ·A(q)x+ λ(q, x)(ψ(φ(q, x))− ψ(q, x)). (33)

To compute (Lψ
(m)
i )(q, x) for |m| = 2; we consider each term in (33) in turn. Let us �rst write the

coordinates of A(q) as

A(q) =

[
a11
q a12

q

a21
q a22

q

]
, (34)

5Recall here that B = C = 0 and ψ does not explicitly depend on time.
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then, we have that

∂

∂x
ψ

(m)
i (q, x) = δi,q

[
m1x

−1
1 xm

m2x
−1
2 xm

]T
, A(q)x =

[
a11
q x1 + a12

q x2

a21
q x1 + a22

q x2

]
. (35)

So, the �rst term in (33) is

∂

∂x
ψ

(m)
i (q, x) ·A(q)x

= δi,q(m1a
11
q x

m +m1a
12
q x

mx2

x1
+m2a

21
q x

mx1

x2
+m2a

22
q x

m)

= δi,q

(
(m1a

11
q +m2a

22
q )xm +m1a

12
q x

(m1−1,m2+1) +m2a
21
q x

(m1+1,m2−1)
)

= (m1a
11
i +m2a

22
i )ψ

(m)
i (q, x) +m1a

12
i ψ

(m1−1,m2+1)
i (q, x) +m2a

21
i ψ

(m1+1,m2−1)
i (q, x). (36)

This calculation shows us some patterns: i) the dynamics coming from the ODE between jumps does not
cross-couple the discrete states (i.e., all the subscripts in this equation are the same), ii) it is the o�-
diagonal terms in the matrix that cross-couple the conditional moments (i.e., if Aq was diagonal, then all
the superscripts in this equation would be the same), and iii) while the subtractions in the exponents might
make us worry about negative-powered moments, notice that every time we subtract a power, we multiply by
an m-dependent factor (e.g., if m1 = 0 then the second term in the last equation is multiplied by zero even
though it formally has a −1 exponent in the formula).

We now consider the second term of (33):

λ(q, x)(ψ
(m)
i (φ(q, x))− ψ(m)

i (q, x))

= (δq,1α+ δq,0β)
(
ψ

(m)
i (1− q, δq,1v + δq,0w)− ψ(m)

i (q, x)
)

= (δq,1α+ δq,0β) (δ1−q,i(δq,1v
m + δq,0w

m)− δq,ixm)

= δi,0 (δq,1αv
m1(x)− δq,0βxm) + δi,1 (δq,0βw

m1(x)− δq,1βxm)

= δi,0

(
αvmψ

(0,0)
1 (q, x)− βψ(m)

0 (q, x)
)

+ δi,1

(
βwmψ

(0,0)
0 (q, x)− αψ(m)

1 (q, x)
)
, (37)

where we add the 1(x) to stress the places where the function is constant in x. The �rst equality in the above
derivation follows from the de�nition of the transition rate and reset map in (15). The second equality follows
from the de�nition of the test functions in (20). Finally, the third equality can be derived by enumerating
the terms that multiply δi,0 and δi,1. Note that (37) works for general d and any vector m. Writing out the
two cases, i = 0, 1, we have

λ(q, x)(ψ
(m)
0 (φ(q, x))− ψ(m)

0 (q, x)) = αvmψ
(0,0)
1 (q, x)− βψ(m)

0 (q, x), (38)

λ(q, x)(ψ
(m)
1 (φ(q, x))− ψ(m)

1 (q, x)) = βwmψ
(0,0)
0 (q, x)− αψ(m)

1 (q, x). (39)

Notice the e�ect of switching in the discrete state is that each test function is coupled to itself (negatively),
and it is coupled to the constant function of the other discrete state (positively). This makes sense, since,
e.g., all entrances to operational mode 0 take place deterministically with state v, and therefore this should
contribute vm to the mth moment.
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Combining (17), (36), and (37), we obtain

d

dt
µ

(m)
i = E[(Lψ

(m)
i )(q, x)]

= E[(m1a
11
i +m2a

22
i )ψ

(m)
i (q, x) +m1a

12
i ψ

(m1−1,m2+1)
i (q, x) +m2a

21
i ψ

(m1+1,m2−1)
i (q, x)]

+ E[δi,0

(
αvmψ

(0,0)
1 (q, x)− βψ(m)

