
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

Variation-Aware Variable Latency Design
Saket Gupta and Sachin S. Sapatnekar, Fellow, IEEE,

Abstract—Although typical digital circuits are designed so
that the clock period satisfies worst-case path delay constraints,
the average input excitation often completes computation in
less than a clock cycle. Variable latency units (VLUs) allow
for improved throughput by allowing one clock cycle for some
computations, and two clock cycles for others, using hold logic
to differentiate between the two cases. However, they may
experience significant throughput losses due to the effects of
process variations. We develop a combined presilicon-postsilicon
technique for variation-aware VLU design that ensures high
throughputs across all manufactured chips. We achieve this by
identifying path clusters at the presilicon stage, such that each
element of a path cluster is likely to be similarly critical in a
manufactured part. We use sensors to determine which path
clusters is critical at the postsilicon stage and then activate the
appropriate hold logics. Practically, for a small number of path
clusters, significant improvements in throughput are achievable.
On a set of 32nm PTM-based ISCAS89 circuits, our scheme offers
15.1% throughput enhancements with only 3.3% area overhead.

I. INTRODUCTION

The traditional paradigm of optimizing a chip for the worst-
case delay can lead to significant inefficiencies. This has led to
the investigation of circuits that are optimized for “better-than-
worst-case,” rather than the worst-case, computations of a cir-
cuit. Better-than-worst-case computations occur frequently and
incur less than the worst-case delay. Recent efforts have tar-
geted an associated computation model under the synchronous
paradigm [1]–[8]. Two classes of techniques have been pro-
posed: telescopic or variable-latency units (VLUs) [1]–[5], and
error detection-correction units [6]–[8].

Although these methods must contend with the increasing
process, voltage, and temperature variations associated with
shrinking feature sizes, such issues have not been addressed
to date. We focus on the design of process variation-aware
VLUs.

A. Variable Latency Units

Unlike conventional circuits that complete operations within
one clock cycle, VLUs [1] allow the computation of the
circuit to be completed in a variable, integer, number of clock
cycles. By allowing high-probability operations to complete
in a single cycle, but allowing rarer events to use multiple
(typically two) cycles, the average cycle time may be shorter
than that of the conventional implementation, implying that
the circuit throughput for a VLU may be significantly larger.

This work was supported in part by the NSF under awards CCF-1017778
and CCF-1162267 and the SRC under grant 2012-TJ-2234.

Saket Gupta is with Broadcom Corporation, Edina MN, 55435, USA, and
Sachin S. Sapatnekar is with the Department of Electrical and Computer
Engineering, University of Minnesota, Minneapolis MN, 55455, USA (e-mail:
saket.gupta@broadcom.com, sachin@umn.edu)

The idea can be illustrated through the example of a 6-bit
ripple carry adder (RCA) shown in Fig. 1 [5]. With unit gate
delays, the conventional single-cycle fixed-latency circuit has
a cycle time, Tclk = 13 units, equal to the delay of its longest
path, corresponding to a throughput, η1 = 1/13. The VLU
implementation of this adder operates at a reduced cycle time,
Tclk < 13. For Tclk = 9, assuming that all primary input
signals are mutually independent and have signal probabilities
of 50%, 18.75% of the input patterns violate Tclk, and the
VLU allows these to complete execution in two cycles. Under
the 50% assumption above, since each pattern is equiprobable,
the average VLU delay is 0.8125× 9 + 0.1875× 18 = 10.69
units, and the throughput η2 = 1/10.69 is 21.6% better.

Fig. 1. A VLU implementation of a 6-bit ripple carry adder.

VLUs require dedicated circuitry for identifying the input
patterns that require two cycles for completion, to prompt each
output flip-flop to hold its current value at the next clock
transition (rather than clocking in a new value). This is referred
to as “hold logic” and its output is called the “hold signal.”
For a circuit with Ng gates, hold logic can be generated using
a block-based algorithm with O(Ng) complexity [1], [4].

The hold logic for the RCA is small and is shown in Fig. 1.
For general circuits, this area overhead is small compared to
the circuit’s area [1], [4], [5]. Such approaches can be applied
to arithmetic units with little overhead in the overall chip area,
since these units form a small fraction of the chip area, which
is dominated by caches and other units.

In general, the throughput η of a VLU can be evaluated as:

η =
1

Phold · 2Tclk + (1− Phold) · Tclk
=

1

(1 + Phold) · Tclk
(1)

where Phold is the hold logic activation probability.

B. Variation-Aware VLUs

Process variations refer to the variations in the values
of CMOS device parameters, such as the transistor width
(W), effective channel length (Leff), and oxide thicknesses
(tox) [9], that occur during the process of fabrication. Due
to process variation, performance-related metrics such as the
delay, slew, and power in circuits and architectures are severely
affected. While the error detection-correction units employ
techniques for variation tolerance [7], [8], and VLUs have
been designed to compensate for aging [2], [5], none of the
above research works investigate process variations in VLUs.

VLUs are characterized by the property that the hold logic is
highly dependent on distribution of delay amongst the various

paths in the circuit. If the choice of one-cycle and two-cycle
paths in a VLU is based on nominal delay estimates from
the presilicon stage, it is quite possible that process varia-
tions during the fabrication can change this distribution and
hence affect the functional correctness of VLUs. This can be
overcome using pessimistic delay estimates; however, due to
pessimism, there may be many paths that are identified as two-
cycle paths that can operate in one cycle in a manufactured
part. As a result, such manufactured parts are unable to achieve
the best possible throughput.

In this paper, we propose a combined presilicon-postsilicon
solution for constructing variation-aware variable latency de-
signs, for ensuring near-maximal throughputs. At the presili-
con stage, we employ a novel clustering scheme to capture
paths that are likely to be simultaneously critical, due to
similarities arising from structural and spatial correlations.
This scheme is based on an initial node clustering scheme,
followed by path clustering, based on a simple yet effective
metric for measuring the closeness of path delays. We build
hold logic for each such cluster. At the postsilicon stage,
we use a set of ring oscillator based sensors to determine
which clusters are critical: the hold logics for these clusters are
activated, and the others are power-gated, implying low power
overhead. We show that our clustering scheme provides large
improvements over a conventional approach, which would
pessimistically mark any potentially critical path as a two-
cycle path, even if it operates faster in a manufactured part,
with low area and power overhead. We refer to our scheme as
variation-aware hold logic (VAHL), and show that it maintains
functional correctness as well as high throughput by being
tailored to individual manufactured parts.

The rest of the paper is organized as follows: Section II first
presents some background on statistical timing and postsilicon
delay estimation. We then introduce our approach of variation-
aware VLUs in Section III. We overview our novel hold logic
scheme in Section IV, and then present our approaches for
node and path clustering in Sections V and VI. Finally, we
present our results and conclusions in Sections VII and VIII,
respectively.

II. BACKGROUND

A. Statistical Timing Analysis

The timing analysis engine used in this work is based on
standard block-based statistical static timing analysis (SSTA),
the formulation and algorithms for which are described in [10].
Variations in process parameters are modeled as Gaussian
distributions, resulting in delay quantities also being Gaussian.
SSTA accounts for the spatial correlations of parameters for
delay calculations. For devices and wires that are spatially
closely located, the electrical parameters will also tend to vary
in a more similar manner, resulting in their delays experiencing
similar shifts in different manufactured dies. Block-based
SSTA is based on a principal components decomposition of
the underlying variational parameters, performed once for
a process, and a topological SSTA traversal, performed for
each design, where the delay is propagated in the following

canonical form:

d = d0 +

n∑
i=1

kipi + kn+1pn+1 (2)

Here, d is the delay of interest, with a mean of d0, p1 through
pn are a set of principal components, pn+1 is a lumped
variable that represents the independent component, and k1
through kn+1 are the corresponding coefficients. The unit
operations during the topological traversal are the sum and
max operations; further details are available in [10]. In this
paper, it is implicit that all delays are computed statistically.
In the interest of bringing out our main ideas and reducing
notational clutter, details of the statistical operations are not
shown here; however, they rely on what are, by now, standard
operations that have been extensively explored in prior work.

