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Abstract— We present a technology mapping algorithm
for implementing a random logic gate network in domino
logic. The target technology of implementation is Silicon
on Insulator (SOI). SOI devices exhibit an effect known as
Parasitic Bipolar Effect (PBE), which can lead to incorrect
logic values in the circuit. Our algorithm solves the technol-
ogy mapping problem by permitting several transformations
during the mapping process in order to avoid PBE, such as
transistor reordering, altering the way that transistors are
organized into gates, and adding pmos discharge transistors.
We minimize the total cost of implementation, which includes
discharge transistors required for correct functioning. Our
algorithm generates solutions that reduce the number of
discharge transistors required by 53%, and reduces the size
of the final solution by 6.3% on average. We compare our
results with a modification of a current technology mapping
algorithm for bulk CMOS domino logic that reduces the cost
of the final solution, and find that our algorithm outperforms
this method.

I. INTRODUCTION

As the scaling of bulk CMOS proceeds along the
roadmap, interest in Silicon on Insulator (SOI) as an
alternative technology has increased. In addition, manu-
facturing processes have matured enough to allow large
circuit implementations in SOI at acceptable defect lev-
els. However, current algorithms used for implementing
circuits in bulk CMOS are inadequate for SOI. The best
approaches and traditional design techniques from bulk
CMOS could be disastrous if applied to SOI. An example
is the use of precharge transistors in bulk CMOS, to offset
the charge sharing effect. As we will show in section III-B,
if precharge transistors are used in SOI, we will possibly
obtain circuits that do not function correctly. Current EDA
techniques too do not adequately address the needs of
SOI design, and there is a requirement for new algo-
rithms and tools targeted towards SOI designs, since sim-
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ple modifications to existing algorithms by adding post-
processing steps leads to solutions that are sub-optimal, as
shown in later sections. This paper address the libraryless
technology mapping problem in the context of SOI. We
present an algorithm that maps an arbitrary two-input logic
gate network to domino logic in a manner that eliminates
the “Parasitic Bipolar Effect” (PBE) [1], [2] by applying
transformations such as reordering transistor stacks in the
gate, altering the structure of the gates to reduce their
susceptibility to PBE, and inserting pmos pre-discharge
transistors at appropriate points in the circuit. We take
an approach of using metrics for area and delay that
will generally be acceptable for any SOI implementation.
The corresponding loss of detail is compensated by the
reduction in complexity of the algorithm. The mapping
step can be followed by a post-processing step that is
specific to a given set of SOI technology parameters,
possibly including transistor sizing, which our work does
not address. During the mapping, the algorithm minimizes
the cost of the implementation: for example, for an area
objective, it would minimize the total number of transis-
tors, including pre-discharge transistors. The techniques
that we use to control PBE operate by ensuring that the
body voltage of the SOI device never becomes very high,
so that PBE is never triggered. This yields an added side
benefit of reducing the timing hysteresis exhibited by SOI
circuits due to variations in the body voltage. In narrowing
the range of permissible voltages for the body (to reduce
the PBE), we make the timing behavior of the circuit more
predictable.

This paper is organized as follows. We briefly introduce
SOI and domino logic, and present problems typical to
SOI implementations and solutions to these, with emphasis
on overcoming PBE. We then present our algorithm, which
performs the technology mapping specifically taking PBE
into consideration. We also present a simple alteration
to the technology mapping algorithm currently used for
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mapping into bulk CMOS domino logic that reduces the
number of discharge transistors required. The efficacy of
our approach, and extensions to it are shown in the results
section, wherein we present cost functions that minimize
the area and delay of the solution. We conclude with
directions for future work.

II. BACKGROUND

A. Silicon-on-Insulator

SOI has long been used in a variety of fields, such
as radiation-hardened and high-voltage applications [5],
[6]. SOI circuits have attractive properties as compared
to bulk CMOS, such as reduced source- and drain-to-
substrate capacitances, no body effect in series stacks of
transistors and suitability for reduced ����� operation for
given performance [7], [8]. In addition, due to reduced
capacitances, SOI devices consume less power [9], [10].
Moreover, since transistors are isolated from each other by
an insulator, they require smaller area. In spite of being
smaller, faster and consuming less power than bulk CMOS,
SOI has not found widespread use in the VLSI community
until recently. However, recent advances in manufacturing
processes coupled with a realization of the limitations of
bulk CMOS technology have led to a renewed interest in
SOI. Increased understanding of how SOI devices behave,
and possible solutions to their quirks has lead to a wider
acceptance of SOI in the VLSI community. Recently, SOI
has been used in a number of high end microprocessor
designs, e.g. IBM Power PC [11], [12], HP-PA 8700 [13],
and others [14], [15], as well as other high performance
logic circuits [16], [17] and [18].
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Fig. 1. SOI Transistor Fabrication, and Presence of the Parasitic Bipolar
Transistor

The manufacturing process of SOI is very similar to
that of bulk CMOS. One of the processes used for SOI
fabrication is SIMOX [6]. The preliminary step is to
implant a layer of silicon dioxide beneath the surface of

the silicon wafer. This is the “Insulator” in Silicon-on-
Insulator. Transistors are created by masking and doping
exposed regions on the layer of silicon above the silicon
dioxide. Once transistors are fabricated in this manner,
they are isolated from other devices by another layer of
silicon dioxide, called Shallow Trench Isolation (STI).
This structure is shown in figure 1. Due to this structure,
the bodies of individual transistors are electrically isolated
from the rest of the circuit, unlike bulk CMOS circuits
where the body is identical to the substrate or well, which
is connected to a supply node. Hence, the body potential
in SOI is free to seek its own level [19], and is determined
to a large extent by the voltage levels at the source and
drain of the transistor, due to leakage currents. Changes
in the gate voltage also affect the body potential due to
capacitive coupling. Thus, if the gate is held low and drain
and source are at a logic high for an extended period
of time, charge accumulates in the body due to leakage
current and impact ionization [8]. This causes the body
potential to increase. This variance in body voltage is the
main source of problems associated with SOI. The change
in body voltage of a device results in different switching
speeds at different time instants. Also, switching speeds
across a circuit can vary due to different devices having
different body voltages. Another problem that a high body
voltage can cause is called the Parasitic Bipolar Effect
(PBE), and is described in more detail in section III.

