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Abstract|
Retiming, introduced by Leiserson and Saxe, is a powerful

transformation of circuits that preserves functionality and
improves performance. The ASTRA algorithm proposed an
alternative view of retiming using the equivalence between
retiming and clock skew optimization, and also presented
a fast algorithm for minimum period (minperiod) retim-
ing. Since minperiod retiming may signi�cantly increase the
number of ip-ops in the circuit, minimum area (minarea)
retiming is an important problem. Minarea retiming is a
much harder problem than minperiod retiming, and previ-
ous techniques where not capable of handling large circuits
in a reasonable time. This work de�nes the relationship be-
tween the Leiserson-Saxe and the ASTRA approaches and
utilizes it for e�cient minarea retiming of large circuits.
The new algorithm, Minaret, uses the same basis as the
Leiserson-Saxe approach. The underlying philosophy of the
ASTRA approach is incorporated to reduce the number of
variables and constraints generated in the problem. This
allows minarea retiming of circuits with over 56,000 gates
in under �fteen minutes.

I. Introduction

Retiming is a procedure that involves the relocation of
ip-ops (FF's) across logic gates to allow the circuit to be
operated under a faster clock. The technique was �rst pro-
posed by Leiserson and Saxe [1], [2], where the algorithmic
basis of retiming circuits with edge-triggered FF's was de-
scribed without speci�cally focusing on implementational
aspects. Retiming to achieve the minimum clock period
is termed minperiod retiming, while retiming to minimize
the number of memory elements for a given target clock pe-
riod is called minarea retiming. Several papers have been
published since then, primarily dealing with algorithmic
issues and extending the Leiserson-Saxe method to han-
dle variations of the original Leiserson-Saxe problem (for
example, retiming level-clocked circuits [3], improving the
delay model [4], and retiming with equivalent initial states
[5] etc.).
It was only recently that practical algorithms for han-

dling large VLSI circuits were introduced [6] [7] [8]. Of
these only [6] targets minarea retiming and was able to
retime a 7882 gate circuit in 38 hours. In this work, our
target is to be able to perform constrained minarea retim-
ing on circuits with tens of thousands of gates in under an
hour. The ASTRA algorithm [7] displayed a di�erent view
of retiming by using an equivalence between clock skew and
retiming. This algorithm was applied to the minperiod re-
timing problem but not to minarea retiming.
For digital design the only interesting objective function
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is that of constrained minimum area retiming [6]. How-
ever, the high computational expense of this optimization
has limited its use. In this work, we approach the prob-
lem of constrained minarea retiming for circuits with edge-
triggered FF's through an amalgamation of the Leiserson-
Saxe approach and the ASTRA approach. By utilizing the
merits of both approaches we develop an e�cient algorithm
for constrained minarea retiming which is also capable of
handling very large circuits. The basic idea of the approach
is to use the ASTRA approach to �nd tight bounds on the
retiming variables. These bounds help us reduce both the
number of variables and the number of constraints in the
problem without any loss in accuracy. By spending a small
amount of additional CPU time on the ASTRA runs, this
method leads to signi�cant reductions in the total execu-
tion time of the minarea retiming problem. The reduction
in the problem size also reduces the memory requirements,
thus enabling retiming of large circuits. Experimental re-
sults are shown on large circuits (up to 56,000 gates), and
it is seen that they can be solved in very reasonable amount
of time (under 15 minutes). As in most of the references
on retiming listed above, this paper assumes the circuit to
be composed of gates with �xed delays.
The paper is organized as follows. In Section II, the out-

lines of the ASTRA and the Leiserson-Saxe approaches are
presented. Next, in Section III, we show the relationship
between these two, and utilize it to e�ciently solve the
minarea retiming problem. Section IV presents retiming
under a more accurate area model. Section V describes
our minarea retiming algorithm. Experimental results are
presented in Section VI, followed by concluding remarks in
Section VII.

II. Background

For completeness, we �rst describe the ASTRA method
and the Leiserson-Saxe approach for minimum area retim-
ing. These approaches will be combined to form \Minaret,"
a practical minimum area retiming algorithm.

A. The relationship between clock skew and retiming

In a sequential VLSI circuit, due to di�erences in in-
terconnect delays on the clock distribution network, clock
signals do not arrive at all of the FF's at the same time.
Thus, there is a skew between the clock arrival times at
di�erent FF's. In a single-phase clocked circuit, in the case
where there is no clock skew, the designer must ensure that
each input-output path of a combinational circuit block has
a delay that is less than the clock period. In the presence
of skew, however, the relation grows more complex as one
must compensate for this e�ect in ensuring that the com-
binational blocks meet the timing requirements.
The basis of the ASTRA approach is the equivalence
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Fig. 1. The advantages of nonzero clock skew.
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Fig. 2. Retiming for clock period optimization.

between clock skew and retiming, as illustrated by the fol-
lowing example. Let us �rst consider the use of intentional
clock skews for improving the circuit performance. In Fig-
ure 1, assume the delays of the inverters to be 1.0 unit
each. The combinational blocks CC1 and CC2 have delays
of 3.0 and 1.0 units, respectively, and therefore, the fastest
allowable clock has a period of 3.0 units. However, if a
skew of +1.0 unit is applied to the clock line to FF B, the
circuit can run with a clock period of 2.0 units. This ap-
proach was formalized in the work by Fishburn [9], where
the clock skew optimization problem was formulated as a
linear program (LP) that may be solved to �nd the optimal
clock period.
However, it is easy to see that for the given circuit, the

period can also be minimized to 2.0 units by retiming, i.e.,
by relocating the FF B to the left across the inverter I3.
This results in the combinational circuit blocks CC1 and
CC2 having delays of 2.0 units each as seen in Figure 2.
This leads us to conclude that in each case, one unit of

time is borrowed by CC1 from CC2; the manner in which
cycle-borrowing occurs may either be by the vehicle of clock
skew or via retiming.