We define the slack, ST[G], at an output node of gate G
as ST[G] = RT[G] − AT[G], where RT[G] is the Required
Time AT[G] is the Arrival Time at the node. We define the
slack time ST[P] for a path P as the slack at the output of
the final gate on the path. Note that AT[G], RT[G], and ST[G]
are all expressed in canonical form, similar to Equation (2).
For simplicity, we assume that flip-flop setup times are zero;
nonzero setup times can be easily incorporated.

We define criticality in terms of the ability to violate the
timing constraint, i.e., a path is critical if the its delay exceeds
Tclk, the clock constraint. In the presence of variations, a path
may be critical in some chips and noncritical in others. As
a practical measure, we define potentially critical paths as
those for which the µ + 3σ value of the presilicon statistical
path delay exceeds Tclk, where µ is the mean value of the
delay, and σ is its standard deviation. Under Gaussian delay
approximations, this 3σ condition implies path noncriticality in
99.73% of the manufactured dies, which practically means that
the path will never be critical in a manufactured part. Note that
this assumption is especially reasonable since real path delay
distributions are truncated Gaussians (e.g., delays cannot be
negative, although a full Gaussian allows for this possibility).
Under this definition, a gate G is potentially critical if the
µ− 3σ value of ST[G] is less than 0.

B. Postsilicon Delay Estimation

In order to determine the precise value for circuit delay in a
particular die, we adopt a methodology seated between SSTA
and full-chip testing [11], which uses measurements from a
small number of on-chip ring oscillators (ROs) as sensors,
located in different parts of the die. The essential idea is that
due to spatial correlations, delay shifts in a surrogate sensor
based on ROs can be used to predict delay shifts in any on-
chip logic.

In this methodology, SSTA is used at the presilicon stage to
obtain a delay vector dt = [d1, d2, ..., dk] of k such sensors.
At the postsilicon stage, delay measurements are performed
for a particular die to obtain their real delay vector dr. Using
dt and dr, a conditional delay PDF is evaluated for narrowing
the spread (variance) of the SSTA based circuit delay PDF, to
yield a close estimate of the real circuit delay in the fabricated
die.

III. VARIATION-AWARE HOLD LOGIC

As outlined earlier, critical paths in a fabricated die may
differ for different manufactured parts. In order to optimize
the throughput for each specific part, the hold logic must be
specific to the part. This motivates the need to develop a com-
bined presilicon-postsilicon procedure for the generation of a
hold logic (or a set of hold logics) that can be (a) functionally
correct across all chips at the postsilicon stage, (b) ensure high
throughput, and (c) incur low area and power overhead. We
will now proceed to describe several approaches for designing
VAHL, showing tradeoffs between the design overhead and
the throughput benefits.

A. The Conventional Pessimistic Approach

Timing estimates over the entire population of manufactured
die may be generated through either a corner-based method
or by using 3σ delay points from an SSTA-based presilicon
analysis. Using the results of such an analysis, we can generate
a single hold logic by applying the hold logic generation
algorithm to all potentially critical paths. After manufacturing,
some parts may operate faster than this estimate, but since the
presilicon hold logic is associated with a pessimistic presilicon
delay estimate, it is guaranteed to operate correctly.

B. The Enumerative Approach

An alternative approach that enumerates paths is recog-
nizably impractical, but will serve to motivate our eventual
solution. Under this scheme, we build a separate hold logic
corresponding to each of N potentially critical paths in the
circuit, P1, P2, . . . , PN , as identified by presilicon SSTA.

Fig. 2. The enumerative approach for VAHL generation.

If Pi is indeed critical in the manufactured part, then its
hold logic, fi, is activated; otherwise, it is power-gated and fi
is set to logic 0. This operation is controlled by a sleep signal
Si that is set to 1 when fi is to be power-gated, and is 0
otherwise. Fig. 2 illustrates this idea for an example where N
= 6. It shows the directed acyclic graph (DAG) representation
of a small circuit and its corresponding enumerative hold logic.
The convention used in this graph will be repeated throughout
the paper: potentially critical nodes and edges in the graph are
marked in red, all others are black in color, and primary inputs
(PIs) and primary outputs (POs) are represented as square
vertices.

The generation of the sleep signals is based on the prediction
of the postsilicon delays of each of these paths, and a crucial
ingredient of this solution is to determine whether a path is
critical or not in each manufactured part. We achieve this
through the scheme in [11] described in Section II-B. Given
a small set of measurements on k RO sensors, the problem of
prediction of the real delay, DPi

, of each path Pi, is framed

as an evaluation of a conditional probability; we leave out
the statistical details in this presentation and refer the reader
to [11] for a complete description. Based on the results of this
determination, the values of fi and Si are set according to the
criteria described above.

The enumerative method is impractical for two related
reasons. First, path enumeration can be prohibitively time-
consuming. Second, the hardware overhead, in terms of area
and power, of all hold logics over all paths can be large.

C. A Clustered Approach for VAHL

The two methods described earlier define two extremes: the
pessimistic approach has low overhead since it generates a
single hold logic, but sacrifices throughput; the enumerative
approach achieves the best possible throughput, but may have
a large overhead since the number of hold logics required,
N , can be very large. We adopt a strategy inspired by the
notion of the “Middle Way” [12] to find a solution for VAHL
generation that is a happy medium between the two extremes.

A key observation that drives our approach is that since
delay variations in a circuit can show significant amounts
of correlation, for two reasons. First, structural correlations
imply that many potentially critical paths may share common
subpaths. Second, spatial correlation of random variations can
result in correlations in the delays of physically nearby paths,
even if they do not have many gates in common. We define
the notion of a path cluster. Membership within a path cluster
is defined according to the following criterion: if any path in
the cluster is critical (or noncritical) at the postsilicon stage
for a particular chip, all other paths in the set are deemed to
have the same property. Therefore, instead of treating these
paths separately, as in the enumerative approach, we may use
a combined hold logic, driven by a single sleep signal, for a
path cluster. By construction, this VAHL will be pessimistic
over a cluster, i.e., it will activate the hold logic for the cluster
if even one path within a cluster is critical.

Fig. 3. Path clustering based approach for VAHL generation.

Using this principle, the N potentially critical paths in the
circuit may be grouped into m path clusters, with m hold
logics in all, which together will constitute the VAHL.1 Each
path cluster, denoted by Cp, will contain a subset of all N
potentially critical paths, such that none of these N paths is
left unclustered. Further, by definition, each of these clusters
will have paths whose delays are similar and correlated, and
will vary in the same way in different chips. We will discuss

1Note that grouping paths together in a cluster implies that the resulting
hold logic is the logical OR of the individual hold logics. This provides for
the possibility of logic minimization through logic sharing. However, VAHL
does not allow any logic sharing amongst the hold logics of different path
clusters, since we need the ability to put some of these hold logics to sleep
if the corresponding path cluster is noncritical in the manufactured part.

computationally efficient algorithms for the generation of path
clusters in Sections V and VI.

This scheme can be illustrated through Fig. 3, which shows
m = 2 separate path clusters for the circuit of Fig. 2, which
had N = 6 paths. Consequently, only two hold logics are
required, instead of six hold logics in the enumerative case in
Fig. 2. Based on this clustered scheme, we make the following
observations:
• The pessimistic case is a special extreme case, where
m = 1. In general, whenever m > 1, this approach
will involve less pessimism than the pessimistic approach
outlined above, and hence result in higher throughput.

• The enumerative case corresponds to the opposite extreme,
where m = N .

Therefore, with appropriate path clustering, the number of
outputs m can be tuned to be much smaller than enumeration,
yielding (as will be shown in Section VII) significantly better
throughput than the pessimistic case, but with much less
overhead than enumeration.

