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Analog IC performance has a strong dependence on interconnect RC parasitics, which are significantly affected by wire
sizes in recent technologies, where minimum-width wires have high resistance. However, performance-driven wire
sizing for analog ICs has received very little research attention. In order to fill this void, we develop several techniques to
facilitate an end-to-end automatic wire sizing approach. They include a circuit performance model based on customized
graph neural network (GNN) and two optimization techniques: one using Bayesian optimization accelerated by the
GNN model, and the other based on TensorFlow training. Experimental results show that our technique can achieve
11% circuit performance improvement or 8.7× speedup compared to a conventional Bayesian optimization method.

CCS Concepts: • Hardware → Analog and mixed-signal circuit optimization; Software tools for EDA; Wire
routing.
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1 INTRODUCTION

Analog IC performance is sensitive to layout RC parasitic and this is why performance degradation
is easily seen from a schematic design to its post-layout simulation. It is observed [27] that such layout-
induced performance degradation becomes increasingly significant at advanced technology nodes. In
manual layout designs, such degradation is addressed by designers through simulation-based diagnosis
and layout iterations. Automatic analog layout tools attempt to mitigate the degradation by enforcing
geometric [24, 30, 46] or parasitic constraints [11] during placement and routing [8]. Since analog circuit
behavior is very complex, such simple constraints are either inadequate or overly tight so that satisfying
performance specification remains a challenge. This is a main reason why there are still performance gaps
between manual designs and automatic designs.
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Although the first order effects of RC parasitics are determined by the wirelength that results from
placement and routing, changing wire width, a.k.a. wire sizing, can exert a significant impact to circuit
performance, particularly in modern technologies (FinFET and beyond), where the design is wire-resistance-
constrained. This impact is illustrated through an example of an OTA (Operational Transconductance
Amplifier) in Figure 1, built in a 7nm technology. The picture at left shows the schematic after transistor
sizing and the middle shows its layout. When the wire widths of L1 and L2 change from 1X to 3X of the
minimum wire width, the UGF (Unity Gain Frequency) increases from 688.5MHz to 972.0MHz, and the
gain increases from 23dB to 25db. This is because wire sizing reduces the wire resistance in series with the
transistors, due to which the effective transconductance (Gm) of the differential pair (Mn3/Mn4) increases
as the resistances of L1 and L2 decrease, and thereby improves the UGF. The effect of wire sizing is still
significant even when transistor sizing has been performed, because the performance bottleneck is caused
by the large wire resistance. In Figure 2, we compare post-layout performance of four solutions: (1) no
sizing; (2) wire sizing only; (3) transistor sizing only; and (4) transistor sizing + wire sizing (TS+WS). Both
the transistor sizing and wire sizing are achieved through Bayesian optimization. The overall performance
is reflected by a composite FOM (Figure of Merit) with 1.00 being its ideal value. The curves on the right
show that wire sizing alone improves FOM by 11.5%. If the wire sizing is performed after transistor sizing,
it can improve FOM by 19%. Although transistor sizing is a more powerful technique, wire sizing brings
additional significant benefit on top of it.

Fig. 1. Impact of wire widths on the performance of an OTA design. UGF: Unity Gain Frequency; BW: Bandwidth; PM:
Phase Margin.

In analog design automation, wire sizing has been studied for addressing electromigration [22, 23, 38]
and IR-drop [42]. In digital designs, performance (timing/power) driven wire sizing was once a very active
research subject [36]. These approaches are largely facilitated by the availability of analytical models, for
example, the Black’s equation [38] for electromigration and the Elmore delay model [9, 13, 36] for digital
circuit timing. There has been little research on performance-driven wire sizing for analog ICs largely due to
the lack of a fast yet credible performance model. Usually, analog circuit performance is evaluated through
circuit simulation, which is too time consuming for frequent use in optimizations. This is particularly true
for layout designs, where the number of circuit elements is substantially more than schematic designs.
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Fig. 2. Effect of wire sizing along with transistor sizing for a two-stage OTA. FOM: Figure of Merit, ideally 1.