0 (q, x)
)

+ δi,1

(
βwmψ

(0,0)
0 (q, x)− αψ(m)

1 (q, x)
)

]

= (m1a
11
i +m2a

22
i )µ

(m)
i (t) +m1a

12
i µ

(m1−1,m2+1)
i (t) +m2a

21
i µ

(m1+1,m2−1)
i (t)

+ δi,0

(
αvmµ

(0,0)
1 (t)− βµ(m)

0 (t)
)

+ δi,1

(
βwmµ

(0,0)
0 (t)− αµ(m)

1 (t)
)

= (m1a
11
i +m2a

22
i )µ

(m)
i (t) +m1a

12
i µ

(m1−1,m2+1)
i (t) +m2a

21
i µ

(m1+1,m2−1)
i (t)

+ δi,0

(
αvmπ1(t)− βµ(m)

0 (t)
)

+ δi,1

(
βwmπ0(t)− αµ(m)

1 (t)
)
. (40)

For example, let us make the speci�c choice of A0 =

[
−1 −2
1 −3

]
, A1 =

[
1 0
0 −4

]
, R0 = [1, 2], and

R1 = [−1, 5]. Using (40), we obtain the following set of di�erential equations{
µ̇

(2, 0)
0 (t) = −2µ

(2, 0)
0 (t)− 4µ

(1, 1)
0 (t)− βµ(2, 0)

0 (t) + αv2
1π1(t)

µ̇
(2, 0)
1 (t) = 2µ

(2, 0)
1 (t)− αµ(2, 0)

1 (t) + βw2
1π0(t){

µ̇
(0, 2)
0 (t) = −6µ

(0, 2)
0 (t) + 2µ

(1, 1)
0 (t)− βµ(0,2)

0 (t) + αv2
2π1(t)

µ̇
(0, 2)
1 (t) = −8µ

(0, 2)
1 (t)− αµ(0, 2)

1 (t) + βw2
2π0(t){

µ̇
(1, 1)
0 (t) = −4µ

(1, 1)
0 (t)− 2µ

(0, 2)
0 (t) + µ

(2, 0)
0 (t)− βµ(1, 1)

0 (t) + αv1v2π1(t)

µ̇
(1, 1)
1 (t) = −3µ

(1, 1)
1 (t)− αµ(1, 1)

1 (t) + βw1w2π0(t)
(41)

The solutions of the above di�erential equations are substituted in (32) to obtain the second-order moment
of the accumulated reward. Following a similar procedure, other moments of interest can be computed. For

instance, the expected value of the reward is given by E[Y (t)] =
∑1
i=0 r1(i)µ

(1, 0)
i (t) + r2(i)µ

(0, 1)
i (t). To

compute µ
(1,0)
i (t) and µ

(0,1)
i (t), we would substitute m = (1, 0) and m = (0, 1) in (40).

Notice that (40) also yields the Chapman�Kolmogorov di�erential equations that govern the evolution of
the occupational probabilities π0(t) and π1(t). Towards this end, substituting m = (0, 0) in (40), we obtain{

π̇0(t) = −βπ0(t) + απ1(t),
π̇1(t) = −απ1(t) + βπ0(t),

(42)

which are precisely the Chapman�Kolmogorov di�erential equations for a two-state CTMC. As discussed in
Section 3.2, the value of the continuous state does not a�ect the discrete state dynamics when the transition
rates are constant.

For illustration, we chose the parameters α = 6 s−1, β = 4 s−1, v = [v1, v2]
T

= [10, −3]
T
, and

w = [w1, w2]
T

= [−10, 8]
T
. Figure 2 plots the occupational probabilities π0(t) and π1(t) computed by simu-

lating (42), and averaging the results of 2000 Monte Carlo simulations. Figures 3 and 4 plot the �rst- and
second-order moments of the reward obtained from the SHS approach with the results of 2000 Monte Carlo
simulations superimposed in each case. The experiment is performed on a PC with a 2.53 GHz Intel R©
CoreTMi5 CPU processor with 4 GB memory in the MATLAB R© environment. The computer execution
time for the Monte Carlo simulations was 88.25 s, while the computer execution time to obtain the moments
with the SHS approach was 0.053 s.
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Figure 2: Occupational probabilities for the model studied in
Example 1.
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Figure 3: First-order moment of accumulated reward for the
model studied in Example 1.
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Figure 4: Second-order moment of the accumulated reward for the model studied in Example 1.