IV. IMPLEMENTING CLUSTERED VAHL: OVERVIEW

We now present a more systematic description of our
clustered approach through Algorithm 1, including further
details for generating the select signals. The procedure consists
of a presilicon stage (lines 1 through 7) where path clusters
are generated, followed by a postsilicon stage (lines 8 through
14) where the criticality of the path clusters is determined.

Algorithm 1: VAHL Generation Framework
1 /* Presilicon Stage */

Input: Tclk, Circuit: a levelized circuit
2 Perform SSTA
3 {Cp,1, ..., Cp,m} = GENERATEPATHCLUSTERS(Circuit)
4 for each path cluster Cp,i, 1 ≤ i ≤ m do
5 Compute fi = hold logic for Cp,i
6 DSSTA

Cp,i
← maximum delay {∀ paths in Cp,i}

7 Determine dt = [d1, d2, ..., dk]
8 /* Postsilicon Stage */
9 for each manufactured chip do

10 dr = [d1, d2, ..., dk] from measurements of RO sensors
11 for each path cluster Cp,i, 1 ≤ i ≤ m do
12 Compute Dcond

Cp,i
= PDF (DSSTA

Cp,i
| dt = dr) using the

method in [11]
13 Dr

Cp,i
← (µ+ 3σ) of Dcond

Cp,i

14 (Dr
Cp,i

> Tclk) ? {Si ← 0} : {Si ← 1; fi ← 0}

At the presilicon stage, given a Tclk specification at the POs
of the circuit, we first perform an SSTA (line 2), and generate
m path clusters {Cp,1, ..., Cp,m} (line 3) using a procedure
that will be described in Sections V and VI. For each of these
path clusters, Cp,i, we then evaluate the corresponding hold
logic (line 5). We also compute, in canonical SSTA form [10],
the delay PDF of the maximum delay over all paths in the
path cluster, DSSTA

Cp,i
(line 6). Finally, we determine, also in

canonical form, the statistical presilicon delay vector dt =
[d1, d2, ..., dk] of the k RO-sensors on the chip (line 7).

At the postsilicon stage, we aim to identify which of the m
path clusters will be critical in a particular chip, so that we can

decide appropriate subset of these that should be active on that
chip. We therefore perform postsilicon measurements for the
RO sensors (line 10) for each manufactured chip to obtain the
resultant RO sensor delay vector sample, dr = [d1, d2, ..., dk].
This information is used to predict the postsilicon delays of
each path cluster Cp,i based on a conditional PDF evalua-
tion [11], Dcond

Cp,i
, of CP,i (line 12). Next, the real delay, Dr

Cp,i
,

of Cp,i is estimated (line 13) to be the (µ + 3σ) point of its
conditional PDF. In practice, this value is very close to its
mean, as the conditional PDFs have a small variance [11].

Having estimated the real delays, we then determine (line
14) if Cp,i is critical in the specific manufactured chip by
comparing the values of Tclk and Dr

Cp,i
. If the estimated delay

is larger than Tclk, then the hold logic is left active; otherwise
it is put to sleep and the corresponding fi is set to zero.
The hardware implementation, shown in Fig. 4(b), performs
a floating point addition of Dr

Cp,i
and the 2’s complement of

Tclk, and checks the sign bit of the result. If this sign bit is 0,
then the clock period has been exceeded; otherwise not.

(a) (b)

Fig. 4. Postsilicon processing for determining the sleep signal values:
(a) overall flow, and (b) hardware for sleep signal generation.

We now evaluate the overhead required to generate the
sleep signals. All postsilicon steps described above are a one-
time computation for each manufactured part. The conditional
PDF evaluation for all m path clusters can be performed by
a simple function; the runtime for one such evaluation is
reasonable [11]. Practically, as we will find in Section VII, the
number of path clusters generated by our scheme is typically
less than 7. The calculation for sleep signal generation de-
scribed in line 14 is also only a one-time computation that can
leverage hardware (hardware comparators or adders, as well as
registers) that already exist on-chip in many designs. Hence,
very little extra hardware is required for generation of these
sleep signals, other than a few multiplexers to appropriately
route data to these units.

V. ENABLING PRACTICAL PATH CLUSTERING

A. Qualitative Criteria for Path Clustering

A set of paths in the circuit should be clustered together,
with the hold logic controlled by a single sleep signal, if they
all have a high probability of together being critical/noncritical
after fabrication. This means that they should experience
similar shifts in their delays from similar mean values. The
similarity of mean values is an important consideration, as
depicted in Fig. 5, which shows the PDFs of the delays DPi

and DPj
of paths Pi and Pj . Both PDFs are observed to

have a high correlation, but since their mean values differ

Fig. 5. Importance of comparing the mean of the two path delays.

significantly, in most manufactured dies, path Pj may have
DPj < Tclk , whereas the path Pi may have DPi > Tclk .

We therefore define the path closeness of any two paths
based on two criteria: (a) the correlation between the path
delays, and (b) the mean values of the path delays. Based on
this closeness metric, if any two paths are “close enough”,
they can be clustered together.

B. Reducing the Expense of Path Clustering

The direct use of a path closeness metric, to perform
O(N2) pairwise comparisons of N potentially critical paths,
is impractical as N can be very large since it involves a
form of path enumeration. This leads us to the need of a
procedure to reduce the computational expense associated with
path clustering. In pursuit of this, we first coarsen the graph by
generating node clusters in polynomial time. This coarsening
step effectively reduces the number of paths to be enumerated
to a practical number. As will be shown in Section VII-D,
this enumeration takes even less computational time than a
topological traversal.

At a high level, our path clustering scheme works as fol-
lows: given a levelized circuit, the function GENERATEPATH-
CLUSTERS(Circuit) invoked by Algorithm 1 is divided into
two parts: first we call a function, GENERATENODECLUS-
TERS(Circuit), to be described in Algorithm 2, to generate a
list of node clusters, LCn

, for all critical nodes of the circuit.
This step will be shown to be performed in a block-based
manner. Next, we use these node clusters to extract the list of
m path clusters, as described in Section VI-B, such that this
step requires minimal enumeration.

C. Node Cluster Generation: Concept

1) The Node Closeness Metric: Formally, a node cluster
refers to a critical connected subgraph of the original circuit
graph that forms a cluster of potentially critical nodes and
edges of the original circuit under a specified node closeness
metric. The inputs of this connected subgraph come either
from the PIs or from the outputs of some other node cluster,
and whose outputs go either to the critical POs or to the inputs
of some other node cluster. The node cluster is abstracted as a
set of input-to-output connections connected by node cluster
arcs; by definition, a node cluster arc represents a subpath of
some potentially critical path of the circuit. An illustration of
a node cluster is shown in Fig. 6.

We first begin with a definition of node closeness of two
critical nodes, which if sufficiently high, allows for the two
nodes to be clustered together. Since our goal is to reduce
path clustering computation by development of node clusters,
this definition should be constructed in a way that, although
the metric is defined for nodes, it also somehow reflects on
the closeness of the set of paths that pass through these two

(a) (b) (c)
Fig. 6. The concept of a node cluster: (a) the original circuit, (b) node
cluster formed with critical nodes and edges, and (c) node cluster with internal
interconnections as node cluster arcs.

nodes. In other words, the node closeness metric must capture
information about path delays of all potentially critical paths
passing through the node. In this context, we define the metric
M for the output port of a potentially critical gate G as:

M[G] = AT[G] + (Tclk − RT[G]) = Tclk − ST[G] (3)

where, as usual, ST[G], RT[G], and AT[G] are respectively,
the slack, required time, and arrival time at the output of G. As
before, these are statistical quantities represented in canonical
SSTA form.

