
1

Optimal Dispatch of Residential Photovoltaic
Inverters Under Forecasting Uncertainties

Emiliano Dall’Anese, Member, IEEE, Sairaj V. Dhople, Member, IEEE, Brian B. Johnson, Member, IEEE,
and Georgios B. Giannakis, Fellow, IEEE

Abstract—Efforts to ensure reliable operation of existing low-
voltage distribution systems with high photovoltaic (PV) gen-
eration have focused on the possibility of inverters providing
ancillary services such as active power curtailment and reactive
power compensation. Major benefits include the possibility of
averting overvoltages, which may otherwise be experienced when
PV generation exceeds the demand. This paper deals with
ancillary service procurement in the face of solar irradiance
forecasting errors. In particular, assuming that the forecasted PV
irradiance can be described by a random variable with known
(empirical) distribution, the proposed uncertainty-aware optimal
inverter dispatch (OID) framework indicates which inverters
should provide ancillary services with a guaranteed a-priori
risk level of PV generation surplus. To capture forecasting
errors, and strike a balance between risk of overvoltages and
(re)active power reserves, the concept of conditional value-at-risk
is advocated. Due to AC power balance equations and binary
inverter selection variables, the formulated OID involves the
solution of a nonconvex mixed-integer nonlinear program. How-
ever, a computationally-affordable convex relaxation is derived
by leveraging sparsity-promoting regularization approaches and
semidefinite relaxation techniques.

Index Terms—Distribution networks, microgrids, photovoltaic
systems, inverter control, optimal power flow, forecasting errors,
conditional value-at-risk, voltage regulation.

I. INTRODUCTION

Deployment of photovoltaic (PV) systems in residential
settings promises a multitude of environmental and economic
advantages, including a sustainable capacity expansion of
distribution systems. However, a unique set of challenges
related to power quality, efficiency, and reliability may emerge,
especially when an increased number of PV systems are de-
ployed in existing distribution networks, and operate according
to current practices [1], [2]. One challenge is associated with
overvoltages when PV generation exceeds demand [3].

To ensure reliable operation of existing distribution feeders
even during peak PV generation hours, recent efforts have
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focused on the possibility of inverters providing ancillary ser-
vices [4]–[6]. For instance, reactive power compensation ap-
proaches have been recognized as a viable option to effect volt-
age regulation at the medium-voltage distribution level [7]–[9].
The amount of reactive power injected or absorbed by inverters
can be computed based on either local droop-type proportional
laws [7], [8] or optimal power flow (OPF) strategies [9].
Either way, voltage regulation with this approach comes at
the expense of low power factors at the substation and high
network currents, with the latter leading to high power losses
in the network [3]. Alternative approaches rely on operating
inverters at unity power factor while curtailing part of the
available active power [3], [10]. Active power curtailment
strategies are particularly effective in the low-voltage portion
of distribution feeders, where the high resistance-to-inductance
ratio of low-voltage overhead lines renders voltage magnitudes
more sensitive to variations in the active power injections.
An optimal inverter dispatch (OID) framework was proposed
in [11] to set both active and reactive power setpoints so
that the network operation is optimized according to chosen
criteria (e.g., minimizing power losses), while ensuring voltage
regulation and adhering to other electrical constraints.

The approaches in [3], [7]–[12] are suitable for real-time
network control, where the setpoints of the inverters scheduled
to provide ancillary services are fine-tuned based on instanta-
neous load measurements and prevailing ambient conditions.
Distinct from [3], [7]–[12], the problem of ancillary service
procurement is considered in this paper. Specifically, ancillary
service procurement refers here to the task of scheduling the
inverters that will be required to provide ancillary services (in
e.g., minute-, hour- or day-ahead markets [5], [6]), as well as
quantifying both reactive reserves of the selected inverters and
the active powers that inverters may be required to curtail. In
this case, system operators cannot solely rely on the expected
irradiance conditions to quantify the amount of ancillary
services to provision, and irradiance forecasting errors must be
taken into account. In fact, an excess of generation (compared
to the expected one) may require additional inverters other than
the ones scheduled (without accounting for forecasting errors)
to provide ancillary services in order to avoid overvoltages.

The OID framework recently proposed in [11] is consid-
erably broadened here by leveraging tools from risk-aware
portfolio optimization to account for solar irradiance forecast-
ing errors. Distinct from the real-time optimization method
in [11], the approach developed in this paper enables effective
provisioning of ancillary services in minute-, hour-, and day-
ahead markets [5], [6], by identifying the subset of critical
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PV inverters that will strongly impact both voltages and
network performance objectives, and quantifying the amount
of ancillary services that should be secured from each of the
selected PV inverters. Specifically, for a given distribution of
forecasting errors, the novel uncertainty-aware OID returns
the amount of active power that can be curtailed in order to
ensure voltage regulation with arbitrarily high probability and
the amount of reactive power necessary to fulfill additional
objectives. The proposed scheme is grounded on an AC
power flow model, and it involves the solution of an OPF
type problem encapsulating well-defined performance criteria
and operational constraints. To capture forecasting errors, the
conditional value-at-risk (CVaR) is advocated [13], [14], and
utilized to trade off risks of overvoltage conditions for active
power curtailment and reactive power compensation capa-
bilities. Further, the resultant uncertainty-aware OID scheme
involves the solution of a convex program and handles arbitrary
probability distributions for the forecasting errors [15], [16].