A.1 Outline of the ASTRA algorithm

The details of the ASTRA algorithm are provided in [7];
a brief description is presented here for completeness. The
relationship between skew and retiming motivates the fol-
lowing two-phase solution to the retiming problem:

Phase A : The clock skew optimization problem is
solved to �nd the optimal value of the skew at each FF,
with the objective of minimizing the clock period, or
to satisfy a given (feasible) clock period. This involves
the (possibly repeated) application of the Bellman-
Ford algorithm [10] on a constraint graph.

Phase B : The skew solution is translated to retiming
and some FF's are relocated across gates in an attempt
to set the values of all skews to be as close to zero as
possible. We attempt to move each positive skew FF
opposite to the direction of signal propagation, and
each negative skew FF in the direction of signal prop-
agation to reduce the magnitude of its skew. A formal
rationalization is provided in [7], but the example in
Figure 1 should su�ce to explain the intuition.

After Phase B, any skews that could not be set exactly to
zero are forced to zero. This could cause the clock period

to increase from Phase A; however, it is shown that this
increase will be no greater than the maximum gate delay.
Note, however, that this is not necessarily suboptimal since
the minimum clock period using skews may not be achiev-
able using retiming, since retiming allows cycle-borrowing
only in discrete amounts (corresponding to gate delays),
while skew is a continuous cycle-borrowing optimization
[9].

B. The Leiserson-Saxe algorithm for minimum area re-
timing

B.1 Notation

A sequential circuit can be represented by a directed
graph G(V;E), where each vertex v corresponds to a com-
binational gate, and a directed edge euv represents a con-
nection from the output of gate u to the input of gate v,
through zero or more registers. Each edge has a weight
w(euv), which is the number of registers between the out-
put of gate u and the input of gate v. Each vertex has
a constant delay d(v). A special vertex, the host vertex,
is introduced in the graph, with edges from the host ver-
tex to all primary inputs of the circuit, and edges from all
primary outputs to the host vertex.
A retiming is a labeling of the vertices r : V ! Z, where

Z is the set of integers. The weight of an edge euv after
retiming, denoted by wr(euv) is given by

wr(euv) = r(v) + w(euv)� r(u) (1)

The retiming label r(v) for a vertex v represents the num-
ber of registers moved from its output towards its inputs.
One may de�ne the weight of any path p originating at ver-
tex u and terminating at vertex v (represented as u; v),
w(p), as the sum of the weights on the edges on p, and its
delay d(p) as the sum of the delays of the vertices on p. A
path with w(p) = 0 corresponds to a purely combinational
path with no registers on it; therefore, the clock period can
be calculated as P = max8 pjw(p)=0 fd(p)g.
Another important concept used in the Leiserson-Saxe

approach is that of the W and D matrices that are de�ned
as follows:

W (u; v) = min
8 p:u;v

fw(p)g (2)

D(u; v) = max
8 p:u;v and w(p)=W (u;v)

fd(p)g (3)

The matrices are de�ned for all pairs of vertices (u; v) such
that there exists a path p : u ; v that does not include
the host vertex. W (u; v) denotes the minimum latency, in
clock cycles, for the data owing from u to v and D(u; v)
gives the maximum delay from u to v for the minimum
latency.

B.2 The minarea retiming algorithm

Consider the circuits in Figure 3(a) and 3(b). Assuming
unit gate delays, the minimum achievable value of the clock
period is 4.0 units; each of these two circuits achieves this
period, but the latter utilizes more FF's. Thus it is possible
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Fig. 3. Possible FF locations after retiming.

to reduce the number of FF's in a circuit by relocating
them. The minarea retiming problem for a target period
P can be formulated as the following LP:

min
P

v2V [(jFI(v)j � jFO(v)j) � r(v)] (4)

subject to r(u)� r(v) � w(euv) 8euv 2 E

r(u)� r(v) �W (u; v)� 1 8D(u; v) > P

where FI(v) and FO(v) represent the fanin and fanout set
of the gate v respectively.
The signi�cance of the objective function and the con-

straints is as follows (the reader is referred to [2] for details).
� The objective function represents the number of reg-
isters added to the retimed circuit in relation to the
original circuit.

� The �rst constraint ensures that the weight euv of each
edge (i.e., the number of registers between the output
of gate u and the input of gate v) after retiming is non-
negative. We will refer to these constraints as circuit
constraints.

� The second constraint ensures that after retiming, each
path whose delay is larger than the clock period has
at least one register on it. These constraints, being
dependent on the clock period, are often referred to as
period constraints.

It is pointed out in [2] that the dual of this problem is
an instance of a minimum cost network ow problem, and
hence can be solved e�ciently by solving the dual.

III. Reducing the problem size

A. Background

In practical circuits, it is found that the number of pe-
riod constraints is phenomenally large. For a circuit with
n gates the number of period constraint is O(n2). How-
ever, it is also true that a large fraction of these constraints
are redundant as they are implied by some of the other
constraints. Any algorithm with pretensions to practical-
ity must use techniques for pruning these redundant con-

straints. Note that the exactness of the solution is not sac-
ri�ced in doing so, since none of the essential constraints
are removed. Our approach is to �nd tight bounds on the
variable values, and to use these bounds to avoid generat-
ing the redundant constraints. By appropriate application
of these bounds, we expect not only to prune the constraint
set but also to reduce the number of variables. In this way,
we simplify the problem and enable the LP to be solved
more e�ciently. We are also able to generate this set of
reduced constraints e�ciently.