4. Case Studies

In this section, we present two numerical case studies to demonstrate the applicability of the proposed

SHS-based framework in modeling the performability of dependable systems. To demonstrate the validity

of the proposed approach, we compare the accuracy of the SHS modeling framework with Monte Carlo

simulations and/or results from previous literature as appropriate.

The �rst case study examines the repair cost expended in maintaining a system of two electric-power

transformers. The system is cast as a rate-reward model with impulses in the cost (associated with the one-

time expense of enlisting the services of a repair crew). In�ationary e�ects are modeled with a discount rate.

This model is adopted from [1], where the �rst-order moment of the accumulated repair cost was derived

using a method based on the frequency of transitions of the underlying CTMC. We develop an SHS-based

reward model for this system, and reproduce the results in [1]. In addition, we also obtain higher-order

moments of the accumulated reward. In the second case study, we consider a second-order reward model

that was introduced in [23] to describe the performance of a communication network. A Laplace-transform

based method was adopted in [23] to obtain the moments of the accumulated reward. We reproduce the
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Figure 5: Markov reward model for a system of two transformers with common-cause failures.

results in [23] using the SHS modeling framework, and in addition, consider cases where there are losses and

impulses in the accumulated reward.

4.1. Rate Reward Model with Impulses

This case study demonstrates how the SHS-based framework can be applied to model impulses in a

rate-reward model. We examine the accumulated repair cost to maintain a system of two electric-power

transformers with common-cause failures [1]. The state-transition diagram that describes the reliability of

the system is depicted in Fig 5. The CTMC that describes the Markov reliability model is denoted by

Q(t) ∈ Q = {0, 1, 2}. In operational mode 2, both transformers are functioning, in operational mode 1,

a single transformer is functioning, and in operational mode 0, both transformers have failed. The failure

rate, repair rate, and common-cause failure rate are denoted by α, β, and αc, respectively. The reward of

interest is the cost of repair, denoted by X(t). The rate at which the repair cost grows in the operational

mode corresponding to discrete state i is denoted by ci(t) [$/yr]. Transitions due to failures are associated

with impulses in the repair cost that model the one-time expenses in enlisting the services of a repair crew.

The impulse change in repair cost as a result of a failure transition from operational mode i to mode j

is denoted by Cij(t) [$]. The cost parameters are modeled to be time-dependent to factor in�ation. In

particular, we presume�following along the model in [1]�that ci(t) = cie
−γt and Cij(t) = Cije

−γt. The

parameter γ is the discount rate that represents future costs by a discounted value [1]. The authors in [1]

obtain analytical expressions for the expected value of the accumulated repair cost with a method that is

based on the frequency of visits in a CTMC [32]. We demonstrate how to cast this problem in the SHS-based

framework. In doing so, we obtain a family of ODEs whose solution not only yields the expected value of

the accumulated cost, but also higher-order moments (the higher order moments were not tackled in [1]).

We begin by de�ning test functions for each state of the CTMC:

ψ
(m)
i (q, x) = δq,ix

m =

 xm if q = i

0 if q 6= i
, i ∈ Q = {0, 1, 2}. (43)
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If it turns out that there is only one transition between any two modes in the system, we can considerably

simplify the de�nition of the SHS. In particular, we assume that the reset maps are of the form

φj(q, x) = (j, χj(q, x)), χj(q, x) =
∑
j′∈J

δq,j′ωj,j′(x), ∀j, j′ ∈ J , (44)

where J is the set of transitions in the reward model. In particular, this means that the reset for the

transition from operational mode j to j′ is given by ωj,j′(x). We then have

ψ
(m)
i (φj(q, x)) = ψ

(m)
i

j, ∑
j′∈J

δq,j′ωj,j′(x)

 = δi,j

∑
j′∈J

δq,j′ωj,j′(x)

m

= δi,j
∑
j′∈J

δq,j′ (ωj,j′(x))
m
, (45)

and therefore

∑
j∈J

λj(q, x)
(
ψ

(m)
i (φj(q, x))− ψ(m)

i (q, x)
)

= λj(q, x)

∑
j′∈J

δq,j′ (ωj,j′(x))
m − ψ(m)

i (q, x)