Related prior works include, e.g., [17], where chance-
constrained optimal power flow (OPF) approaches were con-
sidered for high-voltage transmission systems with uncertain
wind generation; a DC power flow approximation was uti-
lized, along with Gaussian-distributed wind forecasting errors.
Multi-period DC OPF was considered in e.g., [18], [19], where
generation uncertainty was accounted for, while computing the
schedule for controllable devices that minimize the expected
operating costs. Upper bounds on the chance constraints based
on e.g., Markov and Chebyshev inequalities were explored
in [19]. Finally, extensions to the unit commitment problem
can be found in [20]. At the distribution level, a chance-
constrained DC OPF formulation was developed in [21] to
mitigate the effects of Gaussian-distributed forecasting errors
on line currents and voltages. However, the DC power flow
approximation may not be suitable for low-voltage resistive
networks. Additional distributions for the renewable gener-
ation were considered in [22], where a nonconvex chance-
constrained AC OPF was formulated, and solved via off-
the-shelf routines for nonlinear (nonconvex) programs. An
economic dispatch problem in the presence of uncertain wind
generation was proposed in [23]; in lieu of chance constraints,
the cost of the problem was regularized with CVaR-type terms
capturing the risk of generation shortage.

The remainder of the paper is organized as follows. System
modeling is outlined in Section II, along with an overview
of the OID with perfect knowledge of solar irradiance [11].
Basics of CVaR are provided in Section III-A, whereas the
uncertainty-aware-OID is outlined in Section III-B. Case stud-
ies are discussed in IV, while Section V concludes the paper.1

1Notation: Upper-case (lower-case) boldface letters will be used for ma-
trices (column vectors); (·)T for transposition; (·)∗ complex-conjugate; and,
(·)H complex-conjugate transposition; <{·} and ={·} denote the real and
imaginary parts of a complex number, respectively; j :=

√
−1 the imaginary

unit. R+ := {x ∈ R : x ≥ 0}; Tr(·) the matrix trace; rank(·) the matrix
rank; | · | denotes the magnitude of a number or the cardinality of a set;
‖v‖2 :=

√
vHv; and ‖ · ‖F stands for the Frobenius norm. For any x ∈ R,

[x]+ := max{0, x}. I{A} is the indicator function (i.e., I{A} = 1 if event
A is true, and 0 otherwise). Finally, IN denotes the N ×N identity matrix;
and, 0M , 1M the M × 1 vectors with all zeroes and ones, respectively.

II. PRELIMINARIES

A. Network and inverter models

Consider a distribution system comprising N + 1 nodes
collected in the set N := {0, 1, . . . , N} (node 0 denotes the
secondary of the step-down transformer), and lines represented
by the set of edges E := {(m,n)} ⊂ N × N . Subsets
U ,H ⊂ N collect nodes corresponding to utility poles
and households with installed PV inverters, respectively. For
simplicity of exposition, a balanced system is considered; how-
ever, the framework proposed subsequently can be extended to
unbalanced multi-phase systems following the method in [24].

Let Vn ∈ C and In ∈ C denote the phasors for the line-
to-ground voltage and the current injected at node n ∈ N ,
respectively, and define i := [I1, . . . , IN ]T ∈ CN and v :=
[V1, . . . , VN ]T ∈ CN . Using Ohm’s and Kirchhoff’s circuit
laws, the linear relationship i = Yv can be established, where
the system admittance matrix Y ∈ CN+1×N+1 is formed
based on the system topology and the π-equivalent circuits
of the lines (m,n) ∈ E ; see e.g., [11], [24], [25]. A constant
PQ model [26] is adopted for the load, with P`,h and Q`,h
denoting the active and reactive demands at node h ∈ H,
respectively (clearly, P`,h = Q`,h = 0 for all h ∈ U).

For given solar irradiation conditions, let P av
h denote the

available active power from the PV array at node h ∈ H.
Following business-as-usual practices [2], grid-tied inverters
operate at the unity-power-factor setpoint (P av

h , 0). To address
emerging overvoltage and power quality concerns [1], inverters
may be called upon to provide ancillary services [4], [5].
These include e.g., Volt/VAR support [7]–[9] and active power
curtailment [3], with the allowed inverter operating regime
on the complex-power plane illustrated in Fig. 1(a) and 1(b),
respectively. The OID framework in [11] offers increased flex-
ibility over Volt/VAR support and active power curtailment, by
invoking a joint control of real and reactive powers produced
by PV inverters. In particular, the allowed operating regime
for the PV inverter at household h is illustrated in Fig. 1(d)
and described by

FOID
h (P av

h ) :=

Pc,h, Qc,h :
0 ≤ Pc,h ≤ P av

h

Q2
c,h ≤ S2

h − (P av
h − Pc,h)2

|Qc,h| ≤ tan θ(P av
h − Pc,h)


where Pc,h is the active power curtailed, Qc,h is the reactive
power injected (Qc,h > 0) or absorbed (Qc,h < 0), and
Sh is the apparent power rating. In the absence of minimum
power factor constraints (i.e., θ = π/2), the operating region
corresponds to the one in Fig. 1(c).

B. Optimal inverter dispatch with known available powers

An overview of the OID with perfect knowledge of
{P av

h }h∈H is provided next, to lay the foundation for the
uncertainty-aware framework outlined in Section III.

For given available powers {P av
h }h∈H, the objective of

the OID is to identify the critical inverters that should be
dispatched in order to ensure electrical network constraints,
and compute their optimal steady-state active/reactive power
setpoints. To this end, let zh be a binary optimization variable
indicating whether PV inverter h provides ancillary services
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Fig. 1. Feasible operating regions for the h-th inverter with apparent power
rating Sh under a) reactive power control, b) active power curtailment, c) OID
with joint control of real and reactive power, and d) OID with a lower-bound
on power factor [11].