B. The concept of restricted mobility

A modi�cation of the procedure used in ASTRA can be
used to identify how far FF's may possibly be moved. For
the circuit in Figure 3, to achieve the minimum clock period
of 4.0 units, one must move one copy of FF B to the output
of gate G4. The possible locations for FF's along the other
path to FF C are at the input to gate G8, or at the output
of gate G8, or the inputs of gates (G9,G10) or the outputs
of gates (G9,G10); no other locations are permissible
Therefore, it can be seen that the FF's cannot be sent to

just any location in the circuit; rather, there is a restricted
range of locations into which each FF may be moved, and
the mobility of each FF is restricted. This restricted mo-
bility may be used to reduce the search space, and hence
the number of constraints.
This range of motion of FF's can be derived from the

skews calculated by the Bellman-Ford procedure (which
calculates the minimum allowable skew value at each FF)
[7], and the corresponding slacks in the constraint graph.
The idea of this work is that the skew values can be used

to reduce the search space for the minarea retiming algo-
rithm using restricted mobility. This is seen to translate to
a smaller LP.
We will now show the relation between the Leiserson-

Saxe approach and the ASTRA approach, and how a mod-
i�ed version of ASTRA can be used to derive bounds on
the r variables in the Leiserson-Saxe method. Next, we
show how these bounds can be used to prune the number
of constraints in minarea Leiserson-Saxe retiming. Finally,
we present an example to illustrate the method.

C. Deriving bounds for the r variables

The concept of restricted mobility is related to the \near-
est" and \farthest" location that any FF can occupy under
the target clock period. This is relatively easy to map on to
the clock skew optimization problem. To understand this,
we provide a brief review of the clock skew optimization
problem. Given a pair of FF's, i and j, if the maximum
delay of any purely combinational path connecting them is
Dij , then the following long-path constraint must hold:

xi +Dij � xj + P (5)

where xi and xj are the clock skews at FF's i and j, re-
spectively, and P is the target clock period. For a speci�ed
clock period, this may be written as a di�erence constraint
[10] as follows:

xj � xi � P �Dij (6)
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Note that the right hand side of the above equation is a
constant since the clock period is a speci�ed value. For a
given circuit, one may build a set of di�erence constraints
with one such constraint for every pair of FF's that have
a purely combinational path connecting them, and these
di�erence constraints may be represented by a constraint
graph. The Bellman-Ford algorithm may be applied to
this graph to �nd the longest path in the graph. The �-
nal value associated with each vertex provides the required
skew at that vertex and gives one possible set of skews that
can achieve the clock period P . Note that this is not the
only allowable set of skews, since slacks [7] in the arcs of
the constraint graph can lead to other allowable solutions.
Therefore, the �rst order of business is to determine bounds
on the allowable skews at each FF.
ASTRA initializes all skews to 0 to achieve the minimum

range of skews. To obtain the bounding skews we need to
initialize all skews to �1. Now when the the Bellman-Ford
algorithm [10] is applied to the constraint graph for a spec-
i�ed clock period, the as-late-as-possible1 (ALAP) skews
are calculated for the network. The as-soon-as-possible
(ASAP) skews can be obtained by running the Bellman-
Ford algorithm on the transpose of this constraint graph
[10] (i.e., a graph with the same vertex set as the original
graph, but with the edge directions reversed).
These ASAP/ALAP skews can be translated to

ASAP/ALAP locations for FF's. These locations can be
used to obtain bounds on the retiming variables of the
Leiserson-Saxe approach, r, associated with the gates in
the circuit as illustrated by the following example. Here
we use the terms \ASAP locations" to refer to the case
when all FF's are as close to the primary input as possible.
Similarly the set of ALAP locations has all FF's as close to
the primary output as possible. For ASAP locations any
available slacks are used to avoid moving a FF in the direc-
tion of signal ow, while for ALAP locations they are used
to avoid FF motion against the direction of signal ow.

Example: For the circuit in Figure 3, the locations for
the FF's in the retimed circuit corresponding to the ASAP
and ALAP skew solutions are shown in Figure 3 (a) and
(b), respectively. This implies that during retiming, no FF
will move across gates G1, G2, G5, G6, G7, G11 and G12;
one FF each will move from the input to the output of
gates G3 and G4, and either 0 or 1 FF will move from the
input to the output of gates G8, G9 and G10. Referring
to Section II-B.1 for the de�nition of the r variables, this
implies that one may set the following bounds on the r
variables.
(1) r(u) = 0 for u 2 fG1; G2; G5; G6; G7; G11; G12g
(2) r(u) = �1 for u 2 fG3; G4g, and
(3) �1 � r(u) � 0 for u 2 fG8; G9; G10g. 2

As explained in [7], FF's that have positive skews are
moved in the direction opposite to the signal ow direction,
and FF's with negative skews are relocated in the direction

1The calculation of ASAP and ALAP times is a technique that is
routinely used in scheduling in high-level synthesis; see, for example,
[11] .

of signal ow (see Section II-A.1 for a brief explanation).
The procedure for �nding the ASAP and ALAP locations
proceeds along the same lines as in [7], with a few variations
described below. During this procedure, we also generate
the bounds on the r variables.
When we consider the ASAP locations for the retimed

FF's, the aim is to push the FF's as far as possible in a
direction opposite to the direction of signal propagation.
Therefore, each positive skew FF is moved as far as pos-
sible in the direction opposite to the signal ow, and each
negative skew FF is moved as little as possible in the di-
rection of signal ow. Therefore,

(1) for an FF with positive skew s that is being moved
across a single-fanout gate p against the direction of
signal propagation, the skew value after the relocation
at input i of p is set to s�delay(p). If this value is non-
positive, then the ASAP location has been found. For
gates with multiple fanouts, s = minall outputs(si),

where si is the skew of the FF at the ith output, as
shown in Figure 4(a).