A similar but better studied problem is analog transistor sizing. A variety of optimization techniques for
analog transistor sizing have been proposed [3, 4, 14, 15, 25, 28, 29, 31–33, 40, 43, 50], including simulated
annealing [31], evolutionary algorithms [25], gradient-based local search [33] and Bayesian optimization [29].
Recently, a reinforcement learning approach [40] is also explored. Most of these previous techniques rely on
time-consuming circuit simulations. To accelerate the optimizations, surrogate performance models have
been developed, including polynomial models [28, 43], SVM (Support Vector Machine) [14] and Gaussian-
process-based models [32]. However, wire sizing faces additional difficulties compared to transistor sizing.
The key difference is that transistor sizing is often performed for schematic designs while wire sizing must
consider actual routing and wire parasitics. Post-layout circuit performance evaluation is typically much
slower than schematic level due to the extra time on parasitic extraction and significantly increased circuit
elements after layout. The examples in Figure 3 show that the runtime difference can be as much as one
order of magnitude. Hence, the budget for simulation-based circuit performance evaluation in wire sizing is
usually much tighter than transistor sizing.

Fig. 3. Performance evaluation runtime for an OTA design and a comparator design.

There are several analog transistor sizing methods that consider the effect of layout parasitics [5, 17, 19, 21,
26, 34]. Layout parasitics are estimated through templates in [5] and schematic-level RC annotation is utilized
in [19]. Both of the approaches [5, 19] are difficult to cover a wide range of scenarios. In [17, 21], layout
parasitics are considered for transistor sizing. Constraint-based layout tools are embedded in the sizing
loop [17] while [21] employs a floorplaner. However, both [17] and [21] still require the use of expensive
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parasitic extraction and post-layout simulation. A linear approximation technique is proposed in [34] but
tends to be inaccurate. In [26], an RC prediction technique is developed yet the expensive simulations are
still needed. While these techniques [5, 17, 19, 21, 26, 34] are valuable for considering the layout effect in
transistor sizing, the considerations are either too simplified or incomplete for wire sizing, which is carried
out in a late step of layout design. There are parasitic-aware analog layout techniques [16, 35, 48]. In [48],
capacitance sensitivity is considered during placement, while signal coupling is reduced in routing [16]. The
work of [35] prioritizes resistance sensitive nets during routing. In [10], routing wire resistance is minimized
through balancing the number of layer changes and routing wire length. The work of [47] proposes wire
detouring techniques to deal with parasitic mismatching. However, none of these works directly address
circuit performance.

In this work, both performance modeling and optimization techniques are studied for performance-driven
analog wire sizing, which is the first work on this subject. The proposed wire sizing techniques can be
incorporated with either automatic or manual analog layout design where transistor sizing has already
been performed. Our approach is a general framework that is applicable to a variety of different types of
analog IC designs. Different performance metrics are combined into a Figure of Merit (FOM) as in other
works [40]. The effect of wire sizing as well as the effectiveness of our techniques are demonstrated on
four different types of circuits: OTA, comparator, VCO (Voltage Controlled Oscillator) and SCF (Switched
Capacitor Filter). The contributions of this work are summarized as follows.

• A customized GNN-based analog circuit performance model, called WAGN (Wire Attention Graph
Network), is developed. WAGN can improve true positive rate from 77.1% to 89.5% compared to a
recent previous work [20] with similar false positive rate. It also outperforms conventional surrogate
models used in transistor sizing, such as SVM.
• Two wire size optimization techniques are investigated. One is Bayesian optimization guided by
WAGN (BO-WAGN). The other is TensorFlow-based optimization (TF). BO-WAGN is slightly faster
than TF while the implementation effort of TF is signficantly lower than BO-WAGN.
• With consideration of training cost including training data generation time andWAGNmodel training
time, BO-WAGNwith model knowledge transfer achieves either 11% circuit performance improvement
with similar runtime or 8.7× speedup with similar solution quality compared to a conventional
Bayesian optimization method. Our other techniques obtain similar results. Compared to automated
layout without wire sizing, our techniques can improve circuit performance by 8%-21%.
• The proposed wire sizing techniques are integrated with an open-source analog router to ensure
routing completion. Our approach is complementary to constraints-based analog automation method-
ologies.
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2 PROBLEM FORMULATION

Given a global routing solution, wire sizing is to select wire width for all nets so that the circuit performance
is optimized. In modern process technologies (FinFET and beyond), lithography is performed with multiple
patterning [2, 12], where discretization of device dimensions and interconnection widths are increasingly
important. Therefore, we use discrete wire widths as the sizing variables. Let s = [s1, s2, . . . , sC ] ∈ ZC

denote integer wire width variables for C nets1. The wire sizing problem can be formulated as

max
s

FOM (s )

s .t . sL ≤ si ≤ sU , i = 1, 2, . . . ,C

si ∈ Z, i = 1, 2, . . . ,C

(1)

where sL and sU are the lower and upper bounds for wire sizes, respectively. To account for multiple
performance metrics, a composite Figure of Merit (FOM) is defined to assess the overall circuit performance,