The term, AT[G], represents the statistical maximum of the
delays of all paths from PIs up to G, while the term, (Tclk −
RT[G]), represents the statistical maximum of the delays of
all paths from G upto the POs. Therefore, M[G] captures the
statistical maximum delay over all paths passing through G.

It is important to note that unlike the deterministic case, in
which M[G] will be able to capture only the longest path
passing through G, in the statistical case, this formulation
captures delays over all potentially critical paths through G.

We now use this metric to define the closeness between
two nodes, in terms of (a) the correlation, and (b) the mean
ofM for the two nodes. A high correlation ofM for the two
nodes implies that the delays of paths passing through the
two nodes may also be well correlated. Further, similar mean
values of M implies that these paths may also have similar
mean values. This is important in the light of our previous
discussion in Section V-A.

For nodes ni and nj , we formulate the closeness metric as:

Closeness C
(
ni, nj

)
= 1, if (4)

ρ
(
M[ni],M[nj]

)
≥ ρth, (5)

and, fµ
(
ni, nj

)
≥ fµ,th (6)

where ρ is the correlation coefficient, ρth and fµ,th are user-
defined thresholds. By definition, both ρ and fµ,th lie in the
interval [0, 1]. Further,

fµ
(
ni, nj

)
=

min
{
µ(M[ni]), µ(M[nj])

}
max

{
µ(M[ni]), µ(M[nj])

} (7)

The above node closeness metric states that two nodes are
close enough to be clustered if the correlation betweenM for
the two nodes is sufficiently high (Equation (5)), and if the
mean value ofM for the two nodes are similar (Equation (7)).

With ρth = fµ,th = 0, the conditions in Equations (5)
and (6) will always be satisfied: the minimum correlation
between any two M values can be 0, and the mean of M
can have a minimum value of 0 (since M represents path
delay, which cannot be negative). Hence, all potentially critical
nodes are forced to be clustered in a single node cluster,
corresponding to the pessimistic approach in Section III-A.

For ρth = 1 and fµ,th = 1, the condition of Equations (5)
and (6) will be most likely violated by every pair of gates in
a practical circuit, as due to variations, it is very unlikely that
two nodes will have M to be exactly of the same value on
the same die. Each node cluster may therefore be classified as
a node cluster in itself. This reaches to the other extreme of
path enumeration discussed in Section III-B.

Any value in (0, 1), therefore, for both ρth and fµ,th
corresponds to the clustered solution with different degrees of
pessimism. We elaborate in more detail on the considerations
for an appropriate choice of threshold values in Section VII.

(a) (ρth, fµ,th) = (0.0, 0.0) (b) (ρth, fµ,th) = (0.9, 0.9)

(c) (ρth, fµ,th) = (0.99, 0.99) (d) (ρth, fµ,th) = (1.0, 1.0)

Fig. 7. Results of node cluster generation for ISCAS89 benchmark s27, for
four different values of (ρth, fµ,th).

2) Example: The above observations are depicted by the
results of the application of this metric on an ISCAS89
benchmark circuit, s27, as shown in Fig. 7 (the clustering
algorithm will be described in Section V-D). We observe that:
• With (ρth, fµ,th) = (0.0, 0.0), all potentially critical gates

are clustered into a single node cluster.
• With (ρth, fµ,th) = (0.9, 0.9), the pessimism decreases, and

the result is three node clusters in all.
• As the threshold values reach closer to 1.0, the pessimism

further decreases and we obtain four node clusters with (ρth,
fµ,th) = (0.99, 0.99).2

• When both thresholds are set to 1.0, we see that each node
in itself becomes a node cluster, confirming our earlier
observation.

D. A Block-Based Algorithm for Node Cluster Generation

Based on the above metric and a measure of node closeness,
we now illustrate our block-based nonenumerative procedure
for generating node clusters through an example. We then
formalize this procedure into an algorithm.

Our approach iteratively grows a cluster by topologically
traversing the circuit graph backwards from the POs to the
PIs. An atomic operation consists of examining an already
clustered node G (as illustrated by an example in Fig. 8), and
determining whether the fanins nodes, F1, F2, and F3, of G are
close enough to be clustered with G, based on Equation (4).
In this example, both F2 and F3 satisfy the criterion, and the
node cluster is grown to include F2 and F3 in the cluster.
Next, the most recently added nodes are compared with their
as-yet-unclustered fanins, and the process continues until the
cluster grows no further. Any inputs that could not be added

2With larger circuits, the variations are enhanced, and results in large
overhead as will be shown in Section VII-B.

to the current cluster are used to seed new clusters, and the
method continues until all clusters have been grown.

Fig. 8. Illustration of node cluster growth from a particular node in the
circuit, which is already in a cluster.

Since at every step we examine only the fanins of a node,
this computation can be easily performed using a block-based
manner over all nodes in the circuit. This procedure is a
heuristic and we do not claim it to be exact or optimal. For
instance, we may test the fanout nodes for closeness, and grow
the cluster. Second, our cluster growth approach is based on
comparisons between a gate output and its fanin nodes, but
not between the fanin nodes and existing nodes in the cluster.
In general, if node n1 is close to n2 and n2 is close to n3,
there is no guarantee that transitivity applies, making n1 close
to n3. Therefore, it is possible that our method may cluster
nodes more than necessary: the consequence of this is a loss
in throughput. As will be shown in Section VII, this loss is not
significant under this fast heuristic.

Algorithm 2 presents a formalized description of the node
cluster generation function for a circuit: given a levelized
circuit, the function generates a list, LCn , of all node clusters
of the circuit, along with its input-output connections. For
simplicity, a node cluster is denoted as Cn in the algorithm.

The algorithm begins with the potentially critical POs of
the circuit and cluster them into node clusters based on their
closeness C in lines 2 to 10. After this initialization, the
function then grows the existing clusters in lines 11 to 34.
First, all unclustered potentially critical nodes are initialized
as unvisited in line 13 (a node is marked visited to indicate that
it has been processed for node cluster growth). The algorithm
then repeatedly picks up each unvisited potentially critical
node (only once), including the POs, in an existing node
cluster, in a reverse topological manner (from POs to PIs)
in lines 14 to 21, and initializes a new node cluster with
it if the node is not already clustered. It then examines all
its unclustered, potentially critical fanin nodes in lines 22 to
33, to check if they can be included in this node cluster by
performing the closeness test in line 26, effectively growing
the cluster. Along with such computation, the external input
and output connections of the node clusters are also updated.
An input/output connection for a node cluster is created when
some of its nodes are connected to either a potentially critical
PI, a potentially critical PO, or to a potentially critical gate in
some other node cluster.

Having obtained all the node clusters from Algorithm 2,
the node cluster arc connections and arc delays for each node
cluster (connections from its inputs to outputs as depicted in
Fig. 6(c)) are determined using the all-pairs input-to-output
delay calculation algorithm of [13], which trades off space for
a very small runtime using level queues.

The complexity of Algorithm 2 is O(K2 + Ng): K was
defined as the number of POs in Algorithm 2, and Ng are the
number of gates in the levelized circuit. The first term, K2

Algorithm 2: GENERATENODECLUSTERS

1 /* Algorithm for node cluster generation */
Input: Circuit: a levelized circuit without node clusters
Output: LCn : list of node clusters with input-output

connections
2 K ← number of POs in the circuit
3 LCn .Clear() for each critical unclustered POi, 1 ≤ i ≤ K do
4 Cn ← new node cluster initialized with POi
5 LCn .Insert(Cn)
6 POi ← output connection of Cn
7 for each critical unclustered POj , i < j ≤ K do
8 if closeness(POi, POj) = 1 then
9 Cn.Insert(POj)

10 POj ← output connection of Cn

11 // Node cluster growth, beginning with POs
12 l← number of topological levels in the circuit
13 G.visited ← 0 ∀ critical nodes G
14 for each critical node G at level l ≥ 1 do
15 if G.visited = 0 then
16 G.visited ← 1
17 if G is not already clustered then
18 Cn ← new node cluster with G
19 LCn .Insert(Cn)
20 G ← output connection of Cn
21 else Cn ← G’s node cluster
22 for each critical fanin F of G do
23 if F ∈ C′

n 6= Cn then
24 F ← input connection of Cn, output

connection of C′
n

25 else
26 if closeness C(G, F) = 1 then
27 Cn.Insert(F)
28 if F is critical PI then
29 F ← input connection of Cn

30 else if all critical fanouts of F have been
visited then

31 C′
n ← new node cluster with F

32 LCn .Insert(C′
n)

33 F ← input connection of Cn, output
connection of C′

n

34 l = l − 1;

35 return LCn

comes from performing the pairwise closeness test of all K
POs. The second term is the complexity of visiting each node
in the levelized circuit in a reverse topological manner.