(2) for an FF with negative skew s that is being moved
across a single-fanin gate p in the direction of signal
propagation, the skew value after the relocation at out-
put i of p is set to s+delay(p)+slack(i), where slack(i)
is the slack associated with the output i. This slack is
de�ned as the amount by which the delay at output i
may be increased before it becomes the critical output
of p; by de�nition, the critical output has a slack of 0.
If the new skew is nonnegative, then the ASAP loca-
tion has been found. For gates with multiple fanins,
s = maxall inputs(si), where si is the e�ective skew

of the FF at the ith output, as shown in Figure 4(b).

Skew max(s1,s2) + d(p) + slack2

Skew max(s1,s2)+ d(p) + slack1

Skew s1 < 0

Skew s2 < 0

p

Skew s2 > 0

Skew min(s1,s2)-delay(p)
Skew s1 > 0

(a) (b)

Fig. 4. E�ective skews at FF's after ASAP retiming across a gate.

The ALAP locations can be found analogously with pos-
itive skew FF's being moved as little as possible in the di-
rection opposite to the signal ow direction, and negative
skew FF's being moved as much as possible in the signal
ow direction.
While moving the FF's to ASAP and ALAP locations,

subject to the speci�ed clock period P , we count the num-
ber of FF's that traverse each gate; these lead us to upper
and lower bounds, respectively, on the r variables for each
gate. A FF moving from the inputs to the output of a gate
decrements the count by one, while one moving from the
output to the inputs increases it by one.
For the ASAP case, we move FF's as far as possible

against the direction of signal propagation. In other words,
we relocate the largest number of FF's possible from the
output to the inputs of a gate. By the de�nition of the r
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variables, this gives us an upper bound on r for the gates.
Similarly, the ALAP times are used to relocate the

largest number of FF's that can move from the inputs of a
gate towards its output, and this gives us a lower bound on
the r values for the gates in the circuit. Therefore, this pro-
cedure provides upper and lower bounds on the r variable
corresponding to each gate y of the form.

Ly � r(y) � Uy (7)

We will refer to Ly as the lower bound for gate y and to Uy
as the upper bound of gate y. If Uy = Ly = ky we say that
gate y is �xed or immobile since r(y) = ky is not really a
variable any more. On the other hand if Uy 6= Ly we say
that gate y is exible or mobile. Thus we can reduce the
variable set V of the Leiserson-Saxe model to V 0 � V the
variable set of Minaret where

V 0 = fv 2 V jUv 6= Lvg (8)

D. Eliminating unnecessary constraints

In this section, we illustrate how the addition of bounds
(derived previously) to the LP may be used to reduce the
constraint set by removing redundant constraints. Let a
constraint (i; j) in the constraint set C of the LP in Equa-
tion (4) for Leiserson-Saxe model be

ri � rj � cij
where cij = w(eij) 8eij 2 E

cij = W (i; j)� 1 8 D(i; j) > P
(9)

It can be seen from the bounds on r(i) and r(j) in Equa-
tion (7) that r(i)�r(j) � Ui�Lj . Therefore, if Ui�Lj � cij
then r(i)�r(j) � cij is also true, and the constraint ((i; j))
can be dropped. Thus the Leiserson-Saxe constraint set C
can be reduced to the Minaret constraint set C 0 � C where

C 0 = f(i; j) 2 Cj Ui � Lj > cijg (10)

Notice that constraints associated with �xed or immobile
gates can be treated as bounds and need not be included
in C 0.

E. Reduced linear program

We use the Equations (8) and (10) to reduce the LP in
Equation (4) to the following LP in Minaret

min
P

v2V 0 [(jFI(v)j � jFO(v)j) � r(v)] (11)

subject to r(u)� r(v) � cuv 8(u; v) 2 C 0

Lu � r(u) � Uu 8u 2 V 0

where V 0 is the reduced variable set in Equation (8) and
C 0 is the reduced constraint set in Equation (10). The
contribution of the �xed gates to the objective function is
a constant and can be ignored for optimization purposes.

F. An example

The following example illustrates the method and shows
how the number of constraints can be reduced using our
approach.

Consider the circuit example shown in Figure 5. As in
the previous examples, we make the assumption that the
gates have unit delays. We consider two possible clock
periods of 2 units and 3 units in this example.

IN OUTFF1

a b c d

Fig. 5. Example illustrating the approach.

F.1 When P = 2 units

For a clock period of two units, the list of constraints
generated by the approach in [6] is listed below.