(zh = 1) or not (zh = 0), and let pc ∈ R|H|+ , qc ∈ R|H|
be vectors collecting the active powers curtailed and the
reactive powers injected/absorbed by the inverters. Further,
let C(v,pc) be a given cost function capturing network- and
customer-oriented objectives [11]; for instance, C(v,pc) may
account for active power losses in the network and possible
costs associated with active power set points [5]. With these
definitions, a rendition of the OID task is formulated as:

min
v,i,pc,qc,{zh}

C(v,pc) + cz
∑
h∈H

zh (1a)

subject to i = Yv, {zh} ∈ {0, 1}|H| , and

VhI
∗
h = (P av

h − Pc,h − P`,h) + j(Qc,h −Q`,h) (1b)
VnI

∗
n = 0 ∀n ∈ U (1c)

V min ≤ |Vn| ≤ V max ∀n ∈ N (1d)

(Pc,h, Qc,h) ∈
{
{(0, 0)}, if zh = 0
FOID
h , if zh = 1

∀h ∈ H (1e)

where the balance constraint (1b) is enforced at each node
h ∈ H; (1e) indicates which inverters have to be dispatched
(i.e., (Pc,h, Qc,h) ∈ FOID

h ), or, operate in the business-as-
usual mode (i.e., (Pc,h, Qc,h) = (0, 0)); and, the constraint on
V0 is left implicit. Finally, cz ∈ R+ is a weighting coefficient,
used to trade off achievable cost C(v,pc) for the number
of controlled inverters. When cz represents a fixed reward
for customers providing ancillary services [5] and C(v,pc)
models costs associated with active power losses and active
power set points, OID (1) returns the inverter setpoints that
minimize the economic cost incurred by the feeder operation.

Unfortunately, problem (1) is nonconvex and it contains
binary variables; thus, it is challenging to solve optimally and
efficiently, even by utilizing off-the-shelf solvers for mixed-
integer nonlinear programs. Nevertheless, a computationally-
affordable convex reformulation was introduced in [11],
by leveraging contemporary sparsity-promoting regulariza-
tion [27] and semidefinite relaxation (SDR) techniques [24],
[25] as summarized next.

To address the non-convexity of constraints (1b)–(1d), con-
sider expressing powers and voltage magnitudes as linear
functions of the outer-product complex Hermitian matrix
V := vvH, and to reformulate the OID problem with cost
and constraints that are linear functions of V. Specifically,
define the matrix Yn := eneT

nY per node n, where {en}n∈N
denotes the canonical basis of R|N |. Further, based on Yn,

define also the Hermitian matrices An := 1
2 (Yn+YH

n), Bn :=
j
2 (Yn − YH

n), and Mn := eneT
n. Then, the node balance

constraints for active and reactive powers can be equivalently
expressed as Tr(AhV) = P av

h − Pc,h − P`,h and Tr(BhV) =
Qc,h − Q`,h, respectively. Similarly, constraint (1d) can be
equivalently expressed as V 2

min ≤ Tr(MnV) ≤ V 2
max. The

technical constraints V � 0 and rank(V) = 1 need to be
added, to ensure recoverability of the voltage vector v [24],
[25]. The only source of non-nonconvexity is now constraint
rank(V) = 1; however in the spirit of SDR, this constraint can
be dropped. If the optimal solution of the relaxed problem has
rank 1, then the resultant power flows are globally optimal for
given inverter setpoints.

As for the binary variables {zh}, notice first that if PV
inverter h is not selected for ancillary services, one has that
Pc,h = Qc,h = 0 [cf. (1e)]. Thus, assuming that only a subset
of PV inverters may need to be controlled in order to ensure
electrical network constraints and minimize (1a), one has that
the 2|H|×1 real-valued vector [pT

c ,q
T
c ]

T is group sparse [27];
that is, either the 2 × 1 sub-vectors [Pc,h, Qc,h]T equal to 0,
or not. In lieu of binary variables, this group-sparsity attribute
enables PV inverter selection by regularizing the cost in (1)
with the following group-sparsity-promoting function:

G(pc,qc) := cz
∑
h∈H

‖[Pc,h, Qc,h]‖2. (2)

Leveraging these tools, a relaxation of the OID problem is
obtained as:

min
V,pc,qc

C(V,pc) +G(pc,qc) (3a)

s. to V � 0, and

Tr(AhV) = −P`,h + P av
h − Pc,h ∀h ∈ H (3b)

Tr(BhV) = −Q`,h +Qc,h ∀h ∈ H (3c)
Tr(AnV) = 0, Tr(BnV) = 0 ∀n ∈ U (3d)

V 2
min ≤ Tr(MnV) ≤ V 2

max ∀n ∈ N (3e)

(Pc,h, Qc,h) ∈ FOID
h (P av

h ) ∀h ∈ H. (3f)

Problem (3) is convex, and can be readily re-formulated in a
standard semidefinite programming (SDP) form by resorting to
the epigraph forms of G(pc,qc) and C(V,pc) [28], as well as
the linear matrix inequality form of Q2

c,h ≤ S2
h−(P av

h −Pc,h)2

obtainable by using the Shur complement.
When the distribution system is balanced and radial, suf-

ficient conditions for obtaining a rank-1 solution in SDR-
based OPF-type reformulations are available in [29], [30],
and they can be conveniently tailored to (3); for example,
one requirement is that the cost (3a) is increasing in the
injected active powers. What is more, constraint V � 0 can
be equivalently re-written as V(i,j) � 0,∀ (i, j) ∈ E , with
V(i,j) denoting the 2 × 2 sub-matrix of V corresponding to
nodes i and j. Since |Vn| > 0 for all nodes, one has that each
constraint V(i,j) � 0 can be further re-expressed as (Vij is
the (i, j)-th entry of V)

Vii > 0, Vjj > 0, Vij = V∗ji, and |Vij |2 −ViiVjj ≤ 0,

which is a second-order cone constraint. Thus, for radial and
balanced topologies, (3) can be transformed into a second-
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order cone program, with due computational advantages.2 Fi-
nally, extensions of (3) to multi-phase unbalanced distribution
systems can be derived by following the method in [24].