 . (46)

To perform this computation, notice that we have to de�ne

λ0(q, x) = δq,1α+ δq,2αc, λ1(q, x) = δq,22α, λ2(q, x) = δq,1β, (47)

and

ω1,0(x) = x+ C10(t), ω2,1(x) = x+ C21(t), ω2,0(x) = x+ C20(t), ω1,2(x) = x. (48)

The extended generators are given by(
Lψ

(m)
0

)
(q, x) = mc0(t)ψ

(m−1)
0 (q, x) + α

(
ψ

(1)
1 (q, x) + C10(t)ψ

(0)
1 (q, x)

)m
+ αc

(
ψ

(1)
2 (q, x) + C20(t)ψ

(0)
2 (q, x)

)m
, (49)(

Lψ
(m)
1

)
(q, x) = mc1(t)ψ

(m−1)
1 (q, x)− (α+ β)ψ

(m)
1 (q, x)

+ 2α
(
ψ

(1)
2 (q, x) + C21(t)ψ

(0)
2 (q, x)

)m
, (50)(

Lψ
(m)
2

)
(q, x) = mc2(t)ψ

(m−1)
2 (q, x)− (2α+ αc)ψ

(m)
2 (q, x) + βψ

(m)
1 (q, x). (51)

Applying (17) to (49)-(51), we obtain the following set of di�erential equations:

d

dt
µ

(m)
0 (t) = mc0(t)µ

(m−1)
0 (t) + α

(
Cm10(t)π1(t) +

m−1∑
k=0

(
m

k

)
µ

(m−k)
1 (t)Ck10(t)

)

+ αc

(
Cm20(t)π2(t) +

m−1∑
k=0

(
m

k

)
µ

(m−k)
2 (t)Ck20(t)

)
, (52)
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d

dt
µ

(m)
1 (t) = mc1(t)µ

(m−1)
1 (t)− (α+ β)µ

(m)
1 (t)

+ 2α

(
Cm21(t)π2(t) +

m−1∑
k=0

(
m

k

)
µ

(m−k)
2 (t)Ck21(t)

)
, (53)

d

dt
µ

(m)
2 (t) = mc2(t)µ

(m−1)
2 (t)− (2α+ αc)µ

(m)
2 (t) + βµ

(m)
1 (t), (54)

where π0(t), π1(t), and π2(t) are the occupational probabilities of the di�erent modes. Notice that sub-

stituting m = 0 in (52)-(54) recovers the Chapman-Kolmogorov equations: π̇(t) = π(t)Λ, where π(t) =

[π0(t), π1(t), π2(t)], and Λ is given by:

Λ =


0 0 0

α −(α+ β) β

αc 2α −(2α+ αc)

 .
The m-order moment of the accumulated repair cost is given by (31), i.e., E[Xm(t)] = µ

(m)
0 (t) + µ

(m)
1 (t) +

µ
(m)
2 (t). The evolution of µ

(m)
0 (t), µ

(m)
1 (t), and µ

(m)
2 (t) is given by (52)-(54).

For illustration, consider: α = 2 yr−1, β = 1000 yr−1, αc = 1 yr−1, c2 = 1000 $/yr, c1 = 10, 000 $/yr,

c0 = 0 $, C21 = 500 $, C20 = 1000 $, and C10 = 500 $ [1]. Figure 6 depicts the expected value of the

accumulated repair cost for two di�erent values of γ. The results from the SHS approach (obtained by

simulating (52)-(54) for m = 1, and then using E[X(t)] = µ
(1)
0 (t) +µ

(1)
1 (t) +µ

(1)
2 (t)) are superimposed to the

results from [1]. To further validate the approach, Figs. 7-8 depict the second- and third-order moments of

the accumulated cost (obtained by simulating (52)�(54) for m = 2 and m = 3, respectively) superimposed

to results obtained from 5000 Monte Carlo simulations. Note that it is unclear how the method proposed in

[1] can be extended to obtain higher-order moments. Therefore, in these cases, we just include the Monte

Carlo results for comparison and validation of the SHS approach.
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Figure 6: Expected value of accumulated repair cost for the transformer reliability model.
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Figure 7: Second-order moment of accumulated repair cost for the transformer reliability model.
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Figure 8: Third-order moment of accumulated repair cost for the transformer reliability model.

