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Abstract—A fast and stochastic analysis methodology for
electromigration (EM) assessment of power distribution networks
is presented in this work. We examine the impact of variability
on EM time-to-failure (TTF), considering altered current
densities due to global/local process variations as well as the
fundamental factors that cause the conventional EM TTF
distribution. Through novel variations-aware current density
model based on Hermite polynomial chaos, we demonstrate
significant margins in EM lifetime when compared with the
traditional worst-case approach. On the other hand, we show
that the traditional approach is altogether incompetent in
handling transistor-level local variations leading to significantly
optimistic lifetime estimates for lower metal level interconnects
of PDN. Subsequently, we attempt to bridge the conventional,
component-level EM verification method to the system level
failures, inspired by the extreme order statistics. We make use
of asymptotic order models to determine the TTF for the kth

component failure due to EM, and demonstrate application of
this approach in developing IR drop aware system-level failure
criteria.
Keywords: Electromigration, extreme value theory, worst-case
corner, lognormal distribution

I. CIRCUIT-LEVEL ELECTROMIGRATION VERIFICATION

Electromigration (EM) in copper interconnects is caused by
the current-driven movement of metal atoms and remains the
foremost challenge to interconnect reliability. The flow of a
contemporary industrial EM verification cycle is represented
in Fig. 1, which outlines a comparison of specified EM
limits on the current density in an interconnect (Jth) against
the calculated actual current density (J) in the circuit. The
procedure is based upon the characterization of failure data
on serially interconnected test structures [1], where failure is
defined by the first break in any element of the serial structure.
The time to failure (TTF) of the structure primarily depends on
the current density and stress temperature, empirically related
through Black’s equation [2], [3], and characterization is
performed under accelerated aging conditions of high voltage
and temperature, in a regime where the failure fraction (FF) is
high (∼ 0.1−0.5). To capture the stochastic nature of EM, the
TTF is obtained over several test structures as a function of the
current density, and then modeled as a lognormal distribution
for the failure of a single wire.

To apply this characterized distribution to compute the EM
TTF distribution in a manufactured product, it is important
to account for the differences between the product use
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Figure 1: A schematic of the traditional EM verification flow.

case and the characterization scenario described above. First,
the product operates at a nominal temperature and voltage
that is lower than the accelerated stress conditions during
characterization. The TTF data based on the lognormal
distribution is therefore scaled to these use case values [4].
Second, while characterization addresses the failure of one
wire, a chip typically consists of millions of interconnects, and
the prevalent EDA approach requires the acceptable failure
fraction, FFchip, at the chip level to be translated to the
component-level failure fraction, FF0, on individual wires.
Since FF0 � 1, the chip- and component-level FF s can be
related as [3]:

FFchip = 1− (1− FF0)
Nt =⇒ FF0 ≈ FFchip/Nt (1)

Here, Nt is the number of EM-critical resistors [5]. In a typical
industry flow [6], [7], the value of Nt is estimated at point of
design definition, based on design experience and historical
data. Using the computed value of FF0, the lognormal PDF
is used to determine the current density threshold, Jth, for
each wire in the design.

Traditionally, amongst various interconnects, the on-chip
power delivery network (PDN) has been the primary EM
concern. Industrial EDA tools verify these structures in a
design by computing the actual current, J , in each wire at a
given process corner, for a known clock frequency, application,
and parasitics. Immortal wires are first filtered out using the
Blech criterion [8]. For each of the remaining wires, J is
compared against Jth. In case the threshold is violated, EM
fixes are invoked through PDN optimization procedures such
as wire widening and current flow reduction.



II. LIMITATIONS OF EXISTING EM METHODOLOGIES

As an increasing number of PDN wires becomes susceptible
to EM in scaled technologies, several significant limitations in
the methodology of Fig. 1 become more acute, resulting in
the incorrect identification of EM-critical wires. The objective
of this paper is to identify these factors, as outlined in
the remainder of this section, and to propose a new EM
verification methodology that addresses these issues.

A. Statistical variations in J

The PDN carries both leakage and switching currents,
both of which are susceptible to statistical process variations.
Variations in switching current are moderate and are
captured by a Gaussian. With shrinking technology nodes,
the instantaneous transistor drive current and thereby the
timing impact must be modeled in non-Gaussian manner
[9]. However, since we are primarily interested in the
average-switching current (dependent on the capacitance
variations), Gaussian assumptions serve well [10]. Leakage
currents, on the other hand, have a much wider non-Gaussian
spread owing to the exponential dependency of leakage on
threshold voltages [11]. In traditional designs, the switching
current often limits the EM TTF, but as leakage currents
become more significant, their impact can become dominant
in some scenarios, particularly due to their large statistical
spread. Finding the worst-case (WC) corner for current
evaluation is difficult: using the timing WC corner can lead to
unwarranted pessimism (up to 2×, as we will demonstrate
in Table I). Prior work has largely neglected statistical
variations, barring a few studies that assume Gaussian
variations [12]–[14] and may not appropriately model leakage.

To demonstrate the impact of leakage current in on-chip
power grids, we consider the example in Fig. 2, which
represents an industrial octacore chip. For the ease of
illustration, we extract the wire currents in the upper metal
layer of the chip, and assume equal wire widths, so that
the current density in the wires can be approximated by the
current alone. The chip is shown to operate under four different
workloads, in each of which a different numbers of cores is
in active mode (shown using a solid outline), or in an idle or
power-gated state (shown using a dotted outline). For each
workload, we report the ratio of the total leakage current
to the total switching current at the nominal process corner.
Following common design practice, all cores share the PDN to
contain the cost and complexity [15]. This sharing results in a
mix of leakage and switching currents in upper metal layers,
which are illustrated through current contours overlaid on the
octacore layout. For example, under workloads b) and c), the
active quad cluster sees identical activity, but the cores in the
other quad cluster are either idle or power gated, altering the
leakage:switching current ratios.

To examine the effect of process variations, we consider the
impact of global process variations on these workloads through
Monte Carlo (MC) simulations. These variations are further
aggravated for local within-die variations. For a 28nm block
implemented in an industrial setup, we furnish the normalized
results from 1000 Monte Carlo simulations in Fig. 3 for the

Figure 2: An octacore SoC, with the eight CPUs shown on the
upper right, under various workloads. Depending on whether
the CPUs are in active, idle, or power-gated mode, the ratio
of total active power to total leakage power may vary, and the
nominal current in the power grid (shown by the contours)
may show different distributions.
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Figure 3: Current density PDFs in a power network for various
cases mapping to Fig. 2.

four workloads in Fig. 2. It can be seen that although workload
a) has the highest nominal current density, workloads b) and
d) have a much larger variance due to their leakage-dominant
nature. At a 99.7% yield point, the current density of 66.3
units for case a) is overshadowed by the value of 83.4 units
for case b), implying that workload b) is the case that limits
EM lifetime. On the other hand, at the ∼ 95% yield point, the
largest current density corresponds to the switching-dominated
workload a).