Remark (ZIP load model). A constant power load model is
utilized in the OID (1). However, the OID formulation can
be broadened to account for constant-impedance, constant-
current, and constant-power load components (i.e., the so-
called ZIP model [33]) by following the method in [34].
For constant impedance loads, the demands are proportional
to the voltage magnitude squared; thus, they can be easily
incorporated in (3). On the other hand, since constant current
loads are functions of the voltage magnitudes, appropriate
reformulations of (3) are required. In particular, [34] suggests
to replace matrix V with Ṽ := ṽṽH, where the voltage-
related vector ṽ is defined as ṽ := [1,vT]T (clearly, matrices
An, Bn, and Mn are re-defined accordingly). In this case, it
may not be possible to find a rank-1 matrix Ṽ, although the
obtained solution yields a reasonably good approximation of
the constant current loads; for more details, see the discussion
provided in [34].

III. INVERTER DISPATCH UNDER FORECASTING ERRORS

For given available powers {P av
h }h∈H, the OID task (3)

identifies the inverters that must provide ancillary services in
order to avoid overvoltage conditions [cf. (3e)], and computes
the steady-state setpoints that minimize the selected opera-
tional and economic objectives [cf. (3a)]. This approach is
suitable for real-time network operation, based on instanta-
neous measurements of loads and available powers. On the
other hand, solar irradiance forecasting errors must be taken
into account when OID is utilized for ancillary-services pro-
curement, in either day-ahead or hour-ahead ancillary service
markets [5], [6]. In this case, system operators cannot rely on
the expected value of the active power available from the PV
array to quantify the amount of ancillary services to provision.
In fact, an excess of generation (compared to the expected one)
may require additional inverters other than the ones scheduled
without accounting for forecasting errors, to deviate from the
business-as-usual setpoint [1], [2].

In the remainder of this section, the so-called CVaR will
be utilized to capture the risk of excess in the active power
generation, and subsequently proactively select the inverters
that will be required to provide ancillary services.

A. Overview of the Conditional Value-at-Risk Approach

An overview of the value-at-risk (VaR) and CVaR —
measures typically considered in risk-aware portfolio opti-
mization [14] — is given in this subsection. These tools
will be utilized to formulate the uncertainty-aware OID in
Section III-B.

2The worst-case complexity of an SDP is on the order O(N4.5
v log(1/ε))

for general-purpose solvers, with Nv denoting the total number of variables
in the problem, and ε > 0 a given solution accuracy [28], [31]. The
worst-case complexity of a second-order cone program is on the order of
O(N3

v log(1/ε)) [31]. Notice however that sparsity in {An,Bn,Mn} and
the chordal structure of the underlying electrical graph can be exploited to
devise customized solvers with reduced computational burden; see e.g., [32].

pdf of probability

VaR CVaR

)avp,d(r

)avp,d(r

β−1

βα βφ

Fig. 2. Illustrative example of the CVaR associated with function r(d,pav).

Suppose pav := [P av
1 , . . . , P

av
|H|]

T is a real-valued random
vector, and let ρ(pav) denote its probability density function.
Assume that ρ(pav) is known (or an empirical estimate is
available [15], [16]), and supported on a closed and bounded
set D ⊂ R|H|. For example, in the context of solar irradiance
forecasting, a viable choice for ρ(pav) would be a truncated
multivariate Gaussian distribution, as described in [15]. See
also e.g., [16] for additional models for ρ(pav) in the context
of solar irradiance forecasting.

Let r : R|H| × D → R be a real-valued function of both
the random vector pav and the vector of presumed powers
d ∈ R|H|. In particular, let r(d,pav) =

∑
h∈H[P av

h − dh]+
capture possible excess of power generation during hours with
high and yet uncertain generation (and, hence, the risk of
overvoltages throughout the distribution feeder).3 Henceforth,
r(d,pav) will be referred to as the surplus generation function.
Notice that r(d,pav) takes positive values only when P av

h > dh
for at least one inverter. For a given vector d, r(d,pav) is a
random variable with cumulative distribution function

Ψr(d, α) := Pr{r(d,pav) ≤ α} =

∫
D
I{r(d,p)≤α}ρ(p)dp. (4)

Notice that Ψr(d, α) is continuous from the right (but not nec-
essarily from the left), nondecreasing in α, and parameterized
by d [14]. Intuitively, Ψr(d, α) quantifies the probability of
the actual available power exceeding the presumed value d.
Based on (4), the VaR and CVaR measures are defined next
(see [13], [14] for additional details).