4.2. Second-order Reward Model

In this case study, we examine the second-order Markov reward model illustrated by the state-transition

diagram in Fig. 9. Note that this is a generalized version of the model presented in [23], which was employed

to model the capacity of a communication channel (the reward is the available channel capacity). Transitions

between di�erent modes and the associated transition rates are also illustrated in the �gure. We assume

that failure transitions are associated with a reset map that can model partial total loss or impulses in

the accumulated reward. In partial total loss models, a (possibly mode-dependent) fraction of the total

accumulated reward is lost with each transition of the discrete state. With regard to the state-transition

diagram presented in Fig. 9, setting Cij ≡ 0, 0 ≤ κi ≤ 1, we recover a model that captures partial total loss

in the accumulated reward. Similarly, choosing Cij < 0, κi ≡ 0, models impulses in the accumulated reward.

The moments of the accumulated reward are derived from a direct analysis of the Laplace transform of the

accumulated-reward probability distribution in [23]. Here, we demonstrate how to formulate the model

within the SHS-based framework. As before, begin by de�ning the following test functions:

19



ψ
(m)
i (q, x) =

 xm if q = i

0 if q 6= i
, i = 0, 1, . . . , N. (55)

The generators for the states can be obtained from (16) as follows:(
Lψ

(m)
0

)
(q, x) = ma0ψ

(m)
0 (q, x) +mb0ψ

(m−1)
0 (q, x)−Nβψ(m)

0 (q, x)

+ α
(
κ1ψ

(1)
1 (q, x) + C10

)m
ψ

(0)
1 (q, x) +

1

2
σ2

0m(m− 1)ψ(m−2)
n (q, x), (56)

(
Lψ

(m)
N

)
(q, x) = maNψ

(m)
N (q, x) +mbNψ

(m−1)
N (q, x) + βψ

(m)
N−1(q, x)

−Nαψ(m)
n (q, x) +

1

2
σ2
Nm(m− 1)ψ

(m−2)
N (q, x), (57)

(
Lψ

(m)
i

)
(q, x) = maiψ

(m)
i (q, x) +mbiψ

(m−1)
i (q, x)− ((N − i)β + iα)ψ

(m)
i (q, x)

+ (i+ 1)α
(
κi+1ψ

(1)
i+1(q, x) + C(i+1)i

)m
ψ

(0)
i+1(q, x) + (N − (i− 1))βψ

(m)
i−1(q, x)

+
1

2
σ2
im(m− 1)ψ

(m−2)
i (q, x), ∀i = 1, . . . , N − 1. (58)

De�ne the conditional moments µ
(m)
i (t) = E

[
ψ

(m)
i (q, x)

]
, i = 0, 1, . . . , N , and denote the vector of con-

ditional moments at time t by µ(m)(t) = [µ
(m)
0 (t), µ

(m)
1 (t), . . . , µ

(m)
N (t)]. Applying (17), we see that the

evolution of µ
(m)
i (t), i = 0, 1, . . . , N is governed by

d

dt
µ

(m)
0 (t) = ma0µ

(m)
0 (t) +mb0µ

(m−1)
0 (t)−Nβµ(m)

0 (t) +
1

2
σ2

0m(m− 1)µ
(m−2)
0 (t)

+ α

(
Cm10π1(t) +

m−1∑
k=0

(
m

k

)
κm−k1 µ

(m−k)
1 (t)Ck10

)
, (59)

d

dt
µ

(m)
N (t) = maNµ

(m)
N (t) +mbNµ

(m−1)
N (t) + βµ

(m)
N−1(t)−Nαµ(m)

N (t) +
1

2
σ2
Nm(m− 1)µ

(m−2)
N (t), (60)

Figure 9: State-transition diagram for the second-order reward model.
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d

dt
µ

(m)
i (t) = maiµ

(m)
i (t) +mbiµ

(m−1)
i (t)− ((N − i)β + iα)µ

(m)
i (t)

+ (i+ 1)α

(
Cm(i+1)iπi+1(t) +

m−1∑
k=0

(
m

k

)
κm−ki+1 µ

(m−k)
i+1 (t)Ck(i+1)i

)

+ (N − (i− 1))βµ
(m)
i−1(t) +

1

2
σ2
im(m− 1)µ

(m−2)
i (t), ∀i = 1, . . . , N − 1. (61)