B. Domino Logic

Domino logic [20] is a favored approach for implement-
ing timing critical circuits due to their high performance.
The basic structure of a domino gate is as shown in figure
2(a). During precharge, the dynamic node is charged to
a high logic value, and the output of the gate is set to
logic zero. During the evaluate phase the � -clock transistor
switches on, and depending on the inputs to the pull down
network, the dynamic node is either discharged or retains
its charge. If the dynamic node switches, the output of the
gate goes to a logic high value. OR logic functionality is
obtained in domino by connecting � -transistors in parallel
in the pull down network. Similarly, AND functionality
can be obtained by connecting � -transistors in series. More
complicated logic operations are obtained by combining
these basic operations. An example circuit, shown in figure
2(a), implements the logic function ���	��
��	
������ .

Note that the � -clock transistor shown in the figure
is only required for domino gates connected to primary
inputs. The outputs of domino gates change only during
the evaluate phase of the clock cycle, during the precharge
phase they are held low. Hence, any � -transistors driven by
these outputs will be off during precharge. For a domino
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gate, this means that if its inputs are coming from another
domino gate, the pull down network will not switch on
during precharge, and hence there is no need for an � -
clock transistor. Such a configuration is sometimes referred
to as footless domino.

III. PARASITIC BIPOLAR EFFECT IN SOI

A. Issues with SOI Implementations

The advantages of SOI listed in the previous section
come at a cost. Prominent among these are the hysteretic
��� variation [21], in which the behavior of a transistor
varies according to its previous switching history. Another
serious problem associated with SOI devices is the PBE,
described in more detail in the following sections.

B. Parasitic Bipolar Effect

PBE occurs in certain circuit topologies and switching
patterns, such as stack OR-AND structures. The topology
typically involves an off transistor situated high in the
stack, with the source and drain voltages in the high state.
Over a period, this causes the body voltage to be high.
When the source is subsequently pulled down, either by
the clocked evaluation transistor in dynamic circuits or
by an input signal, a large forward body bias is developed
across the body-source junction, causing bipolar current to
flow through the lateral parasitic bipolar transistor (shown
in figure 1). The parasitic bipolar current and the FET
current (caused by noise and aggravated by the low Vt)
result in a loss of charge on the dynamic node.

This can be illustrated by an example from [1]. For
the circuit shown in figure 2(a), consider a steady state
condition with inputs A = 1, B = 0, C = 0 and D =
0. Transistor A is on, and the other � -transistors in the
pulldown logic network are off. Hence, as the dynamic
node charges to a high value during precharge, node 1
is charged to a potential of � �������������
	�����
�� � . Recall that
transistors B and C are off at this point. Under this set
of conditions, the bodies of transistors A, B and C charge
to a high value over a sufficiently large period of time.
Now if signal A switches low, the potential at node 1
remains at its high logic value since transistor D is off.
Moreover, the switching event on A sets the body voltage
for device A to be low (due to strong capacitive coupling),
but leaves the body voltages of B and C to be high. In
the evaluate phase, if D is switched on (with A, B and
C off), node 1 is suddenly pulled down. This causes the
parasitic bipolar transistor to switch on, since the base
and collector of the parasitic transistor are high while the
emitter has been pulled low, and a large current can flow
through transistors B and C. If this current is large enough,
it can pull the voltage at the dynamic node to a level small

enough to switch the output of the gate to a high value.
Thus, even though the output node should have evaluated
to low, it ends up as a high. In this manner, the PBE can
result in a wrong evaluation if not accounted for in an SOI
implementation. This value will eventually be brought to
its correct value by the keeper, but this is liable to take time
and may cause erroneous circuit behavior temporarily, or
even permanently if any state bits are altered in the interim.

It is interesting to note that this is a typical configu-
ration in bulk CMOS implementations that requires the
use of precharge transistors, as shown in figure II-B. In
bulk CMOS, charge sharing is a significant problem, and
precharge transistors are used to ameliorate its effects
at the cost of a slight performance penalty. If any of
the transistors A, B or C are on during evaluate, with
transistor D off, charge on the dynamic node may be
distributed to Node 1, and the potential on the dynamic
node may drop low enough for the output inverter to
switch erroneously. In figure II-B, a precharge transistor
controlled by the clock connects node 1 to ����� . This
transistor charges the intermediate node 1 to a high value
during precharge, and redistribution of charge does not
occur. SOI circuits, however, exhibit much lower drain
and source capacitances, and charge sharing is not as
problematic as the parasitic bipolar effect. Using precharge
transistors rather than predischarge transistors as in the ex-
ample above, will almost guarantee breakdown of correct
circuit operation even without the sequence of transistor
switchings described above.

C. Solutions to the PBE

There are a several solutions for handling the PBE, and
we will enumerate these as follows:

1) The keeper pmos device can be sized up to provide
some resistance to the PBE, but such a choice comes
at the expense of a performance penalty due to the
increased capacitance that it presents at the dynamic
node and particularly at the output node.