The above data indicate that the worst estimation due to
statistical variations depends not just on the workload, but also
on the yield requirement. The traditional WC model is neither
workload-dependent nor yield-configurable. Traditional WC
SPICE models are often targeted to correlate with either 3σ
transistor drive-current for the timing corner, or transistor
leakage for the leakage corner, but not both, as required for
EM verification. An EM-specific analysis is warranted because
process variations alter both the total interconnect currents and
the underlying failure kinetics of EM [16], neither of which
is captured by the timing or leakage WC corner. Moreover,
incorporating workload dependency in a WC model, i.e.,
deriving a unique 3σ-matching artificial process point from the
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current spread for every workload, is logistically impractical.
Additionally, while we assumed a multicore system with
shared PDN in the above example, the traditional WC model
is incapable even within a single core system in accounting
for current-density variations induced due to local, random
variations on transistors.

B. Outline of the proposed methodology

In the first step in Fig. 1, the characterization of the
lognormal relies on test data collection at the foundry based on
chain-like serially-interconnected test structures [1]. However,
the actual circuit topologies that are evaluated are much
complex. To simplify the analysis of the PDN, the traditional
flow uses the weakest link approximation (WLA), wherein the
entire PDN is deemed to have failed when the first component
fails [17]. By breaking down system level reliability to
a component-level problem, the WLA has enabled EDA
methodologies for PDN verification to scale up to millions
of wires. Unfortunately, this simplification does not grasp that
system-level failure occurs beyond the point of first component
failure, e.g., on-chip interconnects such as the PDN can satisfy
IR drop constraints even after multiple EM failures due to its
inherent redundancy [18], [19]. A Monte Carlo based approach
has been proposed to solve this problem [19], modeling a
cascade of EM events leading the system to successively
degraded states, but is computationally prohibitive for large
systems. Therefore, there is a strong need to bridge the gap
between verification scalability and system-level feedback.

Figure 4: The proposed EM verification flow, where the
highlighted regions indicate modifications to the traditional
flow (Fig. 1).

In this work, we present a new EM verification procedure
that modifies the traditional approach by addressing these
limitations. We augment the traditional methodology in
Fig. 1 through additional steps represented by the highlighted

blocks in Fig. 4. Our technical contributions as follows are
summarized as follows:
• We incorporate system redundancy by applying the theory

of order statistics and address system failure criteria using
an asymptotic failure model to determine the TTF for
the kth component failure due to EM. Our approach
is cognizant of the typical current-day EDA framework
and arrives at a modified component level FF target
incorporating a known extent of system redundancy. For
a given system, the extent of redundancy is computed
one-time as average number of sustainable failures (k)
through Monte Carlo means during the early design phase.
As we rely on Monte Carlo simulation only for one-time,
it makes our method faster against performing such
simulations for every iteration till the PDN optimization
is achieved. Thus, our approach efficiently bridges the
gap between component and system reliability for a given
system.

• To incorporate the aggravated impact of non-Gaussian
statistical process variations under arbitrary workloads, we
statistically derive a value for the worst-case TTF. Our
model is based on multivariate Hermite polynomial chaos.
The remainder of the paper is organized as follows.

We recapitulate the mathematical basis for the current-day
deterministic EM methodology in Section III. Section IV
details the multivariate Hermite polynomial based method for
incorporating global variations. Next, Section V describes a
formulation for incorporating system redundancies based on
extreme order statistics. Finally, Section VI shows a list of
experimental results and their analysis in an industrial context
and Section VII concludes the paper.

III. MODELING EM AND WIRE CURRENTS

A. TTF modeling

We now recapitulate the traditional, deterministic, EM
modeling approach. EM failures are accelerated by two
operational parameters for a circuit: the current density, J , and
the temperature, T . Black’s equation [2] specifies the mean
TTF, t50, as:

t50 =
A

Jm
(2)

where m is the current exponent, and a typical value is m =
1 [3]. Based on [20],

A =
Lc kT

eZ ρ Deff
e

Ea
kT (3)

Here, Ea is the activation energy, k is Boltzmann’s constant,
eZ is the effective electron charge, ρ is the resistivity, Lc is
the critical void length that causes a failure, and Deff is the
effective diffusivity, a constant.

The 50% fail fraction of (2) is too high for real applications.
Since tuse is a lognormal function of random variable zuse [1],
we represent a realistic fail fraction FF at time tuse as:

FF (zuse) = Φ(zuse) where zuse =
ln tuse/t50

σ
(4)
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where Φ is the standard Gaussian CDF. From (2) and (4), with
m = 1,

tuse =
A

J
eσzuse (5)

Finally, we will relate the value of z and t under two
different sets of stresses, a and b, with currents Ja and
Jb and temperatures Ta and Tb. Typically, condition a
corresponds to the reference condition provided by the
foundry, and condition b is the use condition at which EM
reliability is evaluated. Substituting (2) for both cases into the
corresponding expression for z in (4), we obtain:

zb = za +
1

σ

[
ln

(
tbJb
taJa

)
− Ea

k

(
1

Tb
− 1

Ta

)]
(6)

This expression relates the lognormal random variable, z,
related to the failure fraction, with the time to failure, t, under
two stress conditions a and b. As we will see, in Section V,
we formulate the shift in z required to correctly model system
redundancy, and then map that solution back to an effective
TTF using this equation.

B. Evaluating the PDN

A critical ingredient of TTF modeling is based on
determining the current through each wire. Consider a PDN
with N nodes, and let the conductance matrix of the power
grid be represented by G. Given a vector of excitations, I,
representing the current consumption at the N nodes, the
behavior of the PDN is described by:

GV = I (7)

where V is the vector of node voltages in the PDN.
Let Ik denote the kth element of I. The gate currents that

contribute to Ik comprise the switching (IS,k) and leakage
(IL,k) components, which are given by:

IS,k =
∑
i

αiCiVifi (8)

IL,k =
∑
i

I0,ie
βiVt (9)

Here, αi is the switching activity factor, Vi is the the supply
voltage Vk, fi is the operating frequency, and Ci is the
equivalent switching capacitance for gate i. I0,i is the base
leakage, and βi is the sensitivity to the threshold voltage Vt
for gate i. In this work, we account for subthreshold leakage
only, which is the dominant leakage mechanism [21] over the
gate leakage or gate-induced drain leakage. In both equations,
the summations are taken over all gates whose currents
contribute to node k. We write the switching current equation
in terms of its nominal current, InomS,k without variations and
its components due to global and local variations, IgS,k and
I lS,k, respectively, as

IS,k = InomS,k + IgS,k + I lS,k (10)

Similarly,

IL,k = InomL,k + IgL,k + I lL,k (11)

The switching and leakage currents are subject to
process variations. The key process parameters that undergo
global/local statistical variations are the capacitances and
the threshold voltages, which are modeled by Gaussian
distributions. These impact of the global and local variations
on each component of current is described next.