As a special case, consider ai = 0, bi = (C − ir), σi =
√
iσ, κi = 1, and Cij = 0 . This recovers the model

studied in [23], where there are no losses in the accumulated reward. In this case, (59)�(61) simplify to the

following
d

dt
µ(m)(t) = µ(m)(t)Λ +mµ(m−1)(t)Γ +

1

2
m(m− 1)µ(m−2)(t)Υ, (62)

where µ(m)(t) is the vector of conditional moments at time t,

Γ = diag (C, . . . C − ir, . . . , C −Nr) , (63)

Υ = diag
(
0, . . . iσ2, . . . , Nσ2

)
, (64)

Λ =



−Nβ Nβ 0 0 0 . . . 0

α ∗ (N − 1)β) 0 0 . . . 0

0 2α ∗ (N − 2)β 0 . . . 0

. . .
. . .

. . .
. . .

. . .

0 0 0 . . . (N − 1)α ∗ β

0 0 0 0 . . . Nα −Nα


. (65)

To save space, we have sometimes written the diagonal elements of this matrix by a ∗, but of course it is

implied by the fact that Λ must be zero-sum, e.g., the (2, 2) element of the matrix is −(α+ (N − 1)β), etc.

Also notice that Λ is the generator matrix of the underlying CTMC. The expression in (62) exactly matches

Equation (6) in Theorem 2 of [23].

For illustration, consider the following: N = 10, α = 5, β = 2, κi = 0.5, Cij = −0.1, ai = i, bi = N ,

σi =
√
iσ. Figures 10, 11, 12 plot the �rst-, second-, and third-order moments of the reward obtained from

the SHS approach (substituting m = 1, 2, 3, respectively in (59)-(61), and using (31)). The results of 75,000

Monte Carlo simulations are superimposed in each case; simulations are repeated for di�erent values of σ to

demonstrate the validity of the approach.

We note that the Monte Carlo approximation for high moments becomes quite intermittent, especially

when σ is large (here, we roughly mean that the trajectory has many �spikes�). This is a predictable feature

of the system; when we are computing high moments, a single large realization can make a very signi�cant

change to the empirically measured moment. Of course, in the limit of taking in�nitely many samples, this

e�ect dies out, but notice that for high moments we would need to take a very large number of samples and

thus the method we propose here becomes even more preferable for higher-order moments.
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Figure 10: Expected value of the accumulated reward for the second-order reward model.
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Figure 11: Second-order moment of the accumulated reward for the second-order reward model.
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Figure 12: Third-order moment of the accumulated reward for the second-order reward model.
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Figure 13: Single discrete-state SHS with continuous-state-dependent transition rate.

5. The Problem of Moment Closure in Markov Reward Models

Recall that in the class of reward models explored so far, the vector �elds that govern the evolution of the

continuous state and the reset maps are linear, while the transition rates are independent of the continuous

state. If these assumptions are relaxed, the di�erential equations that govern the evolution of the moments

are in�nite dimensional and moment-closure techniques have to be applied to solve them.

To see the added di�culty, notice that in all of the cases considered previously in this paper, the evolution

equation for the pth order moments of the process have always depended on lower-order moments, and thus,

the moment evolution equations always give a closed system. For example, we could always �rst solve the

Chapman�Kolmogorov equations to obtain the zeroth-order moments; from this, the equations for the �rst-

order moments depended only on themselves and these zeroth-order moments, the second-order moments

only depend on themselves and lower order, etc. In general, however, we run into may a case where the

evolution equation for a moment of a given order depends on higher-order moments; the resulting system is

not closed and cannot be solved. We illustrate this next with a simple example.

Example 4. Consider the state transition diagram illustrated in Fig. 13, for a �rst-order reward model
with a single discrete state. The transition rate and the reset map are both linear functions of the continuous
state in this case. The generator for this process is given by(

Lψ(m)
)

(x) =
∂

∂x
ψ(m)(x) · ax+ βx

(
ψ(m) (φ(x))− ψ(m) (x)

)
= maψ(m)(x) + β (κm − 1)ψ(m+1)(x). (66)

Applying (17), we see that the evolution of the moments of X(t) is governed by

µ̇(m)(t) = maµ(m)(t) + β (κm − 1)µ(m+1)(t). (67)

Notice that µ̇(m)(t) depends on µ(m+1)(t). Therefore, moment-closure methods are required to solve (67),
i.e., to simulate the di�erential equation that governs the m-order moment, µ(m+1)(t) has to be expressed as
some function of µ(i)(t), 1 ≤ i ≤ m.