For a user-prescribed probability level β ∈ (0, 1), the
corresponding VaR, denoted as αβ , associated with the random
surplus generation function r(d,pav), is the left endpoint of
the non-empty interval collecting the values of α for which
Ψr(d, α) = β; i.e.,

αβ(d) := inf {α ∈ R : Ψr(d, α) ≥ β} . (5)

For any d, the CVaR, denoted as φβ(d), is the expected value
of the surplus generation function when considering entries
that are greater than or equal to αβ(d):

φβ(d) :=
1

1− β

∫
D
I{r(d,p)≥αβ(d)}r(d,p)ρ(p)dp. (6)

In other words, in the (1 − β) percent of cases where
r(d,pav) =

∑
h∈H[P av

h − dh]+ ≥ αβ(d), the CVaR φβ(d)
quantifies the expected amount of available active power
further exceeding αβ(d). An illustrative example of the VaR

3Another viable choice is r(d,pav) = [
∑

h∈H(P av
h − dh)]+; that is, the

network-wide surplus of active power. However, r(d,pav) =
∑

h∈H[P av
h −

dh]+ captures local (as opposed to network-wide) random changes in the
active power injections, and it is therefore a more suitable indicator for the
risk of high active power flows in sections of the feeder.
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and CVaR associated with a random function r(d,pav) is
provided in Fig. 2; in this example, the probability density
function of r(d,pav) is a truncated Gaussian. The CVaR is
typically preferred over VaR as a risk measure, since it is
coherent (in fact, VaR violates sub-additivity—one of the
properties of a coherent measure [13]).

Key to utilizing CVaR as a performance objective in risk-
aware optimization tasks is the link established in [14] between
φβ(d) and the following real-valued function:

Rβ(α,d) := α+
1

(1− β)

∫
D

[r(d,p)− α]+ ρ(p)dp. (7)

Specifically, [14, Thm. 1] asserts the following three facts:
(F1) Rβ(α,d) is convex and continuously differentiable in α.
(F2) For any d ∈ R|H|, the CVaR φβ(d) represents the
minimum value of Rβ(α,d); that is,

φβ(d) = min
α∈R

Rβ(α,d). (8)

(F3) The set of minimizers

Aβ(d) := arg min
α∈R

Rβ(α,d) (9)

is closed and bounded, and the VaR αβ(d) is the left endpoint
of this interval.

An advantage of the integral function (7) is that an empirical
estimate of Rβ(α,d) can be obtained via sample averaging.
This is especially useful in cases when the integral in (7)
cannot be evaluated in closed-form. For instance, given S
Monte Carlo samples, {pav[s] ∈ D}Ss=1, of the random vector
pav, a distribution-free approximation of Rβ(α,d) is given by

R̂β(α,d) = α+
1

S(1− β)

S∑
s=1

[r(d,pav[s])− α]+ , (10)

and, for a sufficiently high number of samples S, almost sure
convergence of R̂β(α,d) to Rβ(α,d) is guaranteed by the
(strong) law of large numbers. Compared to (7), the sample
average R̂β(α,d) is not differentiable due to the projection
operator [·]+. However, this hurdle can be easily overcome by
resorting to the epigraph form of R̂β(α,d) [35].

To consider R̂β(α,d) (or, its epigraph form) in multi-
objective optimization problems, convexity with respect to
(wrt) both α and d is desirable. To this end, the following
claims established in [14, Thm. 2] can be conveniently lever-
aged:
(C1) If function r(d,p) is convex in d, then Rβ(α,d) is
jointly convex in d and α; and φβ(d) is convex in d.
(C2) The following equality holds

min
d∈R|H|

φβ(d) = min
d∈R|H|,α∈R

Rβ(α,d), (11)

and d?, α? are minimizers of Rβ(α,d) if and only if d? is a
minimizer of φβ(d) and α? ∈ Aβ(d?).

Claim (C2) asserts that minimizing the CVaR wrt to the
variables d is equivalent to jointly minimizing Rβ(α,d) (and
thus R̂β(α,d)) over d and α, with the VaR α? coming out as
a byproduct. This feature will be exploited in the risk-aware
OID framework outlined next, where d represents the vector
of presumed available powers associated with a given CVaR.

B. Risk-aware inverter dispatch
For r(d,pav) =

∑
h∈H[P av

h − dh]+, function Rβ(α,d) is
jointly convex in d and α by virtue of (C1). Further, given S
independent samples {pav[s] ∈ D}Ss=1, an approximation of
Rβ(α,d) is given by [cf. (10)]

R̂β(α,d) = α+
1

S(1− β)

S∑
s=1

[∑
h∈H

[P av
h [s]− dh]+ − α

]
+

.

(12)

Thus, given β and the Monte Carlo samples {pav[s] ∈
D}Ss=1, the objective of the risk-aware OID problem is to
jointly minimize the OID objective (3a) under the presumed
available power levels d, as well as the risk of additional
available power surplus, subject to the AC power flow and
OID-related inverter constraints; that is,

min
V,pc,qc,d,α

C(V,pc,d) +G(pc,qc) + cRR̂β(α,d) (13a)

s. to V � 0, and

Tr(AhV) = −P`,h + dh − Pc,h ∀h ∈ H (13b)
Tr(BhV) = −Q`,h +Qc,h ∀h ∈ H (13c)
Tr(AnV) = 0, Tr(BnV) = 0 ∀n ∈ U (13d)

V 2
min ≤ Tr(MnV) ≤ V 2

max ∀n ∈ N (13e)

(Pc,h, Qc,h) ∈ FOID
h (dh) ∀h ∈ H (13f)

d ∈ D (13g)

where cR ∈ R+ is a predetermined parameter, used to trade
off achievable CVaR values for OID objectives at the β-risk
level. Problem (13) is convex, and can be re-stated in either
standard SDP form by using the epigraph form of (13a) [28],
or, in standard SOCP form for systems that are radial and
balanced.