FOM =
M∑
i=1

wi · z̃i (2)

where z̃i ∈ [0, 1] represents relative performance, andwi indicates weighting factors satisfying
∑M

i=1wi = 1.
The relative performance z̃i is defined as

z̃i =




min( zi
ϕi
, 1), for zi ∈ Π+

min(ϕi
zi
, 1), for zi ∈ Π−

(3)

where zi denotes raw performance value obtained through circuit simulations, and ϕi implies user-defined
specification. Π+ (Π−) is the set of performance metrics that are preferred to be greater (less) than ϕi , such
as gain and bandwidth (delay and offset). With the transformation in (3), the relative performance z̃i is
desired to be the greater, the better, for both Π+ and Π−.

3 OVERVIEW OF THE PROPOSED APPROACH

The proposed wire sizing is performed after global routing and before detailed routing in an automatic
analog layout flow. It covers a circuit performance model and two optimization techniques:

• Circuit performance model: A GNN model is customized, which is called WAGN (Wire Attention
Graph Network), for fast FOM prediction. Its input is a circuit graph with associated features, and the
output is FOM classification. WAGN is built upon Pooling with Edge Attention (PEA) network [20],
which is also a customized GNN but developed for performance driven analog placement. Both of
them consist of multiple attention-pooling layers and an MLP (Multi-Layer Perceptron) network.
However, there are two significant differences. Unlike PEA, which only includes a circuit netlist and a
placement solution in its features, WAGN additionally considers a global routing solution as features.

1Z represents a set of integer scalar and ZC denotes a set of C dimensional integer vectors.
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Moreover, a multi-kernel-based attention scheme is proposed in WAGN for the attention-pooling
layer, which is an enhancement over the linear-function-based attention scheme in PEA. Details for
WAGN are elaborated in Section 4.
• Wire size optimization guided by WAGN.
– WAGN-guided Bayesian optimization (BO-WAGN). Previous works on BO-based transistor sizing
are mostly guided by circuit simulations, which are notoriously slow. As the extraction/simulation
cost for wire sizing is even higher, WAGN is applied for the BO-based wire sizing. Compared to
conventional Bayesian optimization, it can either significantly accelerate the computation without
sacrificing solution quality or attain significantly better solution quality with similar runtime cost.

– TensorFlow-based optimization (TF). By treating wire sizes as trainable parameters instead of input
features, the infrastructure of WAGN is reused for wire size optimization. The optimization is
conducted using TensorFlow training with multi-start to avoid local optimal.

Each wire sizing solution is ensured to be discrete and realized in detailed routing to conform with design
rules. As analog circuits are typically not as congested as digital circuits, routability is rarely an issue even
with wire sizing. For the same reason, wire width increase rarely enlarges chip area for analog circuits. It
should be noted that two nets with a symmetry constraint are always assigned with the same width.

4 GNN-BASED PERFORMANCE MODEL

4.1 Notations and Background on GNN

Our analog circuit performance model is a GNN (Graph Neural Network) [45], which deals with problems
that can be abstracted to graphs. A graph G (V, E) composed by nodesV and edges E can be represented
by adjacency matrix A, node feature matrix X and edge feature tensor E. A ∈ Rn×n is an n by n matrix,
where n = |V | is the number of nodes and its element ai j indicates whether an edge ei j exists between
node vi and node vj . X ∈ Rn×d is an n by d matrix, and its row X i ∈ Rd is a d-dimension feature vector for
node vi . E ∈ Rn×n×p is an n by n by p tensor, and its element Ei j ∈ Rp is a p-dimension feature vector for
edge ei j . A GNN takes A, X and E as inputs and outputs the class of the entire graph or the class of every
node in the graph.

Attention-Based Graph Convolution. A central concept in GNN is graph convolution, in which a node
feature is updated by aggregating features from its neighboring nodes. Before an aggregation, usually a
transformation is performed as XW , whereW is a trainable matrix. Then, the aggregation is formulated as
ΦAXW , where ΦA ∈ Rn×n is a matrix depending onA. The form of ΦA varies for different GNN techniques.
A node embedding is generated as Z (1) = σ (ΦAXW ), where σ (·) is an activation function. With repeated
iterations of such procedure, multiple layers of node embeddings are generated as Z (0) = X (1) = X ,Z (1) =

X (2),Z (2) = X (3) .... More generally, a graph convolution operation is described as

Z (l ) = σ (Φ(l )
A
X (l )W (l ) ) (4)
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where l is the index of layers. As feature dimension d may vary from layer to layer, the weight matrix is
denoted asW (l ) ∈ Rdl×dl+1 .