2) Body contacts connected to the ground lines in the
case of nmos, or � ���

in the case of pmos transistors
can be added selectively to some devices in the
circuit, but this results in an increased area and input
capacitance, and is a choice that is generally avoided
by SOI circuit designers [5].

3) If the cost is acceptable, parallel stacks can be
broken up by transistor replication. For example,
��� � 
 � 
�� ��� can be re-implemented as � �
� � 
 � � � 
	� � ( � is replicated three times in
this example). If this implementation is connected
to ground, there are no paths for transistor bodies
to charge high, since parallel stacks have been
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Fig. 2. Domino Gate Structure, and Modifications Applied in Bulk CMOS and SOI Technologies

eliminated. A drawback of this approach is the cost
requirement of duplicating logic for each finger of
a potentially wide parallel stack.

4) The stack of transistors in a gate may be reordered
to reduce its susceptibility to the PBE. For the gate
in figure 2(a), if the parallel stack of transistors A,
B and C is moved to the bottom of the gate, so
that the sources of all three transistors are connected
to ground, it will not be possible to excite the
PBE. This approach exploits the reduced charge
sharing effect and reduced delay dependency on
stack ordering in SOI technology.

5) The above procedure works only if there is only one
parallel stack per gate. If this condition is not met,
it may be possible to remap the Boolean logic to
the gates to ensure that each gate contains no more
than one parallel stack, which can then be reordered
within the gate to connect it to ground.

6) Intermediate nodes in a stack may be predischarged
in every clock cycle. In figure II-B, a clock-driven

� -discharge transistor has been added to the circuit.
Such a transistor can be used to connect inter-
mediate points in the circuit (such as node 1) to
ground. Thus, during every precharge cycle these
intermediate nodes are discharged, and the bodies of
transistors in the pulldown network are not permitted
to charge to a high voltage level. The drawback of
using � -discharge transistors is the additional load
on the clock network.

7) Complex domino structures with the output inverters
replaced by static NAND or NOR gates may be used
to break up large parallel logic trees [7].

One approach to performing these optimizations is to
start with the original design in bulk silicon, analyze it to

identify potential sources of the PBE, and apply the above
transformations to eliminate them. The main criticism of
such an approach is that the solutions obtained are local
in nature. For example, while a particular mapping may
be optimal for bulk CMOS, it becomes non-optimal if it
requires a large number of � -discharge transistors. A better
approach would be to perform the mapping from logic
gates to the transistor level, keeping the requirement of � -
discharge transistors in mind. In section V we propose an
algorithm that performs such a mapping.

In this work, we avoid the first three transformations
of sizing the keeper, adding body contacts and splitting
parallel stacks using duplication, since they can cause
significant cost increases, and instead, focus on the rest.
We perform our procedure at the time of synthesis, prior
to circuit sizing, and note that the transformation that
sizes the keeper is more appropriately applied after or
during the transistor sizing step. In applying the remaining
transformations, we will penalize the addition of clock-
connected transistors and additional transistors required
due to gate reorganization, since they represent a cost-
increasing transformation. Reordering changes delay, but
since diffusion capacitances are relatively low, we ignore
them as a first order approximation.

IV. TECHNOLOGY MAPPING FOR DOMINO LOGIC

Synthesis of domino circuits is more complicated than
that of static circuits. The added complexity is due to
the monotonic nature of domino logic which forces it
to implement only non-inverting functions. Therefore,
domino logic can only be mapped to a network of non-
inverting functions, where needed logic inversions must be
performed at either primary inputs and/or primary outputs.
Any random logic network can be transformed into a
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network of non-inverting functions by finding a unate
network representation1.

Generating a unate network from a binate random logic
network may require logic duplication since both positive
and negative signal phases may be needed. An algorithm
for finding the minimum logic duplication necessary when
transforming a binate random logic network into an in-
verter free unate network has been developed in [22].
Binate-to-unate network conversion will at most double
the amount of original logic (with typical overheads being
much smaller) and will not increase the number of logic
levels.

However, in order to avoid the complexity of [22], we
use a simple bubble pushing algorithm to generate the
unate network. In our implementation we simply attempt
to push inverters as far back as possible (i.e., towards
the primary inputs), by applying DeMorgan’s laws where
necessary. If inverters cannot be pushed through a gate,
e.g., when both positive and negative phases of a signal
are required, logic duplication is necessary. After a unate
network representation has been created, the network can
then be technology mapped to domino gates. Note that
starting from an initial decomposed network consisting of
2-input AND-OR gates and inverters, the unate network
thus obtained will only consist of 2-input AND-OR gates,
since all inverters have been removed in the unating
process.

Technology mapping has traditionally used library based
methods. In [23], the authors presented a library free al-
gorithm for technology mapping. Library free approaches
have the advantage of searching a large solution space,
while library based methods are restricted by the size of
the libraries. Since nmos pulldown networks for domino
gates can be larger than their static counterparts, any
precharacterized library can only explore a fraction of
the exponential number of possible gate functionalities. A
parameterized library overcomes this limitation although it
is restricted by the use of more approximate delay models.
Parameterized libraries have been used successfully to
design industrial circuits, e.g., in [24].

The algorithm of [23] uses a dynamic programming
based approach. A set of tuples2 of ��������� 
	� (width,
height and cost corresponding to a pull down network
configuration) are associated with each logic gate of the
network. The cost here may be the number of transistors,

1A unate network is one where all signals transitions occur in one
direction only, either high-to-low or low-to-high. For domino logic to
function correctly, all inputs to a domino gate can only make a single low-
to-high transition during the evaluate cycle. Hence only unate functions
can be mapped to domino logic.