To appreciate the usefulness of the CVaR risk measure,
suppose that for given β, it turns out that at least H < |H|
inverters are required to curtail at most {P̄c,h} W, in order to
ensure voltage regulation in the β percent of the cases; that
is, whenever

∑
h∈H[P av

h − dh]+ ≤ αβ(d). Then, minimizing
the CVaR φβ(d) is equivalent to minimizing the additional
amount of active powers that inverters may be required to
curtail in case of unexpected over-generation (i.e., when∑
h∈H[P av

h − dh]+ ≥ αβ(d)), or, minimizing the number
of additional inverters that may be called upon to provide
ancillary services. Elaborating further on the impacts of uncer-
tainties on the system operational costs, suppose that function
C(V,pc,d) is set to C(V,pc,d) = cL(1T

|H|(d−pc)+P0)+

cP1T
|H|pc, where the first term captures the cost incurred by

power losses in the network, the available powers are d, and
the second term models the cost of active power that can be
curtailed; see e.g., [5]. Further, recall that G(pc,qc) accounts
for possible fixed rewards for customers when their inverters
are called upon to provide ancillary reserves. If cR quantifies
the economic loss incurred by overvoltages, then (13a) strikes
a balance between system operational costs when operated
at a risk level β, and the economic loss that the system may
incur in case of unexpected generation surplus. Section IV will
elaborate further on how to trade off CVaR for the amount of
ancillary services to be provisioned.



6

To re-state (13) in a standard SDP form (similar steps
can be followed for the SOCP case), assume for simplicity
that C(V,pc,d) is linear in its arguments. Consider then
introducing the non-negative auxiliary vector variable z :=
[z1, . . . , z|H|]

T, replace G(pc,qc) with cz1T
|H|z in (13a), and

add constraints ‖[Pc,h, Qc,h]‖2 ≤ zh, for all h ∈ H. Then, by
introducing auxiliary variables y ∈ RS and {us ∈ R|H|}Ss=1

to upper bound the projection terms [14], and by using the
Schur complement to convert quadratic and conic constraints
into linear inequality constraints [28], (13) can be re-stated in
the following standard SDP form:

min
V,pc,qc,d
α,y�0,us�0

z�0

C(V,pc,d) + cz1
T
|H|z + cRα+

cR
S(1− β)

1T
Sy

(14a)
s. to V � 0, (13b)− (13e), and zh 0 Pc,h

0 zh Qc,h
Pc,h Qc,h zh

 � 0 ∀h ∈ H (14b)

 −S2
h Qc,h dh − Pc,h

Qc,h −1 0
dh − Pc,h 0 −1

 � 0 ∀h ∈ H (14c)

0 � pc � d (14d)
qc � tan θ(d− pc) (14e)
− qc � tan θ(d− pc) (14f)

1T
|H|us ≤ α+ ys, ∀ s = 1, . . . , S (14g)

pav[s]− d � us, ∀ s = 1, . . . , S (14h)
d ∈ D. (14i)

Remark (load uncertainty). Although this section focused on
solar irradiance forecasting errors, uncertainty in active and
reactive household demands can also be accounted for in the
risk-aware OID framework. For example, for the active power
demand, function r(d,pav) =

∑
h∈H[P av

h −P`,h−(dh−`h)]+
can be utilized to capture surplus of net generated active
power throughout the feeder, where both P av

h and P`,h are
now random variables, and `h is the counterpart of dh for the
demanded active power. Then, the risk-aware OID problem
is obtained by replacing P`,h with `h in (13b). A similar
procedure can be followed for uncertain reactive loads.
Remark (optimal solution). On par with [29], [30], for distri-
bution feeders that are radial and balanced, the semidefinite re-
laxation (13) is exact when the following sufficient conditions
are satisfied: s1) the cost function is increasing with respect to
the net active power injection; s2) the voltage angle difference
θik between nodes i and k is such that − tan−1(bik/gik) ≤
θik ≤ tan−1(bik/gik), with yik = gik + jbik the admittance
of the line (i, j) ∈ E ; and, s3) inverters are able to absorb
a “sufficient” amount of reactive power, with specific bounds
quantified in [30, Thm. 1]. Condition s2) is typically satisfied
in practice, since voltage angle differences are small; condition
s3) can be checked by inspecting FOID; and, s1) can be
satisfied by appropriate tuning of the problem parameters.
For unbalanced feeders as well as meshed networks, efforts
for finding sufficient conditions that ensure exactness of the
semidefinite relaxation are still undergoing. However, the
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Fig. 3. Low-voltage residential network adopted for the case studies.

virtues of semidefinite relaxation have been demonstrated in
e.g., [24] and [36].
Remark (uncertainty in the temperature) The formulation (13)
accounts for uncertainty in the available active power through
function Rβ(α,d). Accordingly, it would be straightforward
to translate forecasted irradiance and temperature values into
forecasted power values using standard models for PV mod-
ules and inverters, see, e.g., [37], provided the probability
density function of irradiance and temperature forecasting
errors are available [c.f. (7) and (12)].

IV. CASE STUDIES

To solve the OID problem, the distribution network operator
requires: i) the Monte Carlo samples {pav[s] ∈ D}Ss=1, based
on the distribution of the solar irradiation error [15]; ii) the
network admittance matrix Y; ii) the probability level β; the
ratings {Sh}; and, v) the weighting coefficients cL, cP , cz, cR,
which may be driven by ancillary service market strategies [5],
[6] and/or security-oriented objectives. The optimization pack-
age CVX4 is employed to solve the OID problem in MATLAB.
In all the presented tests, the rank of matrix V was always 1,
implying that the SDR relaxation for the power flow equations
is tight.