The popular Graph Attention Network (GAT) [39] combines ΦA with the attention mechanism, where
the attention coefficient αi j from node vj to vi is defined by

αi j = softmaxrow (τi j ) =
eτi j∑

k ∈N Bi e
τik

τi j = LeakyReLU
(
a (l ) · [(W (l )TX (l )

i
T
) | |(W (l )TX (l )

j
T
)]
) (5)

where a (l ) ∈ R2dl+1 is a trainable weight vector, X (l )
i is the feature vector of node vi , NBi is the set of

neighboring nodes of vi , ·T means vector transposition and | | is vector concatenation operation. The row-
wise softmax here means the index k in the denominator enumerates columns for row i . LeakyReLU(·) is a
nonlinear function defined by

LeakyReLU(x ) =



x x ≥ 0

cx x < 0
(6)

where c ∈ [0, 1) is a parameter. The attention-based graph convolution is described by

Z (l ) = σ (αX (l )W (l ) ) (7)

where α ∈ Rn×n is a matrix with αi j , i, j = 1, 2, ...,n as its entries.

Graph Pooling. Graph pooling, such as DiffPool [49], is to iteratively coarsen a graph through clustering
such that a global view is obtained. At layer l , the number of nodes is changed from nl to nl+1, where
nl+1 < nl and n0 = n. The graph pooling operation requires an assignment matrix S (l ) ∈ Rnl×nl+1 , where
each row corresponds to a node at layer l and each column indicates a cluster (new node) for layer l + 1.
This is soft clustering that the element S (l )i j is the probability of assigning node v (l )

i into cluster v (l+1)
j . The

assignment matrix of layer l is defined as

S (l ) = softmaxrow[σ (D̃
(l )−

1
2
Ã

(l )
D̃

(l )−
1
2
X (l )W (l )

pool )] (8)

whereW (l )
pool ∈ Rdl×nl+1 is a trainable weight matrix. In addition, Ã(l )

= A(l ) + I , where I indicates identity

matrix, and D̃ (l )
∈ Rnl×nl is a diagonal matrix, where D̃ (l )

ii =
∑nl

j=1 Ã
(l )
i j . The pooling operation is to aggregate

embedding Z (l ) into the next layer by
X (l+1) = S (l )

T
Z (l ) (9)

and then perform soft clustering by
A(l+1) = S (l )

T
A(l )S (l ) (10)

The pooling operation is often applied along with graph convolution at each layer.
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4.2 Circuit Graph and Features

A circuit netlist and its global routing solution can be encoded into a directed graph G (V, E), where device
pins, IO pins and Steiner nodes in routing constitute graph nodesV and connections between nodes are
indicated by graph edges E.
The features directly related to the i-th node are encoded in vector X i ∈ Rd . They include:

• Node type: PMOS, NMOS, capacitor, current source, GND, Steiner node, etc;
• Functional module where the node/pin belongs to, such as bias current mirror, differential pair and
active load;
• Device dimension: width/length/number of fin of transistors;
• Pin location.

In the edge feature matrix, Ei j ∈ Rp , i, j = 1, 2, ...,n, represents the features of the edge from node j to
node i . The features related to physical routes and edge properties are encoded in edge feature vector Ei j .
The p features include:

• Horizontal distance, vertical distance, number of vias and wire width options between node i and
node j;
• Pin length of node i and node j (the length of pins can influence the actual routing length.); Pins have
rectangle shapes on metal layers. The length refers to the shape length.
• Type of node i and node j , such as transistor source, drain, gate, Steiner point, etc. The types of node
i and node j may affect the current direction of the associated edge in a circuit.

Fig. 4. A differential pair and its graph encoding.

Figure 4 shows an example of encoding a differential pair into a circuit graph. The graph is directed and an
edge direction indicates causality in analog circuit behaviors. For example, the voltages atM3_S andM4_S
control the voltage atM2_D but not the other way around. Intuitively, as circuit performance is affected by
both node features (transistor’s size/dimension, etc.) and edge features (distance between two transistors’
pins, etc.), we apply both of them into our WAGN’s attention mechanism. In this way, information of
neighbouring nodes are aggregated according to their node features and connection relationships.
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Fig. 5. WAGN Architecture.