2An n-tuple is simply a set of 
 ordered elements. In [23], 3-tuples
are used as explained in the text, in our work we associate 6-tuples with
intermediate solutions as explained in the following sections.

the number of logic levels, or the delay. The values of
maximum gate width and height determine the number of
tuples associated with each gate. The input network of 2-
input AND-OR nodes is traversed from primary inputs to
primary outputs, and sub-solutions for each node for all
possible configurations of ��������� are calculated based
on the sub-solutions of its inputs. Note that, depending
on the inputs, a gate may not have all combinations of
��������� and in practice, only a fraction of ��
���������
����
tuples are associated with each gate. When calculating
the sub-solution of a node, all permissible configurations
of the input nodes are enumerated, and the best ones
are selected. Once all valid tuples for a node have been
calculated, the � 1, 1 � tuple is constructed by selecting
the best (lowest cost) sub-solution for that logic gate,
and converting this partial structure into a domino gate
by adding the clock transistors, the output inverter and a
keeper transistor. Thus, the cost of a � 1, 1 � configuration
is the lowest cost among all other configurations plus 5.
The basic operations for combining input tuples to form
the tuples of the current node are AND and OR. These
operations are as follows. An AND operation requires
a series connection of inputs. Hence, the ������������� and
������������� solutions of the input nodes are combined to
form the �� �!#" �$�����%��� ������� �&����� solution. Similarly,
������������� and ���'�#���(��� solutions of the inputs can be
combined as ����� �������) *!�"��+���#����� ��� for an OR node. A
more detailed explanation of combining inputs of an AND
and OR node (alongwith our enhancements) is presented
in the next section. The algorithm is described above
illustrated briefly in listing 1. For further details, the
interested reader is referred to [23].

This algorithm guarantees optimal-cost solutions. Note
that the best sub-solution of a input node may not necessar-
ily end up as part of the final solution. Thus, local optimal
solutions are avoided if they are not globally optimal.
Finally, at the primary outputs, the best solution in terms
of the cost function is selected. This specifies a domino
circuit that implements the input network logic with min-
imum cost. The cost function in the above algorithm has
been taken to be the total number of transistors in the
implementation, but this may also be modified to minimize
the maximum number of levels from primary inputs to
primary outputs, in order to reduce the maximum input-
to-output delay of a domino implementation.

This algorithm is easily illustrated with the help of an
example. Consider the circuit in figure 3, and assume that
the maximum number of transistors allowed in series and
in parallel are 4. This simple circuit consists of 2 AND
nodes and 1 OR node. The AND nodes are driven by
the primary inputs, which have only one possible tuple
associated with them : � 1, 1, 1 � . These can be combined
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{1, 1, 7}

{2, 1, 2} {2, 2, 4}
{2, 2, 10}

{1, 1, 9}
{1, 2, 16}

Fig. 3. Technology Mapping for Domino Logic

Algorithm 1 Technology Mapping for Domino Circuits

� Process each node in topological order from inputs to
outputs �
for each node � whose inputs have been processed do

for each ��������� configuration of the inputs do
if � is OR then
����� 	�� , ��� 	�� ��� ��� � � � � , �	��
 � � � ��� � �%�

end if
if � is AND then
��� � 	�� , � � 	�� ��� � ����
 � �����%��� � , ��� � �����

end if
if ��� � 	�� , � � 	�� � is a valid configuration then

������ � 	���� 
������ � � 
������ �

end if
if 
������ � 	�� is better than the original cost then

update 
������ for configuration ��� � 	�� , � � 	�� �
end if

end for
��� , �#� = convert configuration with lowest cost into
a gate

end for

in an AND operation to form the tuple � 2, 1, 2 � , for
which the transistor structure is as shown. Since there is
only one tuple for this gate, it is used to construct the
tuple corresponding to ������������� , ��� ������� � . The two
solutions for each of the AND nodes can be combined in
4 possible ways, but due to symmetry we have only three
unique combinations - � 1, 2, 16 � , � 2, 1, 10 � (repeated

twice) and � 2, 2, 4 � . Note that when a gate from an input
node is used (corresponding to the � 1, 1 � solution), an
extra transistor is needed in the next level. For the OR
node, the � 2, 2 � solution is clearly the best, and it is used
to form the corresponding � 1, 1 � solution, with a cost of
9.

We use this basic approach in our algorithm with
modifications to the cost function calculation in order to
properly account for the PBE.

V. AN ALGORITHM FOR SOI MAPPING

We follow the basic algorithmic framework of [23],
presented in brief in section IV. As before, each node
in the input network is associated with a set of tuples
corresponding to one ��������� solution of the subtree
rooted at the current node. � and � represent the width
and height of the pull down network of the domino gate;
the maximum values are user-specified.

Our objective in this work is to reduce the number
of discharge transistors required to avoid PBE. An area
objective (in terms of number of transistors) follows
logically from this as the cost function to minimize. Hence
we choose our initial cost associated with each tuple to be
the number of transistors required to implement the logic
correctly, as well as to avoid PBE. A delay objective can
also be used as the cost function; in this case the actual
cost function is a combination of delay and number of
discharge transistors used.

In addition to the cost associated with each tuple,
we also store � ��� � , the number of potential discharge
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transistors required by the configuration, and � ����� , which
tracks whether or not a given tuple has a parallel branch
at the bottom of its structure. The potential discharge
transistor count is used to guide tuple combination and
gate formation. Depending on the actual operation per-
formed (i.e., AND or OR), � ��� � is converted to actual
discharge transistors, else its value is propagated to the
next level. Since OR is the only operation that introduces
parallel stacks, � ��� � is set to true in an OR operation
and is propagated in an AND operation depending on
the combination of input tuples (this will be explained
in greater detail shortly). As mentioned in the previous
section, the solutions of the input gates are combined
to form the solutions for the current node. In case of
multiple solutions being available, the lowest cost solution
is selected. Ties for the lowest cost solutions are resolved
by the � ��� � values.