VI. GENERATING PATH CLUSTERS AND VAHL

Having presented the theory of node clusters in Section V,
we now present the link between node clusters and path
clusters in this section.

A. The Relation Between Node Clusters and Path Counts

Our starting point is a coarsened circuit with node clusters,
illustrated in Fig. 9(b), where the blocks represent node clus-
ters as in Fig. 6. These node clusters are externally connected
to other node clusters through their input-output ports (de-
termined by Algorithm 2), through external interconnections

between these node clusters, which are simply a subset of all
interconnections of the original uncoarsened circuit (the rest
of the interconnections are present within the node clusters).
If we begin from the PIs, we can traverse the coarsened circuit
along the external connections of the node clusters to reach
to the POs. The coarsened circuit of Fig. 9(b) is formed from
the original s27 circuit in Fig. 9(a), with (ρth, fµ,th) = (0.9,
0.9). Note that all nodes and edges of the coarsened circuit are
potentially critical, since node clusters only include potentially
critical nodes.

(a) Uncoarsened s27 circuit (b) Coarsened s27 circuit

Fig. 9. Illustration of a coarsened circuit.

Each internal arc of a node cluster from an input port Ik
to an output port Ol of that node cluster, captures in itself,
potentially many (≥ 1, to be more specific) partial paths
from Ik to Ol of the uncoarsened circuit, that lie within
the node cluster.3 A path, Pc,i, in the coarsened circuit,
being constituted by multiple such arcs, therefore, encapsulates
1 ≤ ni ≤ N potentially critical paths of the uncoarsened
circuit in itself, where N is the total number of potentially
critical paths in the uncoarsened circuit. Therefore, each path,
Pc,i, in the coarsened circuit is a cluster of ni potentially
critical paths of the uncoarsened circuit, with 1 ≤ ni ≤ N .

If each of the arcs lying on Pc,i encapsulates only one partial
path of the uncoarsened circuit, it implies that Pc,i is a path
cluster that contains only one potentially critical path of the
uncoarsened circuit, resulting in ni = 1. This was observed
to occur in Fig. 7 for all paths Pc,i with one of the extremes:
ρth = 1 and fµ,th = 1: each node in the uncoarsened circuit
becomes a node cluster in itself. For the other extreme, ρth = 0
and fµ,th = 0, there exists only one node cluster, as discussed
in Section V-C, and the number of paths is upper-bounded by
the product of the number of PIs and the number of POs.

In other words, the number of paths in the node clusters is
no more than, and often substantially less than, the original
number of paths, N . For our example of the small s27 circuit
shown in Fig. 7, this corresponds to reducing 6 potentially
critical paths in the uncoarsened circuit to 4 paths of the
coarsened circuit. This reduction seems to be small for s27;
in larger circuits, this reduction is also large, as will be shown
in Section VII.

B. Path Clustering

The number of such coarsened circuit paths, even if they
are fewer than those in the uncoarsened circuit, are still seen
to be appreciably large in many circuits. This can result in
a large area and power overhead of the hold logics. In such
a case, we proceed further to apply our second step in the
reduction of the number of coarsened circuit paths, reducing

3Every node cluster input may not necessarily have an arc to every node
cluster output.

also the number of hold logics that must be generated: if the
delays of any two such paths are close enough, then they can
be further clustered together.

For this purpose, we can now use and mathematically
formulate a path closeness metric, similar to that introduced
earlier in Equation (4), for two paths Pc,i and Pc,j in the
coarsened circuit:

Closeness C
(
Pc,i, Pc,j

)
= 1, if (8)

ρ
(
delay[Pc,i], delay[Pc,j]

)
≥ ρth (9)

and fµ
(
Pc,i, Pc,j

)
≥ fµ,th (10)

where

fµ
(
Pc,i, Pc,j

)
=

min
{
µ(delay[Pc,i]), µ(delay[Pc,j])

}
max

{
µ(delay[Pc,i]), µ(delay[Pc,j])

} (11)

In practice, given the reduction in the number of the paths as
we move from the original circuit to the coarsened circuit, it is
practical to enumerate the paths without much computational
overhead and perform pairwise comparisons to cluster them.4

The path clustering step can therefore be formalized as
follows: given the list of node clusters, LCn

, from Algorithm 2,
we first enumerate all paths in the coarsened circuit through
a simple depth-first traversal of the coarsened circuit. Next,
a pairwise comparison is performed between these paths to
check if they can be clustered together by applying the
closeness test of Equation (8), resulting in a greatly reduced
number of clusters of coarsened circuit paths.

(a) (b)

Fig. 10. Path clusters for circuit s27 in (a) the coarsened circuit and (b) the
original circuit.

The application of this scheme is shown in Fig. 10 for s27
circuit. Path coarsening in the second step reduces 4 paths in
the coarsened circuit further down to 2 clusters of these paths.
Hence node and path clustering allows for the number of hold
logics to be reduced by 3× as compared to the enumerative
scheme discussed in Section III-B (which generated 6 hold
logics). Again, this reduction will be seen in Section VII to
be much more in larger circuits.

C. Generation of VAHL
Having obtained the coarsened circuit path clusters, we now

generate a separate hold logic corresponding to each of these
path clusters, by applying the hold logic generation algo-
rithm [1], [4]; each hold logic corresponds to the sensitization
criterion of all paths within the path cluster.

4Note that while this is computationally feasible in the presilicon phase,
node clustering has only solved a part of the problem. Path clustering is still
essential to reduce the hardware overhead of hold logic.

Fig. 11. VAHL generated for circuit s27.

For our running example of circuit s27, the two-output
VAHL along with the sleep signals is shown in Fig. 11. These
sleep signals can be selectively exercised in the postsilicon
stage for various dies.

VII. EXPERIMENTATION AND RESULTS

The proposed algorithms were implemented in C++, using
the MinnSSTA [14] software for SSTA under 32nm PTM [15]
models. The methods were exercised on the ISCAS89 bench-
mark circuits on a 3.0GHz CPU with 8GB RAM. The SSTA
grid size for each circuit is taken from [10], [11]. We first
present the baseline for comparison and a heuristic for suit-
able choice of the threshold parameters. Next, we provide a
tabulation of all results, followed by a detailed analysis.

A. Baseline

In order to evaluate the effectiveness of our clustering
approach, for comparison purposes, we choose the pessimistic
VLU design (Section III-A, ρth = fµ,th = 0) as the baseline.
Recall that the pessimistic VLU has only one hold logic, and
identifies all potentially critical paths as two-cycle paths in the
manufactured chip if the clock constraint is violated.

In the discussion to follow, we will discuss the results for
overhead in area and power (denoted as ∆A (%) and ∆P (%),
respectively) as compared to this baseline. These overhead
arise due to a higher number of hold logics (less pessimism)
in the clustered approach. Further, the resultant throughput
enhancements are denoted as ∆η (%).