Typically, moment-closure methods rely on assumptions about the underlying probability distribution of

the state. Methods tailored to SHS are described in [20, 21] and the references therein. For the reward models

introduced in Section 3.2, moment-closure methods are unnecessary�as demonstrated in the case studies,

this class of reward models is still very powerful and can be applied to a variety of system performability

modeling problems. A detailed discussion of moment-closure methods (as they apply to reward models with

continuous-state-dependent transition rates and/or general polynomial vector �elds governing the continuous

states) is beyond the scope of this work and part of ongoing research.
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6. Concluding Remarks

This work presented a uni�ed framework to analyze Markov reward models based on the theory of SHS.

The moments of the accumulated reward are obtained by the solution of ODEs that govern the conditional

moments of the accumulated reward. The framework provides a uni�ed solution approach to rate, �rst-

order, and second-order reward models with impulses and/or losses. Additionally, it is computationally

inexpensive (by orders of magnitude in some cases) compared to Monte Carlo simulations. Future work

includes analyzing reward models governed by nonlinear SDEs, with transition rates that are a function of

time and/or the accumulated reward (a primer to this problem was given in Section 5).

AppendixA. Rigorous De�nition of SHS

In Section 3.1, we gave an asymptotic and intuitive description of an SHS. Here we give the precise

de�nition of an SHS as a stochastic process, and demonstrate that it does have the same asymptotics as

described in Section 3.1. Let us consider the case where the continuous-state dynamics are deterministic,

i.e., g(q, x, t) ≡ 0 in (9), or, said another way, the continuous-state dynamics are governed by an ODE and

not an SDE:6

d

dt
X(t) = f(Q(t), X(t), t). (A.1)

Denote the �ow-map of (A.1) by the function ξ, and de�ne it as

d

dt
ξtt0(q, x0) = f(q, ξtt0(q, x0), t), ξt0t0 (q, x0) = x0. (A.2)

The function ξtt0(q, x0) is the solution to the �ow (A.1) at time t with q held �xed whenever the �ow was

started with value x0 at time t0.

Recall that we denote the set of transitions by J , and the transition rates and reset maps by λj : Q×Rd×

R+ → R+, φj : Q× Rd × R+ → Q× Rd, j ∈ J . Let us now de�ne the family of independent exponential

random variables with rate one Zkj , where j ∈ J and k ∈ N indexes the jump number, such that Zkj ≥ 0,

and

Pr{Zkj > t} = e−t for t > 0. (A.3)

We then de�ne a family of stopping times recursively; it is at these stopping times that the value of the

discrete state will change. More precisely, let us de�ne T0 = 0, and

T1 = min
t>0
{∃j with

∫ t

0

λj(Q(0), ξsT0
(Q(0), X(0)), s) ds ≥ Z1

j }, (A.4)

6This assumption is just to simplify the discussion. The case where the evolution of the continuous state is governed by an
SDE follows similarly.
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and de�ne J1 to be the j at which the integral crosses at time T1. Notice that J1 is uniquely determined

with probability one, since the probability of two independent exponentials being equal is zero under any

smooth change of time coordinate (this is a standard result in stochastic processes, see, e.g., [4, 34]).

With T1 and J1 in hand, we can now de�ne Q(t), X(t) for t ∈ [0, T1] as follows: we de�ne, for all

t ∈ [0, T1),

Q(t) = Q(0), X(t) = ξtT0
(Q(0), X(0)), (A.5)

and at t = T1, we de�ne

(Q(T1), X(T1)) = φJ1(Q(T−1 ), X(T−1 ), T1). (A.6)

In short, we require that no jump occur until time T1, and until this time we hold the discrete state

constant and �ow the continuous state according to the appropriate ODE; at time T1 we enforce jump j

to occur. Notice that the limit in (A.6) must exist, since Q(t), X(t), as de�ned in (A.5) are continuous

functions on [0, T1)�of course Q(t) is constant and thus continuous, and X(t) is the solution of an ODE

with a Lipschitz vector �eld and is, in fact, continuously di�erentiable.