C
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E

B clk

F

C

B

A

clk

Potential Discharge Pt

Potential Discharge Pt

Fig. 4. Potential Discharge Points and � -discharge Transistors

We now explain the concepts of � ��� � and � ����� , which
are central to our algorithm. The parameter � ��� � is used
to account for the discharge transistors that will have to
be added to eliminate the PBE. From the explanation of
section III-B, we see that the PBE can be excited only in
the presence of one or more parallel stacks. This provides
a path for the bottom of the stack to get charged to a high
value (the top of the stack is charged via a path from the
precharge transistor). Additionally, at least one transistor is
required beneath a parallel stack to excite the PBE; when
this transistor switches on, the common node for the stack
will be pulled low, possibly resulting in the PBE. Hence,
the bottom of a parallel stack is one potential discharge
point. The parameter � ����� keeps track of whether a given
intermediate structure has a parallel branch at the bottom
or not. In the final solution, if this point is connected to
ground, no discharge transistors are required. On the other
hand if it is � � � connected to ground, all intermediate
points as specified by � ��� � will have to be discharged.
Hence, in an OR operation, we set � ��� � to true to account
for the presence of a parallel stack. For an AND operation,

it is set to the value of the tuple being placed at the bottom
of the stack. In addition, we conditionally increment � ��� �
by one for an AND operation, since the intermediate point
in a series stack may have to be discharged. In figure
4(a), the series connection of � � 
 has introduced an
intermediate discharge point. If � ��
 were converted to a
domino gate, or combined with other transistors in series,
there would be no need to discharge this point. However,
if it is connected in parallel with another configuration
(as shown in the figure), this point becomes a potential
discharge point for the OR tuple too - which will have
to be discharged if the OR configuration is not connected
directly to ground. Intermediate points in OR structures
have to be discharged because of the following possible
scenario. When A = 0, B = C = 1, there is a path form the
top of the stack to the drain of transistor A. The source and
drain of transistor A can now potentially go high, causing
the body voltage of A to increase and thus leading to PBE.

Now consider a more complex case. Let us assume that
two structures of the form shown in figure 4(a) have to be
ANDed together - � � 
 � 
 and � � 	 ��
 . Each of
them has 1 potential discharge point, at the junction of �
and 
 , and � and

	
. The AND operation will introduce

one more potential discharge point. However, when these
two parallel stacks are connected in series, the structure
on the top will never be connected to ground. Hence, its
potential discharge points always have to be discharged
by the addition of � -discharge transistors. In addition, the
intermediate point introduced by the AND operation also
has to be discharged. This is shown in figure 4(b). To
sum up, for an AND operation we need to perform the
following computation -

� ��� � � � ��� �
�������������
discharge transistors � � ��� � ����� � � �
������ � 
������ � 
�� ��
�
 � 
������ ��
�� � discharge transistors ;

� ��� � � � ��� � �������������
Note here that the 
������ of a particular tuple includes not

only the cost of implementing the logic, but also the dis-
charge transistors required for avoiding PBE. Thus, when
we select a lowest cost solution from various available
solutions, we obtain an implementation that minimizes the
cost while simultaneously avoiding PBE. The cost may be
area, measured in terms of the total number of transistors
required to correctly implement the required functionality,
or the delay, in terms of the number of levels traversed by
an input signal.

This leads to another interesting optimization that is
used in our algorithm. Since our aim is to minimize the
cost of the implementation as well as the total number
of discharge transistors used, we can use the information
implicit in � ��� � and � ��� � to determine which input tuple
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Algorithm 2 Algorithm for Mapping SOI Circuits
for each node � whose inputs have been processed do

if � is OR then
combine or(inputs) ;

end if
if � is AND then
combine and(inputs) ;

end if
if multiple tuples obtained for the same ����� then

Select tuple with lowest cost
if costs are equal then

Select tuple with lowest � ��� �
end if

end if
create domino gate

end for

combine or
��� � � � ������� � � � � ��� ��� �
� �  *!#"�� � � � ��� ��� ��� � � ��� ��� � �
������ � 
������ � � ��� � � � 
������ � � ��� � � �

� ��� � � � ��� � �	� ��
 � � � � ��� � �	� ��
 � � �
� ��� � � � ��
�� �

combine and
if � ��� � �	� ��
 � � ��� � ��� � ��� ��
 � � then
� � � �  ������ � ��� � �	� ��
 � � � � ��� � �	� ��
 � � � �� � ��� � � �  *!�"�� � ��� � ��� ��
 � � � � ��� � �	� ��
 � � � �

else
top = input with � � ��� � � ��� ��� ��� � ;

end if
���  *!#" �$� ��
 � ��� �


�� ��
�
 � �
� � � ��
 � � � �


�� ��
�
 �� � � ��� ��� � � � � � ��� � � ��� � ����� � � �
������ � 
������ ��
 � � 
������ � 
�� ��
�
	� � � � ��� � � � � � � � � ;
� ��� � � � ��� � ����� �������
� ��� � � � ��� � �������������

create domino gate
Select tuple with lowest cost
Add � -clock transistor, output inverter
and feedback transistor
if tuple has primary inputs then