B. Effects of Varying Threshold Values

The process of node and path cluster generation is quite
sensitive to the values of ρth and fµ,th, as discussed in
Sections V-C and VI. We recall that a good choice of
ρth, fµ,th ∈ (0, 1) should give us ∆η value to be as close
to (or as high as) the enumerative VLU design, and the ∆A
values to be as close (or as low) as the pessimistic VLU design.

To investigate such a possibility, we plot the trends of
∆A against (ρth, fµ,th) for two ISCAS89 circuits, s1196 and
s9234, in Fig. 12, with (ρth, fµ,th) being varied from (1, 1)
to (0.4, 0.4). The value of ∆A is observed to be very high
at (1, 1), confirming that the enumerative approach is very
expensive. The overhead decreases and becomes very small
when ρth, fµ,th values are decreased to 0.6 and further down
to 0.4, implying that at this point, the design has become as
pessimistic as the baseline. However, some “knee” points may
be identified, where ∆A is low (from 5% to 15%). This is
observed to be true for all the circuits in general (the threshold
values at which such knee points are observed may differ).

0.4

0.6

0.8

1

0.4

0.6

0.8

1

20
40
60
80
100

f
µ,th

 ρ
th

∆
 A

 (
%
)

(a) s1196

0.4

0.6

0.8

0.4

0.6

0.8

200

400

600

800

f
µ,th

ρ
th

∆
 A

 (
%
)

(b) s9234

Fig. 12. Variation of ∆A with (ρth, fµ,th) for s1196 and s9234.

The trend of ∆A with (ρth, fµ,th) is not strictly monotonic;
its value may be little higher for lower threshold values. VAHL
area depends not only on the number of hold logics, but also
their logical complexity. A single hold logic may contain a
large number of terms in its (minimized) logical expression,
hence requiring a large number of gates to realize such logic.
Compared to this, a number of hold logics with only a few
terms in their (minimized) logical expressions may need only
a small hardware for logic implementation.

For threshold values less than 0.65, ∆A becomes very small.
It is therefore useful to explore potential points in the search
space contained within the points (0.65, 0.65) and (1, 1).

C. Choice of Threshold Values: Bisection-Based Heuristic
A naive approach to determine a (ρth, fµ,th) point, that

is as close to (1, 1) as possible and also results in a low
area overhead, can be to evaluate ∆A and the number of
path clusters (separate hold logics) for multiple combinations
of (ρth, fµ,th) between (0, 0) and (1, 1). This approach,
however, involves evaluations at many (ρth, fµ,th) points, and
is therefore expensive in runtime (we use the term “evaluation”
to refer to the generation of node and path clusters, and the
corresponding hold logics).

We therefore employ a fast bisection-based heuristic (de-
scribed shortly) to determine a feasible point that satisfies the
following criterion for feasibility: (a) offers less than 15% area
overhead compared to the baseline, (b) results in generation
of less than 10 hold logics in total. Criteria (a) enables the
search to reach close to the “knee” points observed in Fig. 12,
maintaining a low area overhead. Criteria (b) ensures that the
number of path clusters are within a certain bound, as larger
number of path clusters imply increased runtime. Further, we
add another restriction to the heuristic, of allowing a maximum
of 6 iterations, again, to keep the runtime within bounds.

As will be shown in Section VII-D, this heuristic has a very
small runtime. We do not claim this to give us an optimal point
with lowest area overhead and high throughput, but is observed
to yield good results.

The overall idea of the heuristic is simple, and is shown
through the example in Fig. 13. The search begins with an
initial evaluation at point (a, b) (chosen as (0.65, 0.65) for our
method, following our discussion in Section VII-B), marked
as 1 in Fig. 13. The search then tries to move closer to
(1, 1) by bisecting the diagonal and performing an evaluation
at the midpoint of the diagonal (marked as point 2 in our
example). Once a midpoint is reached, the following options
are considered to proceed further:

Fig. 13. Bisection based approach for a suitable (ρth, fµ,th) choice.

• The midpoint is feasible (according to the criterion de-
scribed above). For example, point 2 is a feasible point
in Fig. 13. In that case, the search proceeds further towards
(1, 1) by again bisecting the remaining part of the diagonal,
reaching to point 3 .

• The midpoint is infeasible. For example, after reaching to
point 3 , the search finds it infeasible. In that case, the
search goes off-diagonal to either of the corner points 4
or 4’ (the choice is random). In the running example, the
search moves to point 4 .
If point 4 is feasible (as is so in this case), the search then
again proceeds in a 45◦ direction along a new diagonal of
the reduced square, towards point 5 , in exactly the same
way as it had proceeded from point 1 . If point 4 is
infeasible, the search goes to the other choice: point 4’
and tries to proceed in the same way as from point 4 .

• The midpoint and both the off-diagonal corner points (points
3 , 4 , and 4’) are infeasible. Then the last encountered

feasible point (in this example, point 2) will be reported
as the suitable (ρth, fµ,th) point.

D. Runtime

We now present the runtime for the above heuristic in
Table I for ISCAS89 circuits listed in C1. This tabulation
helps us to evaluate the runtime of node and path clustering
steps (each iteration of the heuristic involves node and path
clustering). For each of these circuits, the runtime for SSTA
is listed in C2, for comparison with the runtime of the node
and path clustering steps, as discussed shortly.

Columns C3–C10 present the results for heuristic. C3 and
C4 list the final values of (ρth, fµ,th) obtained from the
heuristic. C5–C7 then list the time taken by the heuristic for all
iterations to arrive at these threshold values, shown separately
for node and path clustering steps in C5, C6, and also their
sum total in C7 (within roundoff errors).

Further, to get an estimate of the runtime for each iteration
(a single node and path clustering step), C8–C10 list the
average runtimes (overall runtime / number of iterations),
again separately for the node and paths clustering steps in
C8, C9, and the summation in C10.5

The heuristic needed 6 iterations for each of the circuits. For
circuits other than s5378, this happens as only a maximum of
6 iterations are allowed (otherwise the heuristic would have a

5The exact runtime for node and path clustering step depends on the
values of (ρth, fµ,th); higher thresholds generally result in a higher runtime.
Evaluating the average gives a balanced estimate, and is therefore useful.

TABLE I
RUNTIMES (IN SECONDS) FOR THE BISECTION-BASED HEURISTIC

Circuit SSTA

Heuristic

ρth fµ,th

Runtime for Node and Path Clustering
Overall Average

Nodes Paths Total Nodes Paths Total
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
s27 0.0 0.87 0.91 0.0 0.0 0.0 0.0 0.0 0.0
s1196 0.7 0.78 0.87 0.1 2.7 2.8 0.0 0.4 0.5
s5378 7.4 0.91 0.91 0.4 0.5 0.8 0.1 0.1 0.1
s9234 14.6 0.82 0.91 4.0 32.1 36.1 0.7 5.4 6.0
s13207 74.3 0.91 0.87 6.4 151.6 158.0 1.1 25.3 26.3
s15850 89.6 0.87 0.91 4.5 24.6 29.2 0.8 4.1 4.9
s35932 229.8 0.96 0.96 2.3 0.9 3.2 0.4 0.1 0.5
s38417 207.2 0.82 0.91 7.4 111.6 119.0 1.2 18.6 19.8
s38584 233.0 0.91 0.96 1.8 0.2 2.0 0.3 0.0 0.3

higher number of iterations and hence, a higher runtime). For
s5378, the case of midpoint and both the off-diagonal corner
points being infeasible is encountered, and the heuristic needed
exactly 6 iterations.

It is observed that the overall runtime of the heuristic (in
C5–C7) is in general very small; less than half a minute for all
the circuits, except s13207 and s38417. For both these circuits,
the sizes of node and path clusters are large. Thus, both the
node and path clustering steps take more runtime for these
circuits compared to other circuits.

The small runtimes of the path clustering step indicate that
our intermediate node clustering step (which also has a very
small runtime) is very effective in reducing the number of
paths that need to be enumerated in the coarsened circuit. Di-
rect path enumeration in the uncoarsened circuit can otherwise
be very expensive.