Circuit constraints r(h) � r(a) � 1

r(a) � r(b) � 0

r(b) � r(c) � 0

r(c)� r(d) � 0

r(d) � r(h) � 0

Period constraints r(h) � r(c) � 0

r(a) � r(c) � �1

r(b)� r(d) � �1

Note that
(a) the delay associated with the host node is zero, and
(b) the value of r(h) is set to zero as a reference, so that it
is not really a variable.
Therefore, this is a problem with four variables and eight
linear constraints (of which three act as simple bounds).
In our approach, for a clock period of 2, we �rst �nd

the bounding skews. The FF's at the input and output
may not be moved, and therefore, the only movable FF is
FF1, which is assigned an skew of -2 units. The correctness
of this skew value is easy to verify since the only feasible
location of FF1 under c = 2 is two delay units to the right
of its current location. Therefore, we �nd that by using the
concept of restricted mobility,

�1 � r(a) � �1 ) r(a) = �1

�1 � r(b) � �1 ) r(b) = �1

0 � r(c) � 0 ) r(c) = 0

0 � r(d) � 0 ) r(d) = 0

Since all nodes are �xed, and all the constraints can be
dropped, all of the constraints and variables have been
eliminated!

F.2 When P = 3 units

With the clock period is set to 3 units, the list of con-
straints is

Circuit constraints r(h)� r(a) � 1

r(a)� r(b) � 0

r(b)� r(c) � 0



6

r(c) � r(d) � 0

r(d) � r(h) � 0

Period constraints r(h) � r(d) � 0

r(a) � r(d) � �1;

As before, r(h) = 0 is set as a reference, giving a problem
with four variables (as before) and seven linear constraints
(of which three act as simple bounds).
Under our approach, the relocated FF can reside either

at the input of gate b, the output of gate b, or the output
of gate c. Therefore, we have

�1 � r(a) � �1 ) r(a) = �1

�1 � r(b) � 0

�1 � r(c) � 0

0 � r(d) � 0 ) r(d) = 0

Using the bounds we drop all constraints but

r(b)� r(c) � 0

Therefore, we have reduced the problem complexity to two
variables, each with �xed upper and lower bounds and
one linear constraint. (Note that upper/lower bound con-
straints are typically much easier to handle in LP's than
general linear constraints; in fact, in many cases, upper and
lower bounds are actually helpful in solving the LP.)

IV. A more accurate area model

kw(euv )

w(euv )
2

w(e )uv1

w(e )uv1

kw(euv )

w(euv )
2

(w(max  ) -u )w(e )uv1
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2
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Fig. 6. Maximum register sharing at multiple fanouts.

If a gate has more than one fanout with FF's, then we can
combine (share) these FF's at the fanout to reduce the total
number of FF's in the circuit. If the gates have constant
delays this sharing does not change the clock period of
the circuit. Therefore to accurately model the number of
registers needed in a circuit, we need to take maximum
register sharing into account. For this purpose we use the
model presented by Leiserson-Saxe in [2].
This model, as shown in Figure 6, introduces a mirror

vertex mi for each gate i which has more than one fanout.
Every edge eij in addition to having a weight w(eij), now
also has a width �(eij). In Figure 6 the edge weights are
shown above the edges, while the edge widths are shown

below the edges. Let us consider a gate i which has k
fanouts to gates j = 1 � � � k. To model the maximum shar-
ing of FF's, from each fanout gate j = 1 � � � k, we add a
extra edge to the mirror vertex, mi with weight w(ejm) =
w(maxi)� w(eij). where w(maxi) = max8j2FO(i)(w(eij))
is the maximum weight on any fanout edge of gate i. All
the edges from the gate i to its fanouts j, and those from
the fanouts to the mirror vertex have a width 1=k, i.e.,
�(eij) = 1=k and �(ejmi

) = 1=k for j = 1 � � � k.
The original LP in Equation (4) is modi�ed to include

the e�ect of register sharing in this more accurate model.
The LP now becomes

min
X

v2(V [M)

2
4
0
@ X

8j2FI(v)

�(ejv)�
X

8j2FO(v)

�(evj)

1
A � r(v)

3
5

subject to r(u)� r(v) � cuv 8(u; v) 2 C (12)

r(u) � r(v) � cuv 8(u; v) 2 Cm

where M = fmiji 2 V and jFO(i)j > 1g is the set of
all the mirror vertices, and Cm = f(j;mi)ji 2 M and j 2
FO(i)g is the set of constraints due to the mirror vertices
and is called the mirror constraint set. The weight cjmi

on
a constraint (j;mi) 2 Cm of the form r(j)� r(mi) � cjmi

is given by cjmi
= w(maxi)� w(eij).

The objective function of the LP in Equation (12) now
denotes the increase in the number of FF's assuming max-
imal sharing of FF's at the output of all gates. The terms
for a gate together with the terms of its mirror vertex (if
any) represents the number of FF's added when the gate
is retimed. The mirror constraints Cm ensure that, even if
the algorithm chooses to move one of the shared FF's across
a gate, the cost of the remaining FF's will still count as a
full FF.

A. Bounds on the mirror vertices

We will now show that the bounds on the r value of the
mirror vertex mi can easily be derived from the bounds
on the fanout gates of i. Therefore the algorithm that
calculates the bounds need only run on the original circuit
model and the mirror vertices do not need be introduced
explicitly in the graph. The mirror constraints for mirror
mi of gate i in Figure 6 are

r(j) � r(mi) � w(ejmi
) 8j = 1 : : : k

i.e. r(mi) � r(j)� w(ejmi
) 8j = 1 : : : k

i.e. r(mi) � r(j)� (w(maxi)� w(eij)) 8j = 1 : : : k

i.e. r(mi) � max
j=1���k

(r(j) + w(eij))� w(maxi)

This gives us the lower bound, Lmi
on the values of r(mi)

as

Lmi
= max

8j2FO(i)
(Lj + w(eij))� w(maxi) (13)

To get the upper bound, Umi
on the r value of the mir-

ror vertex mi we use the fact from [2] that after optimal
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retiming the weight on at least one of the edges to the
mirror vertex will be zero, i.e., minj=1���k(w(ejmi