This de�nes the process only until the time of the �rst jump, but then we can extend the argument

recursively. Say that we know the value of the process (Q(t), X(t)) on [0, Tm], then we de�ne Tm+1, Jm+1

as follows:

Tm+1 = min
t>Tm

{∃j with
∫ t

Tm

λj(Q(Tm), ξsTm
(Q(Tm), X(Tm)), s) ds ≥ Zm+1

j }, (A.7)

and Jm+1 is the index at which this occurs. We then de�ne, for all t ∈ [Tm, Tm+1),

Q(t) = Q(Tm), X(t) = ξtTm
(Q(Tm), X(Tm)), (A.8)

and at t = Tm+1, we de�ne

(Q(Tm+1), X(Tm+1)) = φJm+1(Q(T−m), X(T−m), Tm). (A.9)

Of course, we want to verify that this de�nition is consistent with the asymptotic notions presented in

Section 3.1. So let us consider the event that we have observed exactly m transitions at time t, that the

(m + 1)st transition occurs in (t, t + ∆t], and that it is the jth transition that occurs, i.e., compute the

probability

Pr{(Tm+1 < t+ ∆t) ∧ (Jm+1 = j)|Tm+1 > t}. (A.10)

De�ning ζj(t) =
∫ t

0
λj(Q(Tm), ξsTm

(Q(Tm), X(Tm)), s) ds, we see that
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ζj(t+ ∆t)− ζj(t) =

∫ t+∆t

t

λj(Q(Tm), ξsTm
(Q(Tm), X(Tm)), s) ds

= ∆t · λj(Q(Tm), ξtTm
(Q(Tm), X(Tm)), Tm) + o(∆t). (A.11)

However, if T is an exponential random variable with rate one, then for t < s,

Pr{T < s|T > t} = Pr{T < s− t} = 1− e−(s−t) = (s− t) +O((s− t)2), (A.12)

and therefore

Pr{(Tm+1 < t+ ∆t) ∧ (Jm+1 = j)|Tm+1 > t} = ∆t · λj(Q(Tm), ξtTm
(Q(Tm), X(Tm)), Tm) + o(∆t)

= ∆t · λj(Q(t), X(t), t) + o(∆t), (A.13)

agreeing with the de�nition in Section 3.1.

AppendixB. Justi�cation of Dynkin's Formula: Operator Extended Domain

Let us de�ne N(t) to be the number of jumps the process has taken at time t, i.e.,

N(t) = k ⇐⇒ Tk ≤ t ∧ Tk+1 > t. (B.1)

Following Theorem 26.14 of [8], any function ψ : Q×Rd → R is in the (extended) domain of the operator

L (speci�cally, this means that, as given in (17), Dynkin's formula holds for ψ) if the conditions

Eq0,x0 [N(t)] <∞,∀t > 0, q0 ∈ Q, x0 ∈ Rd, (B.2)

and

Eq0,x0

[∑
Tn<t

|ψ(Q(Tn), X(Tn))− ψ(Q(T−n ), X(T−n ))|

]
<∞,∀t > 0, q0 ∈ Q, x0 ∈ Rd (B.3)

hold. First, notice that as long as we have bounded rates, then (B.2) will hold. More speci�cally, if there

exists λ such that λ(q, x, t) ≤ λ for all q ∈ Q, x ∈ Rd, then E[N(t)] ≤ t/λ (this is a standard result, see,

e.g., Theorem 2.3.2 in [34]). If we further assume that ψ is uniformly bounded, i.e., that there exists ψ such

that ψ(q, x) ≤ ψ for all q ∈ Q, x ∈ Rd, then (B.2) implies (B.3). So, in short, uniform bounds on λ and ψ

guarantee (B.2) and (B.3) and this implies that (17) holds for ψ.

However, we are particularly interested in applying Dynkin's formula for unbounded ψ, e.g., functions

that are polynomial in the argument. Recall from (18) that these are the type of test functions we use. If

we weaken the assumption of bounded ψ to allow for continuous ψ, but then assume that there exists a

function α(t) with α(t) < ∞ for all t > 0, such that |X(t)| < α(t), then again (B.2) implies (B.3). It is
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not hard to show, using standard dynamical systems techniques, that this holds for SHS where the �ows

describing the evolution of the continuous state are governed by (10) and the reset maps are bounded.
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