Further, the path clustering step involves path enumeration
in the coarsened circuit, and hence, in general, contributes
more to the overall runtime than the node clustering step.
However, it is smaller for s35932 and s38584 due to a small
number of coarsened circuit paths (the exact numbers are
described shortly). For 35932, this happens as there are only
a few potentially critical paths. For s38584, the degree of
correlation is quite high, which enables the encapsulation of a
large number of potentially critical paths of the uncoarsened
circuit in only a small number of coarsened circuit paths (this
follows from our discussion in Section VI-A). The runtime of
clustering steps, therefore, does not necessarily depend on the
size of the circuit.

The average runtimes listed in C8–C10 give an estimate
of the runtime per iteration, i.e., for a single node and path
clustering step. For all the circuits, the node clustering step
takes less than 1-2 seconds on an average. The path clustering
step takes less than half a minute for all circuits, (less than 10
seconds in most cases). Further, the total average runtime in
C10 is significantly smaller than the runtime for SSTA listed in
C2 for all the circuits. This is intuitive as the node clustering
step involves a topological traversal only on the potentially
critical gates (a subset of all the gates traversed in SSTA).
Also, extending our previous discussion, even though the path
clustering step involves a path enumeration, the intermediate
node clustering step makes it even cheaper than a topological
traversal of the SSTA.

E. Tabulation of Results

Having obtained a suitable (ρth, fµ,th) point, we use this for
our clustering approaches and present the results in Table II.
For convenience, we have marked the kth column in the table
as Ck. We first discuss the details of Table II, and then analyze
the results.

TABLE II
RESULTS FOR VAHL UNDER THE CLUSTERED (ρth , fµ,th 6= 0) AND

ENUMERATIVE (ρth = fµ,th = 1) APPROACHES.

Circuit ρth fµ,th

Results from Clustering VAHL Results

|LCn | N NC m
∆A ∆P (%) ∆η(%)
(%) µ σ µ σ

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
s27 0.87 0.91 4 12 8 2 11.7 6.6 5.3 12.1 11.5

1 1 16 12 12 105.3 21.5 19.5 12.4 9.3
s1196 0.78 0.87 16 656 558 4 14.5 10.8 2.3 25.5 15.4

1 1 337 656 656 109.2 41.2 22.5 38.5 9.5
s5378 0.91 0.91 7 520 121 6 -5.6 -2.2 1.2 27.3 20.9

1 1 157 520 520 47.5 22.5 27.5 29.5 20.5
s9234 0.82 0.91 42 119556 628 5 4.7 2.1 1.6 6.8 8.6

1 1 1368 119556 – – – – – –
s13207 0.91 0.87 12 189666 689 2 0.3 -0.2 0.3 24.3 15.0

1 1 1126 189666 – – – – – –
s15850 0.87 0.91 3 2.6e7 612 2 1.4 -1.0 0.5 2.8 0.7

1 1 1383 2.6e7 – – – – – –
s35932 0.96 0.96 10 174 60 4 -0.7 -0.3 0.3 1.0 1.0

1 1 1185 174 174 100.5 37.4 28.1 1.2 0.9
s38417 0.82 0.91 13 38337 1931 5 2.6 -1.0 2.1 16.0 6.3

1 1 1513 38337 – – – – – –
s38584 0.91 0.96 4 12172 14 3 0.2 -0.2 0.1 20.1 6.5

1 1 383 12172 – – – – – –
Average Clustered 3.3 1.6 1.5 15.1 9.5

Enum.* 90.6 30.6 24.4 20.4 10.0

* Enumerative scheme becomes prohibitive for larger circuits; the average
for this method is taken only over circuits which allow this.

1) Clustering parameters: Columns C2 and C3 list the
values of the threshold parameters, ρth and fµ,th, that are
used in determining the closeness of nodes and paths. For
comparison, we show two sets of results for each circuit:

• Using clustering (Section III-C, ρth, fµ,th 6= 0), obtained
through the heuristic of Section VII-C.

• Using enumeration (Section III-B, ρth = fµ,th = 1).
2) Clustering results: The results for our clustering algo-

rithms are shown in C4–C7. Column C4 presents the number
of node clusters, |LCn |, generated in Algorithm 2. Columns
C5 and C6 list, respectively, the number of potentially critical
paths, N , in the uncoarsened circuit6 and the number of paths,
NC , in the coarsened circuit. The number of coarsened circuit
path clusters, m, generated in Section VI-B, are then listed in
C7 (for m path clusters, we need m separate hold logics).

Computations for enumerative approach become prohibitive
as the number of paths increases, and hence the results could
not be obtained for circuits with large value of N .

3) VAHL area, power, and throughput: In C8 to C12, we
show the results for overhead in area and power (∆A (%)
and ∆P (%)) compared to the baseline, as discussed earlier in
Section VII-A. We recall that for the clustered and enumerative
approaches, only a subset of m hold logics will be active in
postsilicon stage in a particular chip. Therefore, although ∆A

6While the critical path enumeration can be exponential in the number of
nodes, the number of critical paths can be computed in linear time.

remains the same for all chips, ∆P will be proportional to the
area overhead of the active hold logics in a particular chip, and
may differ for different chips. ∆P can therefore be captured
as a distribution over L samples of Monte Carlo simulations.
Choosing L = 10000 as in [10], we tabulate the mean (µ) and
standard deviation (σ) of this distribution in C9 and C10. By
the same logic, ∆η will also depend on the set of active hold
logics in a particular chip, and can be captured as a distribution
over the L Monte Carlo samples. C11 and C12 list the µ and
σ values for ∆η distribution.

−2 0 2 4 6
0

2000

4000

6000

∆ P (%)

N
u

m
b

er
 o

f
sa

m
p

le
s

(a)

0 10 20 30
0

2000

4000

6000

∆ η (%)

N
u

m
b

er
 o

f
sa

m
p

le
s

(b)

Fig. 14. The distribution of percentage (a) ∆P and (b) ∆η, over all the
L = 10000 Monte Carlo samples for circuit s9234.

In interpreting these results, it is important to note that the
distributions of ∆P and ∆η are not Gaussian, but can be
quite skewed, as shown for an example benchmark, s9234,
in Fig. 14. This is because a variation may cause a hold
logic to be activated or disactivated; large bars correspond
to frequently-activated hold logics, that correspond to paths
that are frequently critical. Even more skewed distributions
are seen for other benchmarks, e.g., s38417. Therefore, the
fact that µ − 3σ, for example, is negative, should not be
misinterpreted to mean that the distribution necessarily shows
samples with negative power or throughput overhead. In fact,
we observed for these circuits, ∆η is positive over all chips.

We may also see many samples having zero ∆P , ∆η
values; in such samples, hold logic is not exercised as Tclk
is not violated. Further, Fig. 14 shows some samples with
negative values of ∆P ; the reason for this will be discussed
in Section VII-F3.

F. Analysis and Discussion

1) Gains through clustering: We first discuss the results
of clustering algorithms presented in C4–C7. As discussed
in Section III-A. The pessimistic baseline will always be
characterized by one node cluster. Compared to this, the
clustered scheme has a slightly higher number of node clusters,
and the enumerative scheme has substantially higher numbers,
indicating progressively reduced degrees of pessimism.

Comparing C5 and C6, we find that node cluster generation
reduces a large number of potentially critical paths in the
uncoarsened circuit (N), up to even 1000×, resulting in a
small number of paths in the coarsened circuit (NC). This
shows that our node clustering technique is very effective in
reducing the number of paths. The enumerative scheme offers
no reduction and becomes prohibitive for large values of N .

For the clustered scheme, NC is still sufficiently high for
most circuits, indicating that it is impractical to maintain a
separate hold logic for each path in the node-coarsened circuit.