Switching current: In the expression for IS,k in (8), the
process-dependent term is Ci, which follows a normal
distribution under global variations. This implies that its global
component, IgS,k, is a weighted sum of normal distributions,
which is also normally distributed. We represent IgS,k ∼
N (µgS,k, σ

g
S,k

2
).

Since the switching current is affected linearly by statistical
local on-die variations, as seen in (8), the weighted sum of
zero-mean Gaussian-distributed switching current terms used
to obtain the local component of switching current, I lS,k, has
zero mean. Further, since the summation that computes I lS,k
corresponds to the addition of a large number of gate switching
currents, the variance of this sum virtually vanishes due
to cancellation effects. Therefore, this variance is negligible
as compared to the nominal switching current and can be
neglected, i.e., I lS,k ≈ 0.

Leakage current: Owing to global normal variations in
threshold voltage, IL,k becomes a weighted sum of lognormal
distributions. The sum of lognormal random distributions is
not known to possess a closed form. However, using moment
matching based approaches like the widely-used Wilkinson’s
method [22] or inverse gamma distribution method [23],
we can reasonably approximate the characteristics of the
distribution. In this work, we follow the Wilkinson’s method,
using which, the global leakage component, IgL,k, of the
current at node k of the PDN is given by (9), and can be
written as

IgL,k ≈ I
g
0,ke

βkV
g
t (12)

where the terms Ig0,k and βk are obtained from Wilkinson’s
formula. Note that in case dual Vt is used, there will be two
terms in the above expression, one corresponding to each value
of Vt, and the subsequent analysis is very similar.

For the leakage current component associated with
local variations, denoted by I lL,k, since the variations are
independent, it is easy to show that the variance of the sum of
a large number of such terms is negligible, and that the effect
of summation of a large set of independent lognormals is to
shift the mean. Its local leakage component, I lL,k is given by

I lL,k =
∑
i

E[I0,ie
βiV

l
t ] = I l0,k (13)

When the number of leakage components to be added is
smaller (e.g., on lower metal layers of the power grid), the
evaluation of the sum of these lognormals proceeds using
Wilkinson’s method, in a manner similar to the global variation
case except that the lognormals are all uncorrelated.
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C. Modeling the distributions of wire current densities

To compute the current density, JM , for any metal segment
M between the nodes (i, j) of the grid one can solve (7) as

JM = (Vi − Vj)/(RMwM ) (14)

where RM is the branch resistance and wM is the segment
width. Technically, the current density is JM/tM , where tM
is the segment thickness, but we use this simpler definition
since tM is constant for a metal layer and can be incorporated
into a maximum current density limit. Using (7), the voltage
at the node i is given by:

Vi =

N∑
k=1

qikIk (15)

where qik is the (i, k)th entry of G−1. This leads to:

JM =

N∑
k=1

qij,k
Ik

RMwM
(16)

where qij,k = qik − qjk. Note that the computation of G−1 is
impractical, but we use this notion for ease of exposition. As
we will soon see, this computation is not necessary.

In order to assess the impact of these variations on the
segment current density JM , we must first separately compute
the leakage and switching current density components (JS,M
and JL,M , respectively), and subsequently determine the
impact their statistics on the distribution of JM . Noting the
individual compositions of leakage and switching currents for
Ik, we can represent JM as follows:

JM =

N∑
k=1

qij,k
IS,k

RMwM︸ ︷︷ ︸
JS,M

+

N∑
k=1

qij,k
IL,k

RMwM︸ ︷︷ ︸
JL,M

(17)

Next, we show how JS,M and JL,M can be evaluated
without the expensive step of explicitly inverting G. To
compute JS,M , we begin by solving (7) under switching
current excitations only, i.e., for the case where Ik = IgS,k,
since I lS,k = 0). Through LU factorization, the system (7) can
be rewritten as (LU)V = I, where G = LU, and the solution
can be obtained through:

Ly = I (18)
UV = y (19)

Forward substitution in (18) obtains each yk, 1 ≤ k ≤ N , as

yk =

(
Ik −

k−1∑
l=1

Lklyl

)/
Lkk (20)

Since IgS,k is a Gaussian, the evaluation of each yk involves the
summation of some constants and/or Gaussians, and therefore
it is easy to represent each yk as a Gaussian.

The backward substitution step in (19) evaluates voltages
as

Vk =

(
yk −

N∑
l=k+1

UklVl

)/
Ukk (21)

As before, each step involves a summation of Gaussians and/or
constants, and therefore each voltage can be obtained as a
Gaussian distribution. Using (14), the switching component of
each branch current density is thus expressed as a Gaussian
distribution.

A similar approach can be used to find JL,M in each wire.
The excitation is now set either to Ik = I lL,k, a constant (on
the upper metal layers), or to the lognormal sum (on the lower
metal layers), and the first component of JL,M is computed for
each wire as a constant. Next, setting Ik = IgL,k, a lognormal,
we perform forward substitution, using Wilkinson’s method to
approximate the sums of lognormals as a lognormal at each
step. The same approach is used in backward substitution, and
this leads to expressing the second component of JL,M as a
lognormal.

Finally, adding up JS,M and JL,M , each branch current
distribution is expressed as a sum of a Gaussian, a lognormal,
and a constant.

IV. MODELING WIRE CURRENT VARIATION

To assess the impact of variations in a single wire, they
must be incorporated into (5). We consider the electrical and
physical parameters that affect the EM lifetime, namely, (a)
the switching and leakage current variations, as discussed in
the previous section, driven by shifts in the threshold voltage,
Vt, and interconnect parasitics, and (b) EM kinetics. These
are modeled as set of uncorrelated random variables (RVs). In
case of correlated RVs, we can use techniques such as principal
component analysis (PCA) to arrive at a different coordinate
system, wherein all translated RVs are uncorrelated.

In some contexts where the impact of perturbations is
relatively small, such as statistical timing analysis, it is
common to use a first-order Taylor series expansion to capture
the performance impact of variations, but for EM lifetime
estimation, the existence of exponential terms implies that
first-order expansions are inadequate and a higher order
Taylor series expansion is mandated. An alternative approach
to incorporate higher order expansions and non-Gaussian
variations is to treat the varying electrical and physical
parameters as a continuous stochastic process. This process
can be represented as an infinite series of orthogonal
polynomial chaos (PC) in a Hilbert space of random
variables, truncated later by finite-dimensional projections
while minimizing the error. This results in a response
expression as a multidimensional polynomial in the random
variables that represent the variations [24]. Indeed, using
these polynomials, much higher order expansions to capture
nonlinear terms are efficiently possible when compared to
perturbation techniques. Orthogonal PC based methods have
been previously applied for analyzing IC performance in [25],
[26], but have not yet been employed for reliability analysis.