)) = 0.
Therefore,

min
j=1���k

(w(ejmi
) + r(mi)� r(j)) = 0

i.e. min
j=1���k

(w(ejmi
)� r(j)) = �r(mi)

i.e. r(mi) = max
j=1���k

(r(j) � w(ejmi
))

Since r(j) � Uj 8j = 1 � � � k we have

max
j=1���k

(r(j) � w(ejmi
)) � max

j=1���k
(Uj � w(ejmi

))

which gives us r(mi) � max
j=1���k

(Uj � w(ejmi
))

Thus the upper bound is

Umi
= max

8j2FO(i)
(Uj + w(eij))� w(maxi) (14)

As in the case of gate variables we can reduce the
Leiserson-Saxe mirror variables set M to M 0 � M the
Minaret mirror variable set where,

M 0 = fmi 2M jUmi
6= Lmi

g (15)

B. Eliminating unnecessary mirror constraints

As in Section III-D the Leiserson-Saxe mirror constraint
set Cm can be reduced to the Minaret mirror constraint set
C 0
m � Cm where

C 0
m = f(j;mi) 2 Cm j Uj � Lmi

> cjmi
g (16)

C. Reduced linear program

As in Section III-E we can use the Equations (15) and
(16) to obtain a reduced LP under the more accurate area
model of this section.

min
X

v2fV 0[M 0g

2
4
0
@ X

8j2FI(v)

�(ejv)�
X

8j2FO(v)

�(evj)

1
A � r(v)

3
5

(17)

subject to r(u) � r(v) � cuv 8(u; v) 2 C 0

r(u) � r(v) � cuv 8(u; v) 2 C 0
m

Lu � r(u) � Uu 8u 2 (V 0 [M 0)

V. Minarea retiming using Minaret

The ideas described so far have been encapsulated in
Minaret (MINimum Area RETiming), a minimum area re-
timing algorithm for large sequential circuits. Minaret con-
sists of three phases of �nding the bounds, generating the
LP and solving it. Each of these is described in detail in
this section.

A. Deriving bounds on the r variables

As described in Section III-C the bounds are derived by
�nding the ASAP and ALAP locations of the FF's, using
a modi�ed form of ASTRA. An e�cient method for cal-
culating all FF-to-FF delays (Dij 's) required by ASTRA,
presented in [12], is used in Minaret. If the initial locations
of FF's satisfy the target clock period all lower bounds
must be nonpositive and all upper bounds must be non-
negative (i.e. Li � 0 and Ui � 0 8 i), since r(i) = 0 8 i is
a feasible solution. However, if the target clock period is
smaller than the initial period we may be forced to move a
FF from the inputs of a gate to its outputs to obtain any
feasible (including the ASAP) locations. Thus it is possible
to have a negative upper bound. Similarly it is possible to
have a positive lower bound if the the target clock period is
smaller than the initial period. The bounds on the mirror
vertices for all gates with more than one fanout are derived
from the circuit graph as described in Section IV-A.

B. Generating the linear program

We now describe how to obtain the reduced LP of
Minaret given of Equation (17). The coe�cients of the
objective function, the constraint set C 0

m and the cir-
cuit constraints in C 0 can be obtained directly from the
circuit. Since for large circuits (with tens of thousand
gates) O(jV j2) memory required by the Leiserson and Saxe
method of generating period constraints [2] is not practi-
cal, we use the method from [6], which requires only O(jV j)
memory. We take advantage of the bounds obtained in Sec-
tion V-A to modify this method to run faster, generating
only the reduced constraint set C 0.
The algorithm in [6] uses a combination of the Dijkstra's

algorithm and the Bellman-Ford algorithm. The algorithm
works by generating one (sth) row of the W and the D
matrix at a time. An ordered pair (w(eij);�d(i)), denoted
by (ai; bi), is associated with each edge eij and is used to
compute the shortest distance from vertex a source vertex
s. A heap is maintained for each distinct value of ai and
is indexed by this value. Until all heaps are empty, we
extract the node u at the top of the minimum index heap
using the function pop-min(heap index). The fanouts of u
are added to the appropriate heaps if their au or bu values
are updated (Bellman-Ford relaxation). At the end of this
procedure D(s; u) = �bu and W (s; u) = au.
Note that to satisfy a clock period P , all we have to do

is to ensure that each path whose delay is greater than P
has at least one FF on it. The number of FF's on any
path is monotonic with the path length because negative
edge weights are not allowed. Due to the monotonicity
of edge weights, if we ensure at least one FF on any sub-
path, we are assured to have at least one FF on all paths
containing this sub-path. This strategy can be used to
prune the number of constraints generated as well as the
gates examined.
Adding a period constraint from s to u is one way to

ensure at least one FF on all paths from s to u. This
observation presented by Leiserson-Saxe was used in [6] to
prune the constraint set. The idea was to add a period
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edge to only the vertex v, reachable from s, that satis�es
the following:

D(s; v) > P and D(s; u) � P 8 u on s; FI(v) (18)

where s ; FI(v) is a path from s to a fanin of v. Thus
if the period constraint is added, the fanouts of u need
not be relaxed. Similarly if the bounds on the r variables
guarantee us at least one FF on any sub-path, we need not
process any path containing this sub-path.
At the end of the ASTRA run to obtain the lower bounds

all FF's are in the ALAP locations. If the delay of all the
gates is not the same, it is possible that retimed circuit
obtained by ASTRA with FF's in the ALAP locations may
have some purely combinational paths with delays that are
more than the target clock period P . However in practice,
most of the other paths satisfy the target clock period. We
will use this observation to further speed up the constraint
generation process.
Consider a �xed gate a in the circuit at the end of

the ALAP run. Now if none of the combinational paths
starting at this gate violate the clock period, we have
WALAP (a; i) � 1 if D(a; i) > P 8i. Since WALAP (a; i) =
W (a; i) + Li � La we have La � Li � W (a; i) � 1, or
La � Li � ca;i. Since gate a is �xed Ua = La, we ob-
tain Ua � Li � ca;i 8i 2 V , which is guaranteed to be
true, and hence all constraints starting from �xed gate a
are redundant, and we do not need to generate them. Thus
we must generate period constraints only from those �xed
gates which have at least one purely combinational path
starting from it with delay more than the clock period.
Let us call this set V 00.
The pseudo code presented bellow explains how we use

the bounds on the r variables to generate the reduced con-
straint set C 0 e�ciently.

P = target clock period;

Li � r(i) � Ui 8i 2 V ;
Sk= the kth heap;

Lmin = min(Li) 8i 2 V ;
8s 2 V 0 [ V 00

f
s = current vertex;

8v 2 V; av =1 and bv = 0;
S0 = fsg; as = 0; and bs = �d(s);
k = current register weight;

do f
k = minfp j Sp 6= ;g;
if(k � Us � Lmin + 1) break;

u = pop-min(Sk) ;

if(Us � Lu � k � 1) continue;

if(�bu > P)
add a period edge c(s; u) with weight au � 1
else f

8v 2 FO(u) f
if( k � Us + Lv < 1)

if((av; bv) > (au + su;v ; bv � d(v)))
heap-insert(Sa(u)+su;v; v);
g

g
g while(9 p j Sp 6= ;)

g

C. Solving the linear program

Like Equation (4) the LP in Equation (17) is also a dual
of a minimum cost network ow problem. We found that
it could be solved very e�ciently using the network sim-
plex algorithm from [13]. The network simplex method is
a graph based adaptation of the LP simplex method which
exploits the network structure to achieve very good e�-
ciency. The upper and lower bounds on the r variables
provide a initial feasible spanning tree. This tree has two
levels only, with the host node as the root and all other
nodes as leaves. To prevent cycling we construct the ini-
tial basis to be strongly feasible by using the appropriate
bound (upper or lower) to connect a node to the root (host
node). It is easy to maintain strongly feasible trees during
the simplex operations, and details are given in [13].
Using the �rst eligible arc pivot rule with a wraparound

arc list from [14] (page 417) gave us signi�cant improve-
ments in the run time. The dual variables (r variables)
are directly available from the min cost ow solution. We
could solve problems with more than 57,000 variables and
3.6 Million constraints in about 2.5 minutes.

VI. Experimental results

We now present area minimization results on circuits in
the ISCAS89 benchmark suite, subject to a given clock pe-
riod. We assume that all gates have a unit delay, although
we emphasize that the algorithm is applicable when gates
have non-unit delays. The target clock period is set to be
the minimum achievable clock period for the circuit under
retiming and is calculated using ASTRA. Therefore the re-
sults show the smallest number of FF's for the best clock
period for all circuits. Since we did not have access to
large circuits (> 20; 000 gates) we created some large cir-
cuits (myex1 through myex5) by combining circuits from
the ISCAS89 benchmark suite.
We present the results in two tables. Table I presents

measures of the quality of minimum area retiming in the
circuits. For each circuit, the number of gates jGj, the �-
nal number of FF's in the circuit from both ASTRA (A)
and Minaret (M), and the CPU time Texec of Minaret are
shown. Also shown are two metrics on the circuits: Ffx,
the percentage of gates found to be �xed and Mavg, the
average mobility, i.e., the average value of (Uy � Ly) over
all gates in the circuit. Since Uy � Ly gives the range in
possible values (or mobility) of r(y), Mavg is a measure of
the average mobility in the circuit. The number of FF's
both in ASTRA and Minaret are obtained under the more
accurate area model of Section IV, after taking into ac-
count the maximum sharing of FF's at all nodes (including
primary inputs) in the circuit. The execution times are in
seconds on a DEC AXP system 3000/900 workstation, and
includes the time spent in getting the bounds, generating
the LP and solving it.
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TABLE I

Minarea retiming using Minaret

Circuit jGj # FFs Ffx Mavg Texec
A M (%) (s)

s3271 1,572 306 168 49.38 0.81 0.25
prolog 1,601 358 122 49.77 0.55 0.27
s3384 1,685 438 167 14.31 3.15 2.44
s3330 1,789 331 110 63.46 0.39 0.22
s4863 2,342 201 138 28.46 0.97 5.24
s5378 2,779 555 173 36.12 0.85 1.28
s6669 3,080 719 305 40.02 0.76 2.20
s9234 3,270 205 134 14.62 1.55 6.18
s13207 7,791 629 446 21.49 2.96 10.38
s15850 9,617 571 525 24.15 1.52 38.81
s35932 16,065 1,729 1,729 55.27 0.54 7.56
s38584 19,253 1,428 1,427 14.22 2.13 65.07
s38417 21,370 1,616 1,370 0.88 4.35 146.92

myex1 25,717 5,146 2,293 4.75 2.51 169.10
myex2 28,946 5,655 2,022 8.73 2.26 160.47
myex3 35,353 8,052 3,279 5.22 2.65 489.52
myex4 40,661 11,591 2,803 1.80 4.12 421.50
myex5 56,751 11,488 3,378 4.95 3.98 799.64

For most ISCAS89 circuitsMavg was less than unity and
the average over all ISCAS89 circuits was about 0.7. The
percentage of �xed nodes Ffx varied from being as high
as 95% to being below 1% (for s38417). We observed that
circuits with a small critical part (perhaps a cycle in the
retiming graph) and most gates being o� the critical paths
in the timing graph result in high values of Mavg. We note
that these circuits are not very well suited for retiming since
the small critical parts of the circuit restrict the rest of the
circuit from achieving better clock periods. The CPU time
Texec depends on the the number of gates in the circuit jGj,
the average mobility Mavg and Ffx.