Add � -clock transistor
end if

clk

clk

A

B

C

E

A

B

C

E

Pot Dis Pt

Pot Dis Pt

Fig. 5. Switching Transistor Stacks, with Potential Discharge Points
Highlighted

is on the top in the series connection and which is on
the bottom. If only one input has a parallel branch, we
place this at the bottom, in the assumption that it could
potentially be connected to ground. However, if both
inputs have � ��� � � � � �!
"� , i.e., both inputs have parallel
branches, the tuple order is determined by � ��� � . We select
the tuple with the larger � ��� � to be at the bottom of
the stack since this introduces fewer discharge transistors
(ofcourse, all of these calculations are made under the
optimistic assumption that the bottom of this stack could
potentially be connected directly to ground. If this does
not happen, the ordering of parallel stacks in series is
irrelevant). Consider the circuit shown in figure 5, wherein
� � 
 � 
 is to be ANDed with

	
. If the structure on

the left is used (with
	

at the bottom), we have to add
two discharge transistors. However, if the circuit on the
right is used (with

	
on the top, and the parallel stack

on the bottom), we have two potential discharge points,
but no immediate discharge transistors. If this structure is
then connected to ground, the potential discharge points
will not have to be discharged, as explained previously.
Note that this switching of stacks can also be done for
ciruits mapped for regular bulk CMOS. As we will show
in the results section, using this technique as a stand-alone
optimization is not as effective as our algorithm.

For an OR operation, we only need to add the � ��� �
values of the input tuples, and set the � ����� parameter to
� �!
�� :

� ��� � � � ��� � ��� ��
 � � � � ��� � �	� ��
 � � �
������ � 
������ � � ��� ��� � 
������ � � ��� ��� �
� ��� � � � �!
"� �

Note that though the � ��� � seems to function in an
identical manner, for OR and AND structures, their in-
terpretation is quite different. In both cases, � ��� � refers to
the number of points that must potentially be discharged.
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TABLE I

COMPARISON OF DOMINO MAP AND REARRANGE STACKS MAP

Circuit Domino Map RS Map Reduction in ����� ��� � Total Reduction
��� 
������ ����� ��� � ����
��+� � ��� 
������ � ��� ��� � � ��
��+�
� ��� ��� ��� � % ������
��+� � %

cm150 73 19 92 73 15 88 4 21.05 4 4.35
mux 73 21 94 73 18 91 3 14.29 3 3.19
z4ml 127 16 143 127 12 139 4 25.00 4 2.80
cordic 199 38 237 202 23 225 15 39.47 12 5.06
frg1 244 78 322 239 43 282 35 44.87 40 12.42
b9 365 87 452 367 57 424 30 34.48 28 6.19
apex7 663 124 787 662 106 768 18 14.52 19 2.41
c432 655 167 822 675 128 803 39 23.35 19 2.31
c880 1163 198 1361 1182 153 1335 45 22.73 26 1.91
t481 1448 232 1680 1458 193 1651 39 16.81 29 1.73
c1355 1856 130 1986 1856 86 1942 44 33.85 44 2.22
apex6 1889 319 2208 1896 275 2171 44 13.79 37 1.68
c1908 1924 208 2132 1924 171 2095 37 17.79 37 1.74
k2 2425 345 2770 2441 278 2719 67 19.42 51 1.84
c2670 2467 422 2889 2481 341 2822 81 19.19 67 2.32
c5315 5498 830 6328 5510 603 6113 227 27.35 215 3.40
c7552 8088 1082 9170 8138 760 8898 322 29.76 272 2.97
des 9069 1416 10485 9097 929 10026 487 34.39 459 4.38

Average 25.41 3.44

TABLE II

COMPARISON OF DOMINO MAP AND SOI DOMINO MAP

Circuit Domino Map SOI Domino Map Reduction in ����� ��� � Total Reduction
��� 
������ � ��� ��� � ����
��+�
� ��� 
������ ����� ��� � � ��
��+�
� ��� ��� ��� � % �	����
��+�
� %

cm150 73 19 92 73 15 88 4 21.05 4 4.35
mux 73 21 94 73 15 88 6 28.57 6 6.38
z4ml 127 16 143 127 12 139 4 25.00 4 2.80
cordic 199 38 237 206 18 224 20 52.63 13 5.49
frg1 244 78 322 245 20 265 58 74.36 57 17.70
f51m 297 71 368 309 31 340 40 56.34 28 7.61
count 333 71 404 365 22 387 49 69.01 17 4.21
b9 365 87 452 367 29 396 58 66.67 56 12.39
9symml 424 107 531 440 39 479 68 63.55 52 9.79
apex7 663 124 787 667 59 726 65 52.42 61 7.75
c432 655 167 822 706 99 805 68 40.72 17 2.07
c880 1163 198 1361 1223 81 1304 117 59.09 57 4.19
t481 1448 232 1680 1495 54 1549 178 76.72 131 7.80
c1355 1856 130 1986 1856 46 1902 84 64.62 84 4.23
apex6 1889 319 2208 1928 183 2111 136 42.63 97 4.39
c1908 1924 208 2132 1949 109 2058 99 47.60 74 3.47
k2 2446 348 2794 2527 114 2641 234 67.24 153 5.48
c2670 2467 422 2889 2498 244 2742 178 42.18 147 5.09
c5315 5498 830 6328 5510 474 5984 356 42.89 344 5.44
c7552 8088 1082 9170 8164 637 8801 445 41.13 369 4.02
des 9069 1416 10485 9122 581 9703 835 58.97 782 7.46

Average 53.00 6.29
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However, in case of an AND, these points will have to
be discharged only in case of an OR operation, for OR
they will have to be discharged only if the stack is not
directly connected to ground.