The distribution network in Fig. 3 is considered in the test
cases, which is a larger version of the fishbone system utilized
in [3], [11] to assess the impact of high PV generation in
residential setups. The pole-pole distance is set to 30 m, while
the lengths of the drop lines are set to 20 m. The values of
the line impedances are adopted from [3].

The 20 houses shown in Fig. 3 feature fixed roof-top
PV systems, with a DC-AC derating coefficient of 0.77.
The DC ratings of the houses are as follows: 5.52 kW
for houses H1,H3,H6,H7,H8,H9,H11,H14,H16, and H19;
8.00 kW for houses H2,H10,H12,H13,H18,H20; and, 5.70
kW for the remaining houses. The minimum power factor
for the inverters is set to 0.85, and it is assumed that the
PV inverters are oversized by 10% of their AC rating [7].
To account for forecasting errors, the available powers are
modeled as P av

h = P̄ av
h +∆h, with P̄ av

h the (known) forecasted
value and ∆h the (random) forecasting error. The hourly
forecasted values of the available powers {P̄ av

h } are computed
using the System Advisor Model5 of the National Renewable
Energy Laboratory, based on typical meteorological year data
for Minneapolis, MN, during the month of July. Hourly PV

4[Online] http://cvxr.com/cvx/
5[Online] https://sam.nrel.gov/.
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Fig. 4. Dispatched inverters: provisioned active power curtailment for (a)
cR = 0.01 and (b) cR = 10.

generation in the interval T := {6AM, . . . , 8PM} is consid-
ered. A zero-mean truncated Gaussian distribution is adopted
for ∆h, with truncation at the 0.3th and 99.7th percentiles;
see e.g., [15]. Random variables {∆h} are correlated across
houses, and an exponentially decreasing correlation function
E{∆h∆h′} = σhσh′e−d(h,h

′)/τ is used, where σh is the
standard deviation of ∆h, d(h, h′) the distance between houses
h and h′, and τ = 300 [m].

The residential load profile is obtained from the Open
Energy Info database,6 and the “base load” experienced in
downtown Saint Paul, MN, during the month of July is used
for this test case. To generate different load profiles, the base
active power profile is perturbed using a truncated Gaussian
random variable with zero mean and standard deviation 200
W, and a power factor of 0.9 is presumed [3]. Finally, voltages
V min and V max are set to 0.917 pu and 1.042 pu, respectively
in this case study (see e.g., page 11 of the CAN3-C235-83
standard). The voltage at the secondary of the transformer is
set at 1.02 pu, to ensure a minimum voltage magnitude of
0.917 pu when the PV inverters do not generate power.

In the first setup, the standard deviation of the solar
power prediction error σh amounts to 10% of the forecasted
value [15] (that is, σh/P̄ av

h = 0.1); S = 1000; β = 0.95;
cz = 0.9 to capture fixed rewards when inverters are called
upon providing ancillary services; cost C(V,pc,d) is set to

6[Online] http://en.openei.org/datasets/node/961

TABLE I
PROVISIONED ANCILLARY SERVICES FOR DIFFERENT RISK LEVELS

(β = 0.95, cL = 1, cP = 0.5, cz = 0.9)

P tot
c [kWh] Qtot

c [kVAr] Ntot

No risk 27.83 4.65 44
cR = 0.01 38.60 8.45 44
cR = 0.1 40.26 8.53 56
cR = 1 44.05 9.75 59
cR = 10 79.15 14.83 86

TABLE II
PROVISIONED ANCILLARY SERVICES FOR DIFFERENT PROBABILITY

LEVELS β (cL = 1, cP = 1, cz = 0.9, cR = 1)

P tot
c [kWh] Qtot

c [kVAr] Ntot

No risk 27.83 4.65 44
β = 0.85 41.05 9.51 55
β = 0.90 41.35 9.65 57
β = 0.95 44.05 9.75 59
β = 0.99 49.55 10.22 64

C(V,pc,d) = cL(1T
|H|(d−pc−p`) +P0) + cP1T

|H|pc, with
cL = 1 and cP = 0.5. The amount of active power that can
be curtailed by each inverter during the day is illustrated in
Fig. 4, for cR = 0.01 (lower weight given to the CVaR) and
cR = 10 (low CVaR objectives). It can be clearly seen that
the amount of active power provisioned from each inverter
increases with the increasing of cR, thus ensuring an enhanced
system protection against unexpected boosts in the solar
irradiation. Clearly, the enhanced system protection comes
at the expense of a higher reward for customers providing
this ancillary service (modeled by the term cP1T

|H|pc). As
observed also in [11], inverters with higher ratings may be
required to curtail more active power. To facilitate fairness
among customers, the term ‖Πpc‖2 can be included in (13a),
where Π := I|H| − 1

|H|1|H|×11
T
|H|×1. Finally, notice that for

cR = 10, an increased number of inverters are required to
curtail active power.

This trend is confirmed by the results reported in Table I,
where: P tot

c :=
∑
t∈T

∑
h∈H Pc,h(t) denotes the conglom-

erate active power curtailment that is procured during the
day, with Pc,h(t) the amount of power that can be curtailed
from inverter h at time t; Qtot

c :=
∑
t∈T

∑
h∈H |Qc,h(t)| the

overall reactive power procured for reactive support purposes;
and N tot the total number of inverters called upon providing
ancillary services over T (out of 20 × |T | = 360). These
values are compared with the “no risk” setup, where the solar
forecasting errors are neglected, and ancillary services are
provisioned by solving (3) with {P av

h } replaced by {P̄ av
h }.

Clearly, considering only the expected available powers {P̄ av
h }

yields an underestimate of the amount of active and reactive
power reserves that may be needed to ensure voltage regula-
tion. This corroborates the ability of the proposed approach
to trade off risks of overvoltage conditions for the amount of
ancillary services to be secured [5].