In [6] the circuit s38584 needed 38 hours of CPU time
while Minaret could retime it in about one minute. We
point out, though, that such a comparison is not entirely
fair since (a) the results are generated on di�erent plat-
forms and (b) the circuits used in [6] are modi�ed ISCAS89
benchmarks and have a much smaller number of gates. For
example s38584 has 7882 gates in [6] while it has 19,253
gates in this work.

In Table II we compare the size of the LP for Minaret
and the original problem by presenting the number of vari-
ables and constraints for both methods. The number of
variables include both the gate and mirror variables. The
number of constraints in Minaret also include the upper
and lower bounds. The number of constraints in the origi-
nal method are obtained by using the pruning strategy sug-
gested in [2]. The reduction in the number of constraints
in Minaret depends on the average mobilityMavg and Ffx.
However, since the original constraints are generated after
some pruning, the reduction is a�ected by other factors as
well. Table II also presents the breakup of the CPU time
(in seconds) in terms of the time spent in using ASTRA to
arrive at the bounds for the r variables (Tb), the time spent
in generating the LP of Equation (17) (Tg) and the time
needed to solve this LP by the network simplex method
(Ts).

Tb depends on the number of gates and FF's in the circuit

TABLE II

Reduction in Problem Size with Minaret

Circuit # Variables # Constraints Tb/Tg/Ts
Minaret Original Minaret Original

s3271 1,079 2,038 5,492 43,506 0/0/0
prolog 1,039 1,992 5,304 37,319 0/0/0
s3384 1,870 2,166 47,916 49,487 0/2/0
s3330 858 2,212 4,595 30,409 0/0/0
s4863 2,170 2,995 92,873 597,323 0/5/0
s5378 2,385 3,664 19,170 168,530 0/1/0
s6669 2,539 4,100 20,041 341,750 0/2/0
s9234.1 3,366 3,893 54,610 137,962 0/6/0
s13207.1 7,303 9,180 38,630 491,561 1/9/1
s15850.1 8,740 11,332 38,318 1,046,108 1/36/2
s35932 10,306 21,716 53,087 389,647 1/5/2
s38584.1 20,486 23,390 97,268 11,450,472 2/54/8
s38417 25,731 25,923 1,507,162 1,628,544 3/91/52

myex1 31,476 32,922 812,872 3,275,567 3/146/19
myex2 31,704 34,493 398,697 17,185,252 4/131/24
myex3 42,604 44,812 5,693,689 16,978,788 5/404/81
myex4 48,415 49,214 2,635,127 8,186,340 7/312/104
myex5 57,488 60,241 3,600,681 24,316,717 10/638/152

and the average mobility, Mavg, of the circuit. Phase A of
ASTRA is dependent on the number of gates for obtaining
the FF to FF delays and on the number of FF's for the
Bellman-Ford runs. The CPU time taken for phase B of
ASTRA depends on Mavg, since Mavg gives a measure of
how many retiming (or movement of FF's across gates) are
performed in phase B.

Tg is most strongly inuenced by the number of exible
gates i.e. (1 � Ffx) � jGj, which is equal to the number
of rows of W and D matrices we need to generate. It is
also inuenced by Mavg in that it determines the number
of gates processed for each row of W and D matrices. Ts
depends on the size of the LP in terms of the number of
variables and constraints.

VII. Conclusion

A fast algorithm for minarea retiming large circuits has
been presented. The contributions of this work are twofold.
Firstly, it reconciles the Leiserson-Saxe algorithm with the
ASTRA algorithm and shows the relation between these
two. Secondly, it utilizes this relationship to good purpose
by modifying the ASTRA algorithm to make available in-
formation from the skew-retiming equivalence that is of
great bene�t in solving the minarea retiming problem un-
der the Leiserson-Saxe framework.

Experimental results on benchmark circuits in the IS-
CAS89 benchmark suite have been presented, and the pro-
cedure is seen to give good bene�ts. The number of vari-
ables and the number of constraints was dramatically re-
duced in most cases. The entire ISCAS89 benchmark suite
could be retimed in minutes. This works shows that it is
possible to perform minarea retiming on large circuits in a
reasonable amount of time.

Even though the average mobility Mavg is high and the
fraction of �xed gates Ffx is low for the large circuits we
created, we are still able to retime them in very reasonable
amount of time. Because of the various pruning techniques
used in Minaret the number of constraints in practical cir-
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cuits grows at a far slower rate than O(jGj2).
Minaret also has a reduced memory requirement since a

signi�cant number of constraints are not stored. We found
that for large circuits having constraints in millions, the
memory requirement becomes a bottleneck. The reduction
in the number of constraints also reduces both the problem
generation and the problem solution time.
To the best of our knowledge, no other retiming algo-

rithm incorporates pruning methods to reduce the number
of variables. This reduction in the number of variables
signi�cantly reduces the problem generation time. Notice
that due to the presence of mirror vertices the number of
variables can be up to twice the number of gates in the cir-
cuit. Hence the reductions in the number of variables and
constraints provided by Minaret are important to retime
large circuits.
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