The algorithm is presented in listing 2. Each node is pro-
cessed in topological order, from primary inputs to primary
outputs. This ensures that the inputs of the current node
being processed have been processed previously, and the
corresponding sub-solutions for the inputs are available.
We then combine the inputs of the node being processed
in functions combine or or combine and, depending
on the functionality of the node. These functions carry
out the calculations presented previously. In addition,
combine and also determines the order of its inputs in
the series stack as a function of the input values of � �����
and � ��� � . For multiple solutions for a given ��������� pair,
we select the tuple with the lowest cost (which includes
the number of discharge transistors). Ties on cost are split
according to the value of � ��� � .

A final comment on the algorithm is that we need to
maintain two costs for each tuple. The first specifies the
optimal cost if the partial structure is connected to ground,
and the second if it is not. At the time of gate formation,
the appropriate value is used in determining the optimal
cost. For convinience, these details are omitted in the
pseudocode in listing 2.

This algorithm is an example of a dynamic program-
ming approach to solving an optimization problem. Each
node stores all possible solutions, with associated costs,
as defined by the cost function. Locally optimal solutions
need not be part of a globally optimal solution, however
by enumerating all possible solutions at each node we are
guaranteed an optimal solution at the output. This assertion
holds for all cost function that are monotonic increasing as
we proceed from inputs to outputs. The cost functions that
we address in this work are area and delay metrics, which
also include the number of discharge transistors have this
property, and hence the final solution obtained is optimal.

VI. RESULTS

The algorithm presented in section V has been imple-
mented in C++ and has been tested on ISCAS benchmark
circuits. In all cases, we chose the maximum width and
height of the pull down network of a domino gate to
be 5 and 8 respectively. Such a large value for a pull
down network is valid for SOI due to the reduced source
and drain capacitances. Since SOI has lower source/drain
capacitances than bulk CMOS, charge sharing is not a
major problem and can be handled by the weak pullup.
By adding at most one � -discharge transistor at each node,
we minimize its detrimental effect on charge sharing.
While circuit performance does degrade slightly when

compared with having a precharge transistor, this is a
minor cost to pay to avoid circuit malfunction3. For
comparison purposes, we have implemented a bulk CMOS
mapping algorithm that maps circuits without regard to
potential discharge points. This algorithm is referred to as
Domino Map. � -discharge transistors are added in a post-
processing step. We compare this solution with different
approaches to mapping circuits for SOI, including our
algorithm with area and delay cost functions.

A. Rearrange Stacks Map

The first three columns next to each circuit name in
table I show the cost associated with the solution obtained
from Domino Map, specifically listing the total number of
domino transistors ( ��� 
������ ), the number of pmos discharge
transistors added ( ����� ��� � ) and the sum of these two, which
is the total number of transistors( � ��
��+�
� ). We then ran our
algorithm without regard to potential discharge points as
in Domino Map, but added a post-processing step that
rearranges series stacks (generated by AND operations)
so as to move parallel sections with a large number of
potential discharge points closer to ground. The reasons for
doing this have been discussed in the previous section. The
solution obtained is listed in the columns under RS Map.
We found an average reduction of 25.4% in the number

� -discharge transistors, and a 3.44% reduction in the total
number of transistors. As can be seen, simply re-ordering
transistor stacks leads to some decrease in the number of
discharge transistors.

B. SOI Domino Map

The results of applying algorithm SOI Domino Map of
listing 2 to the benchmark circuits are presented in table
II. Comparing the results obtained from Domino Map and
SOI Domino Map, it is clear that though the number of
domino logic transistors required in SOI may be more, this
increase is more than compensated by the fewer number
of � -discharge transistors required, thus saving on the
total number of transistors used. The average reduction
in the number of discharge transistors is 53%. The last
two columns list the reduction in the total number of
transistors required for the implementation. We obtain an
average reduction of 6.29%, even though the number of
logic transistors (without � -discharge) has increased.

Thus, while a simple reordering of series stacks does
result in some cost benefit, it is still only half the reduction
of our algorithm.

3Another option to avoiding the detrimental affect of the � -discharge
transistors is to remap the logic, avoiding PBE-inducing structures.
However, this will result in a larger number of domino gate levels, leading
to an even larger delay.
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TABLE III

COMPARISON OF THE NUMBER OF TRANSISTORS UNDER DIFFERENT WEIGHTS OF �������

Circuit
�

= 1
�

= 5 %Improv
� � 
������ � ��� ��� � � ��
��+�
� # � � � � 
 �	� � � 
������ � ��� ��� � � ��
��+�
� # � � � � 
 �	�

cm150 73 15 88 3 21 73 15 88 3 21 0.00
mux 73 15 88 3 21 73 15 88 3 21 0.00
z4ml 134 13 147 9 39 134 13 147 9 39 0.00
cordic 222 19 241 14 52 217 19 236 13 51 1.92
frg1 283 20 303 19 58 277 21 298 18 57 1.72
count 374 22 396 28 77 374 22 396 28 77 0.00
b9 367 29 396 29 87 373 26 399 30 86 0.11
c8 331 42 373 26 94 325 42 367 25 92 2.12
f51m 405 42 4 47 27 104 391 38 429 26 98 5.76
9symml 571 57 628 34 132 482 36 518 33 106 19.69
apex7 739 67 806 54 175 733 67 800 53 173 1.14
x1 825 63 888 65 193 816 60 876 64 188 2.59
c432 799 93 892 52 197 804 89 893 53 194 1.52
i6 1155 67 1222 67 201 1155 67 1222 67 201 0.00
c1908 992 117 1109 77 259 957 111 1068 78 254 1.93
t481 1916 77 1993 132 325 1927 70 1997 135 316 2.77
c499 2016 46 2062 130 440 2016 46 2062 130 440 0.00
c1355 2016 46 2062 130 440 2016 46 2062 130 440 0.00
dalu 2073 182 2255 158 446 2065 177 2242 158 441 1.12
k2 3127 109 3236 195 481 3142 107 3249 195 475 1.24
apex6 2418 206 2624 158 520 2516 185 2701 160 504 3.07
rot 2520 290 2810 174 627 2449 262 2711 172 595 5.10
c2670 2608 247 2855 162 642 2614 244 2858 163 641 0.15
C5315 5755 535 6290 433 1501 5754 515 6269 439 1491 0.66
c3540 6659 634 7293 427 1501 6377 552 6929 412 1393 7.93
des 9818 600 10418 594 1581 9390 493 9883 586 1453 8.09
c7552 7519 584 8103 582 1853 7376 508 7884 580 1759 5.07
Average 3.82