Table II quantifies the procured active and reactive reserves
for different values for the probability level β. In this setup, the
other problem parameters are set as cL = 1, cP = 1, cz = 0.9
and cR = 1. With the increasing of β, progressively higher
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TABLE III
PROVISIONED ANCILLARY SERVICES FOR DIFFERENT UNCERTAINTY

LEVELS (cL = 1, cP = 1, cz = 0.9, cR = 1, β = 0.95)

σh/P̄
av
h P tot

c [kWh] Qtot
c [kVAr] Ntot

0 27.83 4.65 44
0.05 42.12 9.19 57
0.10 44.05 9.75 59
0.15 46.25 10.35 63
0.20 51.93 11.64 65

solar irradiation conditions are considered in the risk-aware
OID problem [cf. (5)]; this explains why the amount of
active and reactive powers reserves that are secured by the
OID framework increases. A similar trend can be noticed
in Table III, where values for the standard deviation of the
forecasting errors are tested. Notice that the results for σh = 0
(i.e., perfect knowledge of the solar irradiation conditions)
coincide with the “no risk” setup of Tables I and II. As
expected, the higher is σh, the higher is the number of inverters
that may be required to provide ancillary services.

V. CONCLUDING REMARKS

The present paper dealt with ancillary service provisioning
in distribution systems in the presence of solar irradiance fore-
casting errors. The proposed uncertainty-aware OID identifies
the subset of critical inverters that strongly impact both voltage
profile and network performance objectives, and quantifies the
amount of active and reactive powers to be procured from
each inverter. The CVaR measure was utilized to capture (and
minimize) the risk of overvoltages throughout the feeder. Al-
though the formulated OID task involves the solution of a non-
convex mixed-integer nonlinear program, a convex relaxation
was developed by leveraging sparsity-promoting regularization
approaches and semidefinite relaxation techniques. Using real-
world PV-generation and load-profile data, it is shown how the
proposed framework can trade of the risk of PV generation
surplus for the amount of ancillary services to be provisioned.

APPENDIX

The dependence between active power injections and volt-
age magnitudes in low-voltage distribution systems is briefly
analyzed in the following.

Consider a low-voltage single-phase distribution line, and
let Z := R + jωL be its impedance, where R, L, and ω
denote the per-unit-length line resistance and inductance, and
electrical frequency. Typical values for R and L are on the
order of 10−1 Ω/km and 10−4 H/km, respectively (see e.g.,
the specifications of cables NS 90 3/0 AWG utilized for the
pole-to-pole connections and cables NS 90 1/0 AWG for drop
lines [3]). Let Y := 1/Z =, G := <{Y } = R/|Z|2 and
B := ={Y } = −ωL/|Z|2. Further, let |V1|ejθ1 and |V2|ejθ2
denote the phasors for the voltages at the two end points of
the line. Although a single line is considered for simplicity,
claims naturally extend to low-voltage systems with arbitrary
topologies.

The active- and reactive-power injections at node 1 of the
line are given by

P1 = |V1|2G− |V1||V2|G cos(θ)− |V1||V2|B sin(θ), (15a)

Q1 = −|V1|2B + |V1||V2|B cos(θ)− |V1||V2|G cos(θ), (15b)

where θ := θ1 − θ2. Similarly, the active- and reactive-power
injections at node 2 of the line are given by

P2 = |V2|2G− |V1||V2|G cos(θ) + |V1||V2|B sin(θ), (16a)

Q2 = −|V2|2B + |V1||V2|B cos(θ) + |V1||V2|G cos(θ). (16b)

With regard to (15a)–(16b), define the sensitivity matrix

S(|V1|, |V2|, θ1, θ2) :=


∂P1

∂|V1|
∂P1

∂|V2|
∂P1

∂θ1
∂P1

∂θ2
∂P2

∂|V1|
∂P2

∂|V2|
∂P2

∂θ1
∂P2

∂θ2
∂Q1

∂|V1|
∂Q1

∂|V2|
∂Q1

∂θ1

∂Q1

∂θ2
∂Q2

∂|V1|
∂Q2

∂|V2|
∂Q2

∂θ1

∂Q2

∂θ2

 ,
which relates power variations with perturbations of the volt-
age phasors around a given operational point.

Next, assume small voltage angle variations; that is, θ � 1,
cos(θ) ≈ 1 and sin(θ) ≈ θ. Under these assumptions, we can
relate sensitivities of voltage magnitudes and angles to real
and reactive power injections through (17). Furthermore, since
ωL
R � 1 in low-voltage distribution systems (this condition is

not necessarily true in medium-voltage networks), it follows
that B � 1, and thus the effects of voltage magnitude
and phase variations on the complex powers approximately
decouples as[

∆P1

∆P2

]
≈
[

2G|V1| −G|V2| −G|V1|
−G|V2| −G|V1|+ 2G|V2|

] [
∆|V1|
∆|V2|

]
,[

∆Q1

∆Q2

]
≈
[
−G|V1||V2| G|V1||V2|
G|V1||V2| −G|V1||V2|

] [
∆θ1
∆θ2

]
.

Thus, due to the high resistance-to-inductance ratio in low-
voltage distribution lines, voltage magnitudes are more sen-
sitive to variations in the active power flows. It follows that
curtailing active power during peak generation hours repre-
sents a viable way to avoid overvoltage conditions throughout
the feeder. Furthermore, the higher is the solar irradiation, the
higher is the overall amount of active power that should be
curtailed in order to enforce voltage regulation.
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