In this work, we employ the Hermite PC scheme and
Galerkin procedure [24] to convert the stochastic reliability
problem to a set of deterministic problems, later solved
through standard matrix manipulations. This leads to the mean
and variance estimation of interconnect EM lifetime, and
correspondingly, a worst-case estimate (e.g., at the 3σ value).
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A. Hermite PC based model

The basic principle of Hermite PC based approach is to use
a series of orthogonal polynomials (of orthonormal Gaussian
random variables) to facilitate stochastic analysis. Let ξ =
[ξ1, ξ2, · · · , ξn] denote a vector of n independent unit Gaussian
random variables, modeling the variations in Vt, interconnect,
and EM kinetics. As a result, tuse is also a random variable
that is a function of ξ, and the impact of the random variable
ξ on (5) can be explicitly shown as:

tuse(ξ) =
A(ξ)

J(ξ)
eσ(ξ)zuse (22)

Based on the principle of orthogonal polynomials, tuse can be
approximated by a truncated Hermite PC expansion:

t̂use(ξ) =

P∑
k=0

tkH
n
k (ξ) (23)

where Hn
k (ξ) is an n-dimensional Hermite polynomial with

deterministic coefficients tk. The number of terms, P , is
related to n [24]. For a single variable, ξ1, we can represent:

H1
0 (ξ1) = 1;H1

1 (ξ1) = ξ1, H
1
2 (ξ1) = ξ21 − 1; (24)

The weighting function for Hermite polynomials is the
Gaussian probability density function and they are orthogonal
with respect to this weighting function [27] in the Hilbert
space:

< Hi(ξ), Hj(ξ) > = < H2
i (ξ) > δij (25)

where δij is the Kronecker delta and < ∗, ∗ > denotes the
inner product. The coefficients tk can be evaluated by the
projection operation onto the Hermite PC basis. From (23),
the mean µtuse

and variance σ2
tuse

of t̂use(ξ) are:

µt̂use
= t0 ; σ2

t̂use
=
∑P
k=1 t

2
kE[H2

k ] (26)

We define the error, ∆(ξ), as the difference between the exact
tuse and its value from (22), i.e.,

(
t̂use(ξ)− A′

J(ξ)

)
, where

A′ = Aeσ(ξ)zuse . This implies that

J(ξ)∆(ξ) =
(
J(ξ)t̂use(ξ)−A′

)
(27)

To obtain tk, we use Galerkin’s method, which states that for
the best approximation of tuse(ξ), the error is orthogonal to
the polynomials [24], i.e.,

< J(ξ)∆(ξ), Hk(ξ) >= 0, k = 0, 1, · · · , P (28)

This approach transforms the stochastic analysis to the
deterministic task of computing the Hermite PC coefficients.

Next, we consider how to represent the process-dependent
parameters – the leakage current JL(ξ), the switching current
JS(ξ), and the term A(ξ) that captures the EM kinetics – as
functions of the underlying orthonormal Gaussians.

We represent the lognormal leakage current in a wire,
JL, as a function of the normally-distributed Vt. The global
variations in Vt have mean and variance as (µL, σ

2
L), and

in turn, are modeled using the unit normal random variable

ξL ∼ N (0, 1). Therefore:

JL(ξ) = J0e
β(µL+ξLσL) (29)

For the lognormal relationship of leakage current with
threshold voltage, we use a second-order Hermite polynomial:

JL(ξ) =
∑2
k=0 JLkH

n
k (ξ) (30)

=JL0

(
1 + βσLξL +

1

2
β2σ2

L(ξ2L − 1)

)
(31)

Here, JL0 = J0e
β(µL+σ2

L/2), JL1 = JL0βσL, and JL2 =
JL0β

2σ2
L/2, where (µL, σL) come from the Vt distribution.

The switching current in a wire, JS , is altered linearly
with the normally-distributed global capacitance variations,
with mean and variance as (µS , σ

2
S), modeled as µs + σsξs

where ξs ∼ N (0, 1).

JS(ξS) =
∑1
k=0 JSkH

n
k (ξ) = JS0 + JS1ξS (32)

Here, JS0 = µS and JS1 = σS .

The impact of EM kinetics is felt in the form of
global variations in the term A′ = Aeσzuse , caused by
the process-dependent elements of the prefactor A in (3),
and the variance, σ of the lognormal [16]. We model these
variations in EM kinetics as lognormal, wherein the underlying
normal distribution has mean and variance as (µK , σ2

K) and
is modeled through the unit random variable ξK ∼ N (0, 1).
Thus, if A′0 = Aezuse(µK+σ2

K), for a specified zuse, we
can represent this nonlinear dependence using the Hermite
polynomial:

A′(ξK) =
∑2
k=0AkH

n
k (ξ) (33)

=A′0

(
1 + zuseσKξK +

1

2
z2useσ

2
K(ξ2K − 1)

)
(34)

where A0, A1, and A2 can be deduced from the above.

B. Hermite PC: Coefficient estimation

Next, we assess the eventual influence of ξL, ξS , and ξK on
the EM lifetime through the Hermite PC representation for
tuse, represented in the second order form as:

t̂use(ξ) = t0 + t1ξL + t2ξS + t3ξK + t4(ξ2L − 1) + t5(ξ2S − 1)

+ t6(ξ2K − 1) + t7ξLξS + t8ξSξK + t9ξKξL
(35)

To compute the Hermite PC coefficients, we apply (28):

< J(ξ)∆(ξ), 1 > = 0; < J(ξ)∆(ξ), ξL > = 0

< J(ξ)∆(ξ), ξS > = 0; < J(ξ)∆(ξ), ξK > = 0

< J(ξ)∆(ξ), ξ2L − 1 > = 0; < J(ξ)∆(ξ), ξ2S − 1 > = 0

< J(ξ)∆(ξ), ξ2K − 1 > = 0; < J(ξ)∆(ξ), ξLξS > = 0

< J(ξ)∆(ξ), ξSξK > = 0; < J(ξ)∆(ξ), ξKξL > = 0

Next, we substitute J(ξ) = JL(ξL)+JS(ξS), and use (27) and
(35). Comparing the coefficients of like terms on both sides
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of each of the 10 inner products above, we obtain:

J̃ t̃use − Ã = 0 (36)
where Ã = [A′0, 0, 0, A

′
1, 0, 0, A

′
2, 0, 0, 0]T

t̃use = [t0, t1, t2, t3, t4, t5, t6, t7, t8, t9]T

Here, J̃ is the 10× 10 matrix:

J00 JL1 JS1 0 2JL2 0 0 0 0 0
JL1 J00 + 2JL2 0 0 2JL1 0 JS1 0 0 0
JS1 0 J00 0 0 2JS1 0 JL1 0 0
0 0 0 J00 0 0 0 JS1 0 JL1

2JL2 2JL1 0 0 2J00 + 8JL2 0 0 0 0 0
0 0 JS1 0 0 2J00 0 0 0 0
0 0 0 0 0 0 J00 0 0 0
0 JS1 0 JL1 0 0 0 J00 + 2JL2 0 0
0 0 0 JS1 0 0 0 0 J00 0
0 0 0 JL1 0 0 0 0 0 J00


where (J00 = JL0 + JS0). Thus, depending on coefficients of
the leakage distributions (JL0,JL1 and JL2), switching current
distribution (JS0, JS1) and the EM kinetics distributions (A0,
A1, and A2), the matrix can be solved to find the t̃use, which
solely defines the statistics of EM lifetime.

The TTF formulations in (26) can be used to determine a
realistic worst-case estimate of the EM lifetime due to global
variations. For example in the traditional context, we can
compute the 3σ lifetime as µtuse

− 3σtuse
value. On the other

hand, the statistical lifetime can also be easily derived for an
arbitrary yield requirement.

C. Relevance to alternative EM checking paradigms

We would like to reiterate that the formulations developed
so far have been based on void-growth dominated Black’s
equation (2): the de facto model applied across industry.
However, it is also extendible to alternative EM checking
paradigms such as the modified nucleation based Black’s
approaches [28], [29] or flux divergence based approaches
[30], [31].

For example, incorporating modified Black’s equation
requires alteration to the starting representation as: tuse(ξ) =(
A(ξ)
J(ξ) + B(ξ)

J2(ξ)

)
eσ(ξ)zuse , where the void-nucleation related

current term gets added. Consequently, the Hermite PC
coefficients must be reworked in (37). On the other hand,
flux divergence based approach like via-node vector method
is directly applicable on (22) and (37), with a single change
that the current density J , changes from an individual wire
density to the effective current density at the via-node [30].

V. EM UNDER CIRCUIT REDUNDANCY

The lognormal model is empirically driven and is based on
the weakest link failure data from a set of test structures, i.e.,
it assumes that the first wire failure results in system failure
However, the applicability of the weakest link model has been
often questioned [3], [16], since real multimillion interconnect
systems have significant redundancy and survivability even
after the first component failure. Some studies on power grid
and signal interconnects have proposed TTF models where
failure is declared when a critical system parameter (e.g., skew
or IR drop) exceeds a specification [18], [19]. Notably, such
exceedances occur after multiple individual components fail,
highlighting the need to incorporate redundancy into EM TTF
estimations.

One way to address the problem is to perform MC
simulations, which can model a cascade of EM events that
lead the system to successively degraded states, but this
is computationally prohibitive. Alternatively, if we could
develop a framework to accurately predict the time to the
kth component failure in a system, it could be utilized
for high-level assessments of the reliability benefit due to
system redundancies, or even in deriving the EM guidelines.
Interestingly, this problem statement fits into the Order
Statistics branch of EVT [32], [33], which is widely used
in financial risk management. In this work, we explore its
usage to predict the time to kth component failure and now
recapitulate some of the required mathematical concepts.

Order Statistics Distribution: If we draw n samples
from a population described by a random variable z, i.e.,
Z = [Z1, Z2, · · · , Zn], and rearrange them in increasing order
as [Z1,n ≤ Z2,n ≤ · · · ≤ Zn−1,n ≤ Zn,n], then the kth term,
Zk,n, of this sequence is the kth order statistic. For finite n
and k, we can represent the kth order statistic as:

Fk,n = P (Zk,n ≤ z) =

n∑
i=k

(
n

i

)
F (z)i {1− F (z)}n−i (37)

where F (z) is the CDF of z. Intuitively, this is the probability
of at least k (out of n) draws of Zi to be less than or equal
to z. Two common cases of order statistics are:
• first minima, or the first order (F1,n = 1−(1−F (z))n),

where one draw out of n is ≤ z.
• first maxima, or the last order (Fn,n = F (z)n), where

all draws out of n must be ≤ z.
The kth order statistic, Fk,n, corresponds to the kth minima. In
reliability terminology, F (z) corresponds to the interconnect
failure CDF. Consequently, the minima maps to the series
system, where the system failure occurs at first component
failure, whereas maxima maps to the parallel, where the system
fails at the last component failure. The first minima forms
the basis of the weakest link based EM checking practices in
industry [5], whereas maxima is not of interest to our problem.

To assess the applicability of order statistics on TTF
estimation, we generate and analyze the TTF of an ensemble
of hundred independent interconnects through Monte Carlo
means. We proceed in following manner:
• We first assign 1000 random FF values (generated through

normal distribution) per interconnect, which are used to
estimate the lognormal TTF for every interconnect.

• These hundred TTF distributions are subsequently ordered.
• The first, second, third and fourth time to failures across all

hundred distributions are collected to obtain the distribution
of first four failures of the ensemble.

• We plot these TTF from various failure orders on a
Gumbel-form scale, ln(− ln(1− CDF )) versus ln(t).

For above case, the outcome is illustrated through Fig. 5,
where the x-axis indicates the normalized logarithmic TTF and
the y-axis is the Gumbel-form failure probability, ln(− ln(1−
CDF )). Indeed, when we examine the plot of first failure
(also the worst, represented in grey color) across all the
hundred interconnects, we notice that it follows a linear trend
with a high correlation coefficient. The second, third and
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fourth TTF distributions also exhibit similar behaviour. This
observation is indeed a signature of ordered behaviour and a
strong motivation for its applicability on TTF estimation, as
also anticipated through [16].
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R² = 0.9816

R² = 0.969

R² = 0.9938
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2

4

1 10 100

ln
 (-

ln
 (1
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F)
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Normalized ln TTF

First four TTF: ln(-ln(1-FF)) versus ln (t)
From 100 interconnects (1000 MC run each)

First TTF
Second TTF
Third TTF
Fourth TTF

Figure 5: Time to kth failure on a Gumbel plot demonstrating
applicability of order statistics.

Asymptotic Order Statistics: While (37) represented the
kth order statistics for finite n, MC simulation is far too
expensive. We will resort to asymptotic EVT as n → ∞ and
k � n, both of which are relevant in dealing with power grid
system of multi-million interconnects. This also has the benefit
of providing closed-form analytical solutions.