C. Penalizing Clock Connected Transistors

Realizing the effects of loading on the clock network,
we then applied algorithm SOI Domino Map to the same
circuits, assigning a cost for the clock-driven transistors
that is

�
times the cost of a regular transistor, where

�

is a user specified value. The clock connected transistors
include � -clock and � -clock transistors in the domino gates
along with the � -discharge transistors. On the one hand,
the effect of including the cost of the � -clock and � -
clock transistors of the gate is to make gate formation
operation more expensive (the cost of the ��� ����� solution
for each tuple makes it less likely to be selected), and
the algorithm prefers to include as many transistors in
each pull down network as possible. Incrementing the cost
of the � -discharge transistors, on the other hand, pushes
the algorithm towards forming domino gates early, so as
to avoid the overhead of the � -discharge transistors. As

the results show, our algorithm chooses a result balanced
between these extremes, and as the cost of clock driven
transistors is increased, the solutions reduce the number of
gates and � -discharge transistors, along with an increase
in the total number of transistors required for the imple-
mentation4. The columns labelled � � � 
 �	� is the number of
transistors connected to the clock network. This figure is
obtained by adding the number of � -discharge transistors
to the clock transistors in the domino gates. The last
column shows the percentage reduction in the number of
clock-driven transistors, on average we reduce this figure
by 3.82%. An interesting observation is that the number of
clock connected transistors does not change significantly
as

�
is varied. Also note that not much improvement is

obtained for circuits that have a relatively small number of

4The figures in table III represent the number of transistors, not their
weighted cost
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clock connected transistors. This is to be expected, since
there is less freedom to choose between different solutions.
Larger circuits, on the other hand, provide the algorithm
with a greater number of options, and we obtain more
improvement for these.

D. Depth Optimization

We now address the minimization of the delay of an
implementation. As an approximation of the delay, we
set the cost function to be the depth, i.e., the maximum
number of levels of domino gates that a signal passes
through from primary inputs to primary outputs. A more
accurate delay model would require characterization of ev-
ery possible pulldown network, and this is not feasable for
a libraryless approach. As before, Domino Map, reduces
the number of levels required for an implementation, and
discharge transistors are added as a post-processing step.
In SOI Domino Map, the number of discharge transistors
needed is included as a part of the cost. The results
of running each of these algorithms are as presented in
table IV. The second column next to each circuit name
shows the maximum number of 2-input AND/OR gates
in the original network that a signal passes through,
from primary inputs to primary outputs. The columns
under Domino Map list the number of transistors required
for implementing the logic functionality, the number of
discharge transistors added in the post-processing phase,
the total cost of the solution, and the number of lev-
els in the solution. The corresponding columns under
SOI Domino Map are similiarly calculated using the new
cost function, so that the discharge transistors are included
during the mapping phase. Reducing the number of levels
in an implementation drives a solution towards favouring
complex gates. As in the previous section, trying to reduce
the number of discharge transistors drives the solution in
the opposite direction, i.e., towards smaller gates. As can
be seen from the results, algorithm SOI Domino Map re-
duces the number of levels for a few circuits, and increases
them for others, in comparison with Domino Map. The
key result, though, is that the sum of number of levels
and discharge transistors is reduced. We obtain an average
reduction of 49.76% in discharge transistors required, and
a 6.36% reduction in the number of levels.

VII. CONCLUSION AND FUTURE WORK

We have presented an algorithm that maps gates in a
logic network to a domino implementation suitable for
use in SOI circuits. As the results in section VI show, the
lowest cost solution for domino mapping in bulk silicon
technology is not an effective solution in the context of
SOI. Our algorithm minimizes a specified cost function,

which includes the discharge transistors required. This cost
function can be as area cost or a delay cost. We also
show how we can apply the algorithm by skewing the
cost of clock transistors in order to reduce the load on the
clock network. A similar approach can be used to derive
a solution with as few gates as possible, by increasing the
relative cost of gate formation. In fact, this technique can
be applied to mapping for bulk CMOS too, in order to
reduce the load on the clock network.

A further improvement is from the observation that
the � -clock transistors are required only for gates that
have primary inputs. Gates whose inputs come from other
domino gates do not need these transistors, since these in-
puts are always low during precharge, and footless domino
may be used instead. Hence, the pull down network will
never be switched on during precharge. The big advantage
of using this scheme for SOI is that even if a parallel stack
has potential discharge points, if these are connected to
ground it is not necessary to actually discharge them.

Our mapping algorithm assumes the worst case sce-
nario, in which particular structures susceptible to break-
down have to be discharged correctly. However, break-
down will only occur for a particular sequence of input
logic values. We have not taken this into account in our
algorithm, and incorporating this information could lead to
better solutions. In fact, this could be used for solving the
hysteresis effect [21] in SOI too. Once a transistor netlist
has been obtained from the logic level description of the
circuit as presented in this paper, a followup technology-
specific optimization step can be used to obtain further
delay improvements.
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