Our second step of path coarsening (Section VI-B) further
reduces this number, and generates a set of m hold logics for
VAHL listed in C8: it is seen that for our clustered approach,
m ≤ 6 over all the circuits. This is again a significant
reduction and hence very beneficial in gaining low area and
power overhead, as discussed next. On the other hand, the
enumerative scheme does not allow any path clustering.

2) Area overhead: Our first observation is that for the
clustered VLU, the increase in area over the pessimistic
VLU is appreciably small: 3.3% on an average. This is a
significant reduction compared to 90.6% overhead incurred
in the enumerative scheme (in fairness, it should be pointed
out that the average area overhead for the four circuits where
enumeration is feasible is 4.9%). We further notice that for
some circuits (such as s5378, s35932), ∆A is negative, im-
plying less area than the pessimistic VLU. As discussed earlier
in Section VII-B, this can happen as VAHL area depends not
only on the number of hold logics (which are higher in the
clustered VLU compared to the baseline), but also their logical
complexity.

For the clustered approach, a few circuits (s35932, s38584)
give an appreciably low area overhead even with high thresh-
old values. This means that there is a high degree of correlation
in such circuits, offering greater potential for the use of our
clustering method.

3) Power overhead: As stated earlier, ∆P in C9, C10 is
proportional to the area overhead of the active hold logics, and
is therefore observed to be always less than or equal to the
total ∆A in C8. Over all the circuits, ∆P is only about 1.6%
on an average.

We also observe that although ∆A is positive for clustered
scheme, ∆P is negative for nearly half of the circuits. This
implies a small power savings with clustered VLU design,
and attributes itself to reduced pessimism: for the baseline
pessimistic case, all of the hold logic is active in a particular
chip when the Tclk constraint is violated, whereas in the
clustered scheme, only a subset of the hold logics is active,
which may dissipate less power than the pessimistic VAHL.
For different circuits therefore, sometimes the pessimistic
schemes wins, and sometimes the clustered scheme wins (and
sometimes the one-cycle case may win, when Tclk is met).

For the enumerative case, both area and power overhead are
quite high even for small circuits.

4) Throughput enhancements: We now analyze the
throughput values in C11, C12. On an average, the clustered
scheme offers high throughput enhancements, with a mean
value of 15.1% across all the chips, approaching quite close
to the 20.4% value for the enumerative case. Given the low
area/power overhead of the clustered scheme, our “Middle
Way” approach for clustering is therefore very beneficial in of-
fering the desirable aspects of the pessimism and enumeration
extremes: low overhead and close-to-maximum throughputs.

An exception occurs for circuit s35932: ∆η values are low
and similar for both approaches; this indicates that this circuit
has most of its potentially critical paths with near-critical
delays (similar observations are also discussed in [3], [5]), and
all such paths will be moved to second cycle. Clustering (or
even path enumeration) therefore will not show much benefit.

G. Validation of Our Scheme

While we attempt to be less pessimistic than the pessimistic
approach, a functional error is possible in the postsilicon stage
if a two-cycle path is wrongly predicted as a one-cycle path
by our postsilicon processing described in Section IV. In
this section, we validate that our algorithms have pessimism
indeed: they do not cause any functional errors.

We first notice that a two-cycle path is identified as a one-
cycle path only when at least one of the critical ports in any
of the critical gates in the circuit is wrongly identified as
noncritical, as such computations rely completely on the set
of critical ports.

To investigate if such a scenario may arise, we perform
Monte Carlo simulations with L = 10000 samples, and follow
these steps for validation:

1) Each Monte Carlo sample corresponds to a case where
we know the exact delay distribution of the circuit. We
perform an STA over the circuit and determine the exact
set of critical ports, and term it as CS,exact.

2) Next we simulate the clustered scheme: for each of the
Monte Carlo samples generated above, the postsilicon
processing steps described in Section IV are performed
to identify all critical path clusters. We then determine
the set of critical ports as ports that belong to gates lying
on the paths of critical path clusters, termed as CS,clus.

3) In order to be functionally correct, we must have
CS,clus ⊇ CS,exact, indicating that one-cycle paths may
be predicted as two-cycle paths, but not the other way.

We test for this supersetting property for each of the circuits
listed in Table II, and find that among the L samples, zero
samples caused such an error, thus validating our scheme.

VIII. CONCLUSION

In this paper, we develop a high-performance scheme for
generation of variation-aware hold logics. Delays of paths
in a circuit are correlated due to spatial correlations in the
circuit. Exploiting this fact, we present algorithms to generate
node and path clusters in a circuit, which offer a “Middle
Way” solution in between to the pessimistic and enumerative
extensions of the deterministic hold logic generation scheme.
We show through our results that we obtain near-maximum
throughputs with very low area/power overhead.

REFERENCES

[1] L. Benini, G. D. Micheli, A. Lioy, E. Macii, G. Odasso, and M. Poncino,
“Automatic synthesis of large telescopic units based on near-minimum
timed supersetting,” IEEE Transactions on Computers, vol. 48, pp. 769–
779, August 1999.

[2] Y. Chen, H. Li, J. Li, and C. K. Koh, “Variable-latency adder (VL-
adder): new arithmetic circuit design practice to overcome NBTI,” in
Proceedings of the International Symposium on Low Power Electronics
and Design, pp. 195–200, 2007.

[3] J. Cong and K. Minkovich, “Mapping for better than worst-case delays
in LUT-based FPGA designs,” in Proceedings of the International
Symposium on Field Programmable Gate Arrays, pp. 56–64, 2008.

[4] Y. S. Su, D. C. Wang, S. C. Chang, and M. S. Malgorzata, “Performance
optimization using variable-latency design style,” IEEE Transactions on
Very Large Scale Integration Systems, vol. 19, no. 10, pp. 1874–1883,
2011.

[5] S. Gupta and S. S. Sapatnekar, “BTI-aware design using variable latency
units,” in Proceedings of the Asia and South Pacific Design Automation
Conference, pp. 775–780, 2012.

[6] T. Austin, V. Bertacco, D. Blaauw, and T. Mudge, “Opportunities and
challenges for better than worst-case design,” in Proceedings of the Asia
and South Pacific Design Automation Conference, pp. 2–7, 2005.

[7] X. Liang, G.-Y. Wei, and D. Brooks, “ReVIVaL: a variation-tolerant ar-
chitecture using voltage interpolation and variable latency,” in Proceed-
ings of International Symposium on Computer Architecture, pp. 191–
202, 2008.

[8] S. Das, C. Tokunaga, S. Pant, W.-H. Ma, S. Kalaiselvan, K. Lai, D. Bull,
and D. Blaauw, “RazorII: in situ error detection and correction for PVT
and SER tolerance,” IEEE Journal of Solid-State Circuits, vol. 44, pp. 32
–48, January 2009.

[9] S. Sapatnekar, “Overcoming variations in nanometer-scale technologies,”
IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
vol. 1, pp. 5–18, March 2011.

[10] H. Chang and S. S. Sapatnekar, “Statistical timing analysis under
spatial correlations,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 24, no. 9, pp. 1467–1482, 2005.

[11] Q. Liu and S. S. Sapatnekar, “A framework for scalable postsilicon
statistical delay prediction under process variations,” IEEE Transactions
on Computer Aided Design of Integrated Circuits and Systems, vol. 28,
pp. 1201–1212, August 2009.

[12] http://en.wikipedia.org/wiki/Buddhism#Middle Way.
[13] S. S. Sapatnekar, “Efficient calculation of all-pairs input-to-output delays

in synchronous sequential circuits,” in Proceedings of the International
Symposium on Circuits and Systems, pp. IV520–IV523, 1996.

[14] H. Chang, Q. Liu, and S. S. Sapatnekar, 2009. MinnSSTA :
http://www.ece.umn.edu/users/sachin/software/MinnSSTA/.

[15] Predictive Technology Model, 2008. http://www.eas.asu.edu/∼ptm.