For any given CDF, F (z), an asymptotic maxima
distribution, Zn,n, is said to exist iff

F (anz + bn)n → G(z) (38)

where an and bn are fitting constants and G(z) is a function.
For such cases, F (z) is also said to be in the domain of
maximal attraction of G(z). Now, a normal CDF, F (z),
satisfies the convergence criteria, and the limiting minima
function is given by the Gumbel form [33]:

Ĝ(z) = 1− exp(−ez) (39)

The above relation is for the asymptotic minima, but we are
interested in the asymptotic kth minima (Ĝ(k)(z)), for which
we reuse the results from Gumbel [32] as:

Ĝ(k)(z) = 1− [exp(−kezk)]

k−1∑
j=0

kj
ezkj

j!
(40)

where zk = (z−bk)/ak, with ak and bk being the empirically
derived fitting constants. The reader is referred to [32] for a
detailed derivation. It can be verified easily that for k = 1,
the ordered distribution evaluates to that of the asymptotic
minima, Ĝ(z).

In our methodology, we obtain initial guidance of the
extent of system redundancy as an input from the designer
or through system-level statistical Monte Carlo simulations.
These simulations provide us the system failure CDF as
well as an approximation of the number of failures the
system can sustain before the system requirement breaks,
which becomes our guidance for the value of k. Notice
that even though the formulation (40) assumes that all the

underlying CDFs, F (z), are identical, its applicability to TTF
estimation of PDN interconnects is still motivated by the
fact that the PDN weaknesses are mostly found in clusters
containing interconnects of similar nature. Thus, with the
help of appropriately derived fitting constants ak and bk
to approximate the failure CDF obtained through a set of
Monte Carlo simulations, we can fit the results to a Gumbel
distribution to arrive at order statistics based CDF formulation.
Application for TTF Estimation:
If the system can tolerate k failures, then the kth minima,
Ĝ(k)(z), represents the failure CDF for the system, and this
can be used for reliability prediction under system redundancy
as follows:

1) Given a customer requirement, FFchip on the acceptable
fail fraction for the chip, (1) can be applied to translate
it to a component-level fail fraction, FF0.

2) Through a one-time assessment of the system level
reliability using Monte Carlo simulations, we obtain the
system failure CDF, which is then approximated through
the Gumbel distribution Ĝ(k)(z), wherein, the parameters
k, ak and bk are empirically estimated.

3) Based on the value of k, the number of wire failures that
can be tolerated before system failure, the corresponding
Gumbel distribution, Ĝ(k)(z), is used to map FF0 to
zuse = [Ĝ(k)]−1(FF0).

4) Using (4), the foundry failure specification, specified as
(zref , Jref , tref , Tref ) is translated to zuse, as computed
above, tuse, the lifetime specification on the chip,
and Tuse, the operating temperature specification for
reliability evaluation of the chip. This results in a current
limit, Jth, on the wire.

5) For each wire, the actual current, Jactual, through the
wire is compared against Jth to verify whether it passes
EM verification or not.

Alternatively, if the lifetime associated with a current, Jactual,
is to be computed, we may use (4) to translate the reference
values, along with zuse and Tuse, to obtain the lifetime, tuse.

VI. RESULTS

We now present the results from the methods developed so
far. For consistency, all of our results and implementation are
based on the standard IBM power grid benchmark circuits
[34]. We take the technology constants from an industry
environment, and we normalize the data for confidentiality.
We proceed as follows:
• Firstly, we validate the Hermite PC based framework

to model the statistical variability in Section VI-A. We
benchmark our results against statistical SPICE simulations
(involving transistor global/local variability). The outcome
of this statistical analysis is the current density for every
resistor at any given yield point, for example 3σ which can
be then used for verification against the EM thresholds.

• Subsequently, we take the current densities of individual
resistors and incorporate system redundancy through order
statistics based approach in VI-B. We benchmark our results
against system-level statistical reliability simulations [18].
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Figure 6: Q-Q representation of the CDFs derived through
statistical SPICE simulations and Hermite PC based approach
for Gaussian and non-Gaussian cases.

A. Statistical Variability Estimation

1) Power Network: Experimental Setup: The IBM PG grid
benchmarks are representative of different classes of industrial
designs and vary over a reasonable range of complexity.
The original intent of these PG grids was to benchmark
improvements in the capability of simulation tools for PG grid
simulation. Therefore, they only contain grid parasitics and
voltage/current sources, instead of transistor level subcircuits
of standard cells. The grids represent various blocks on the
chip, and each block contains number of current sources as
a representative of the switching instances of standard-cells.
These current sources are DC and correspond to the cumulative
current requirement of the standard-cell (including switching
and leakage contributions).

In contrast with this original intent, our primary purpose
is to study the impact of statistical variations (in the form of
transistor Vt variations and switching capacitances) on EM
lifetime, and therefore, we must separate the current-flow
per standard cell in switching and leakage components.
This is achieved by assigning Gaussian and lognormal
distributions to the switching and leakage components,
respectively, of the current sources. The nominal value of the
cumulative current requirement of the standard-cell matches
the original IBMPG grid value, and the ratio between nominal
values of leakage and switching contributions is globally
controlled. We utilize the HSPICE Monte Carlo variability
simulation setup, in which the parameter governing leakage
variation of the standard-cell could be treated as a globally
(and identically) distributed or locally (and independently)
distributed parameter. In this way, through statistical SPICE
simulations, we can arrive at the current distribution spread in
every resistor of the power grid, considering global and/or
local variations. Subsequently, we derive (a) Hermite PC
model and (b) WC based estimates to perform comparison
against the statistical results.

2) Evaluation of the Hermite PC approach:
Through statistical SPICE simulations on the IBMPG2 grid

and with global variations enabled, we directly obtain the
current density CDFs for all the resistors.

We validate the results of our Hermite PC model under
global variations against these simulations. We follow the
procedure outlined earlier in Section III, and compute the

nominal values of leakage and switching currents per resistor.
For the resistors in the power grid, we extract the qij,k
coefficients in (16). As outlined earlier, these are used to
derive the variance of leakage and switching current density
per wire using Wilkinson’s method, noting that these variations
are identical and fully correlated. Subsequently, using (37), we
set up the Hermite PC model and evaluate it to produce the
CDFs of the current density.

These CDFs, obtained from statistical SPICE simulations
and Hermite PC based approach are then plotted on a Q-Q plot
against each other in Fig. 6, for two cases, representing the
switching-dominated case and a case with significant leakage
contributions. As we can see, for both the cases, the Hermite
PC based CDF is in close agreement with the CDF derived
through statistical SPICE simulations.

Next, to evaluate the Hermite PC based model under local
variations, we first set the leakage variability parameter in
HSPICE to be locally and independently distributed. Thus,
through statistical SPICE simulations, we can directly obtain
the current density CDFs for various resistors in the power
grid under local variations. For illustration purposes, we pick
resistors corresponding to lower, middle and upper metal
layers of the PG grid, and their CDFs are plotted using black
solid lines in Fig. 7 where the data for every resistor is
normalized with respect to its median value.

As discussed earlier in Section IV, the current density in
a given resistor is a weighted summation of the individual
gate currents ((16)), wherein the position of the resistor in the
power grid affects the weightages. Unlike global variations,
which are fully correlated, the local variations are independent
and uncorrelated. Thus, a resistor in lower metal layer, which
sees the current-flow primarily from adjacent standard-cells,
experiences a relatively high spread in its distribution, as
shown through Fig. 7a. On the other hand, as we move to
upper metal layers, the number of influencing standard-cells
for a given resistor keeps increasing, resulting in a much
tighter distribution shown through Figs. 7b and 7c (Note that
the x-axis range grows progressively smaller in these figures).
The CDFs obtained from the Hermite PC model are shown
in Fig. 7 through green solid lines. For all the three cases,
the Hermite PC based CDF correlates very well with the CDF
derived through statistical SPICE simulations.

The influence of wires in various metal layers is further
illustrated when we graphically plot the qij,k coefficients in
(16) for these resistors in Fig. 8. We normalize and rank order
the coefficients for the three resistors and plot the top 100
values. As we can see, for resistor R176902, which is on lower
metal layer, there are only few cells that influence its value,
as signified by fewer coefficients with high values. On the
other hand for resistor R208433 on a middle metal layer, there
are more cells with high coefficients. Using these coefficients
in Wilkinson’s method, and noting that these variations are
now uncorrelated, we can compute the leakage and switching
variances per resistor, eventually leading to the Hermite PC
based model using (37). Thus, the impact of local variations is
more prominent on lower metal layers and Hermite PC based
model rightly comprehends this behaviour.

Next, we estimate the current density from a timing-based
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(a) Statistical currents for lower metal layer
resistor: R176902
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Figure 7: Current density PDFs and CDFs derived through statistical SPICE simulations and Hermite PC based approach for
three resistor cases, corresponding to lower, mid and upper metal layers, incorporating local variations. Distributions becomes
narrower as the resistors move to upper metal layers.
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design.

WC approach, which assumes a strong transistor (optimized
to 3σ transistor current) and worst-case capacitance. We
set the individual standard-cell current sources to their
corresponding timing-based WC values and perform the
current measurements for the entire power grid for a given
ratio of leakage and switching current per cell. For the same
scenario, we also compute the lifetime from the Hermite PC
model and the results are as tabulated in the Table I, where, we
can see that Hermite PC based lifetime estimates are over 1.3×
better than the WC ones for 3σ yield point. Indeed, our method
can predict the lifetime for different yield targets (for example,
95% or 99% as against only 3σ), and the benefit with respect
to WC estimation significantly increases for these cases, as
seen from the second and third rows of Table I. Lastly, if we
consider both global and local variations in our 3σ estimates,
we see that the lifetime of lower metal resistor decreases as
compared to the WC, owing to the fact that WC completely
lacks accounting of local variations.

In summary, our Hermite PC model agrees very well
with statistical SPICE estimates for comprehending global as
well as local variations. For the cases studied, our model

Design Entity R176902 (lower
metal layer)

R208334 (mid
metal layer)

R208433 (upper
metal layer)

Distribution Spread 2.38 1.15 1.03(global/local, 3σ/Mean)

t u
s
e

Im
pr

ov
em

en
t global (95%/WC) 1.57 1.51 1.39

global (99%/WC) 1.39 1.38 1.24
global (3σ/WC) 1.37 1.32 1.21

global + local
(3σ/WC) 0.72 1.16 1.12

Table I: Comparison of our analytical EM lifetime prediction
(at different yield points) against a timing-based WC approach.

reduces pessimism in EM lifetime estimates as compared to
WC approach for global variations, whereas the timing-based
WC approach is altogether incompetent in modeling local
variations. Additionally, our model can be directly applied to
project the lifetime for a given failure fraction requirement,
thus enabling the yield tradeoffs which provides an opportunity
to designers to cope with outlier violations.

3) Runtime Comparison: Earlier in Sec. III, we outlined
the derivation of statistical lifetime coefficients using LU
decomposition and subsequent calculations. From an industrial
context, we make use of the HSPICE framework to compute
these coefficients through the adjoint sensitivity means, since
the percentage of high current-carrying resistors in the entire
power grid is low. With the help of these coefficients, the
wire statistics are then be estimated. For various IBMPG
benchmark circuits, the runtime for our approach as against the
full Monte Carlo approach is as listed in the Table II. Notice
that the MC simulations take a significantly longer time due
to incorporation of local variations. Overall, significant gain
in runtime with an acceptable accuracy is demonstrated using
Hermite PC based approach.

B. Application of Order Statistics

We now present results based on the methodology developed
in Section V on the IBM power grid benchmark circuits
[34], wherein our intention is to mimic the system failure
through order statistics based prediction. We first discuss the
methodology for progressive interconnect degradation in the
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Grid name CPU time 1000 MC sim Our approach
per sim (global + local) runtime

IBMPG1 0.10m 10.25m 0.35m
IBMPG2 0.15m 15.05m 0.47m
IBMPG3 3.93m 6.55h 11.79m
IBMPG4 5.37m 8.95h 16.14m
IBMPG5 0.55m 54.70m 1.66m
IBMPG6 1.99m 3.32h 6.00m

IBMPGNEW1 3.99m 6.65h 11.98m
IBMPGNEW2 9.00m 15.00h 27.03m

Table II: CPU runtime comparison of our analytical EM
lifetime prediction versus Monte Carlo simulations.

PG grid resulting in increased IR drop. We define system
failure when the IR drop increases by 50mV at any node in
the grid from its t = 0 value.

The PG benchmark circuits are solved to obtain the currents
and IR drop at every node; the currents are scaled to create a
100mV IR drop at t = 0. We obtain the system failure time
through MC simulation, similar to the method in [18]. Each
MC simulation involves:
• computing t = 0 currents and assigning normally

distributed random FF to resistors
• using the current-flow, operating temperature and FF per

resistor to derive the TTF for every resistor ((6))
• rank-ordering of resistors to open-circuit the resistor with

least TTF
• recomputing currents and IR drop, and
• iterating till system criterion failure criterion is met.
Next, we perform MC simulations to obtain the statistical
distribution, with different numbers of iterations per simulation
warranted by different PG benchmark circuits to breach the
system failure criterion. Recall that in our approach, MC
simulations serve to provide the initial guidance of redundancy
in the system, or an estimation of the average number
of acceptable interconnect-failures. Since mean-estimation
converges rapidly, 100 samples are sufficient for (> 95%
confidence) when the underlying distribution is normal [35].
Thus, 100 MC sims gives a good estimate of the average
number of sustainable failures.

Specifically looking at IBMPG1, from the MC runs, the TTF
for the first, third and fifth (out of ∼15K) failing resistors from
every MC simulation can be obtained. Next, using the t = 0
currents data and the transformation from z to t, we obtain the
ordered statistics model from (40). The TTF distributions for
both the MC-based and the ordered statistics model are plotted
in Fig. 9, where the x-axis is the normalized time. The region
of interest corresponds to small FF values (< 0.25), and in this
region, order-based failure estimations are in good agreement
with MC estimations.

Additionally, from the MC simulations, we also extract
the system TTF, i.e., the time at which, due to progressive
EM degradation, any node in the PG grid suffers a drop
that is 50mV higher than its t = 0 value. This data is also
plotted in Fig. 9. It is clear that this system-level criterion is
violated much later than the first component failure. Moreover,
the system failure CDF can be approximated by the kth

component failure CDF. Here, the third failure CDF could
be used to approximate the TTF to a 50mV drop. Notice
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Order Statistics Application on IBMPG1 Benchmark
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Figure 9: Application of Order Statistics Based EM Prediction
on PG benchmark, IBMPG1.

that the order statistics based model (40) is guided one-time
through the MC means to derive the average number of
components which must fail before the system failure. This is
an important result, since even though MC based system TTF
estimation provides an accurate picture of failures, performing
full MC analysis on a production PG grid is computationally
prohibitive for every iteration cycle till the PDN optimization
is achieved.

Next, we look at larger PG grid benchmark circuits
for applicability of this principle. For one such grid,
IBMPGNEW1, the voltage drop maps at t = 0 is shown at
left in Fig. 10, which shows the inherent drop of the circuit
before any wire failures. As the stress builds and we take the
system through progressive degraded states, at the point of
system failure, there will be at least one node in the PG grid
whose voltage drop is 50mV higher as compared to its t = 0
value. The voltage drop map at that time instant is shown at
right in Fig. 10. Notice that prior to this point, the circuit is
functional and is able to tolerate several EM failures.

Figure 10: Voltage drop maps of the power grid,
IBMPGNEW1 (left) at t = 0, showing the inherent IR drop
of the circuit with no wire failures (right) after the circuit
undergoes 20 EM events, after which there is at least one
node whose voltage drop is 50mV higher as compared to its
t = 0 value. The IR drop scale is described at right.

The results for the other power grid benchmarks are
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Grid name Total voltage sources Total interconnects Avg. failures to
system fail (rounded)

CPU runtime Normalized mean TTF (hrs)
System MC Proposed Model WLA System MC Proposed model

IBMPG1 100 14,750 3 5.13m 0.15m 1.000 1.626 1.507
IBMPG2 120 101,718 8 7.53m 0.23m 0.571 0.999 1.097
IBMPG3 494 677,388 10 3.28h 5.90m 0.593 1.089 1.120
IBMPG4 312 780,699 8 4.48h 8.06m 0.696 1.220 1.352
IBMPG5 100 495,756 7 27.35m 0.82m 0.568 0.970 1.073
IBMPG6 132 797,711 9 1.66h 2.98m 0.612 1.186 1.160

IBMPGNEW1 494 698,595 18 3.33h 5.99m 0.754 1.566 1.577
IBMPGNEW2 494 1,157,849 16 7.50h 13.50m 0.807 1.590 1.866

Table III: Comparison of our analytical EM lifetime prediction against Monte Carlo and WC approach, performed on different
power grid benchmarks. The failure criterion is 50mV higher voltage drop on any node as compared to its t = 0 value.

Grid name Number of EM violations
Default thresholds Order model

IBMPG2 372 85
IBMPGNEW2 116 41

Table IV: Application of order model for threshold based
verification of circuits.

presented in Table III. As noted before, we perform 100 MC
simulations to obtain the statistical distribution, with different
numbers of iterations per simulation warranted by different PG
benchmark circuits to breach the system failure criterion. Here,
we list the average number of failures required per PG grid to
violate the system criterion (rounded off to nearest integer).
We also report the normalized mean TTF (hrs) from WLA,
system MC and proposed order based method. Recall that as
the order method requires only one-time estimation of system
redundancy through MC means, it is computationally superior
as compared to performing costly MC sims for every iteration
of design-closure till the PDN optimization is achieved. As
we can see from the Table III, the lifetime estimates from
the proposed method agrees well with the more expensive
MC-based computation and reduce significant pessimism as
compared to the WLA method. It must be mentioned, however,
that due to topological differences, the number of interconnects
required to create a system failure are different for various
grids (column 4 in Table III), and that is an input to the order
statistics based TTF generation procedure.

Lastly, we share the results of EM thresholds based
verification from the proposed order based method, using the
guidance of average number of failures required per grid.
The default thresholds are targetted for a tighter reliability
specification so as to expose the EM violations. To derive
the thresholds from order approach, we follow the steps
enumerated earlier in Sec. V, and the results are as shown in
Table IV. While Table III establishes the accuracy of order
based method against the system level MC simulations, we
now see the translation of lifetime benefit in form of reduced
number of violations. Indeed, for IBMPG2 circuit, a designer
must only fix 85 (of 372) violations and still, safe operation
of the circuit is guaranteed as per the given system criterion.
Thus, using the order statistics model, we demonstrate that
the system time-to-failure can be approximated analytically as
well as its application for threshold based EM verification in
a conventional context.

VII. CONCLUSION

A fast and stochastic methodology for electromigration
analysis of power distribution networks has been presented
in this work. The impact of statistical global/local process
variation on EM TTF assessment has been examined.
Through novel variations-aware current density models,
we demonstrate significant margins in EM lifetime when
compared with the traditional worst-case approach. On
the other hand, we show that the traditional approach
is altogether incompetent in handling transistor-level local
variations leading to significantly optimistic lifetime estimates
for lower metal level interconnects. Additionally, we show
that the traditional component-level model is inadequate in
predicting the system failure since system failure often occurs
after multiple components fail. Through an extreme order
statistics based approach, we have demonstrated that system
failures, in form of IR drop exceedances, can be approximated
reasonably by an asymptotic kth component failure model.
As our method requires only one-time estimation of system
redundancy through Monte Carlo means, it is computationally
superior as compared to performing costly MC simulations
for every iteration of design-closure till the PDN optimization
is achieved. Thus, our approach efficiently bridges the gap
between component and system reliability for a given system.
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