4.3 Wire Attention Graph Network (WAGN)

Figure 5 shows the architecture of WAGN, where multiple serially connected attention-pooling layers
are followed by an MLP network. Our WAGN network shares the same structure with PEA network, but
has a significant difference in its attention-pooling layers. Each attention-pooling layer consists of four
steps.
Step 1: Attention construction and compression. In [20], attention construction and compression are
realized by

• Raw attention construction defined as

α̂ (l )
i jk = τi jE

(l )
i jk (11)

where attention coefficient τi j is a function of node features X (l )
i and X (l )

j . E (l )
i jk is the k-th channel

of edge feature E (l )
i j and l is the layer index.

• Bidirection normalization to obtain 3D attention, which is defined as

α (l ) =




α̃ (l )
i jk = softmaxrow (α̂ (l )

i jk )

α (l )
i jk =

nl∑
m=1

α̃ (l )
imk α̃

(l )
jmk∑nl

u=1 α̃
(l )
umk

(12)

• Compressing the attention from 3D to 2D as

e (l )i j = д(α
(l )
i j ;b

(l ) ) =

pl∑
k=1

α (l )
i jkb

(l )
k (13)

where b (l )
∈ Rpl is a trainable vector. In this way, vector α (l )

i j is transformed into a scalar and the 3D
attention α (l ) is compressed into a 2D matrix. This step means to reduce both runtime and memory
use.
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A key enhancement by WAGN is the new treatment of attention coefficient τi j , which plays a critical role
in each attention-pooling layer. In PEA [20], τi j is a LeakyReLU function of a single linear kernel of node
features X (l )

i and X (l )
j . In WAGN, we propose using multiple kernel functions for the attention coefficient to

capture the nonlinear connection strength between node i and j . On average, this new attention coefficient
benefits WAGN with 3.0% accuracy improvement over PEA (details are demonstrated in Table 3), and more
efficient knowledge transfer (demonstrated in Table 5). The new attention coefficient is defined as

τi j = LeakyReLU
(∑3

r=1
Br (W

(l )TX (l )
i

T
,W (l )TX (l )

j
T
)
)

(14)

where Br (x ,x ′) is the r -th kernel function and x and x ′ are feature vectors after linear transformations.
Here we employ three kernel functions

B1 (x ,x
′) = exp(−γ | |x − x ′ | |22 )

B2 (x ,x
′) = (xTx ′ + c )d

B3 (x ,x
′) = MLP(x | |x ′)

(15)

• B1 (x ,x ′) is a Gaussian kernel function where γ is a hyper parameter. This kernel can describe the
difference of the input vectors.
• B2 (x ,x ′) is a polynomial kernel function where c is trainable variable and d is a hyper parameter.
The inner product of two input vectors can describe their similarity and interaction.
• B3 (x ,x ′) is a multi-layer perceptron function. The multi-layer perceptron function is used here to
capture the relationship beyond difference and similarity.

Our multi-kernel-based attention coefficient is a new contribution to GNN.
The rest operations in WAGN, including graph convolution, node pooling and edge pooling, are the same

as PEA. They are briefly covered here for the completeness of the description.
Step 2: Graph convolution. The graph convolution is performed as

Z (l ) = σ
(
д(α (l ) ;b (l ) )X (l )W (l )

)
(16)

where σ (·) is an activation function. Node embedding Z (l ) is aggregated from node feature X (l ) with a 2D
attention matrix д(α (l ) ;b (l ) ).
Steps 3 and 4: Node and edge pooling. Through a trainable assignment matrix S (l ) ∈ Rnl×nl+1 for layer l
, new node feature matrix X (l+1) , adjacency matrix A(l+1) and edge feature tensor E (l+1) for layer l + 1 are
computed with details in Section 4.1 or [20].
By flattening the adjacency/node/edge matrix of circuit graph in the last attention-pooling layer, a

1D vector is obtained and fed to several MLP (Multi-Layer Perceptrons) layers. The MLP output y is the
probability that the overall performance (FOM) is below a user-specified performance threshold T

y = P (FOM < T ) (17)

i.e., a soft classification if the performance is unsatisfactory.
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4.4 Handling Different Topologies and Model Complexity

The same type of circuit can be implemented with different topologies. For example, OTA (Operational
Transconductance Amplifier) can be realized as either cascode OTA or current mirror OTA with the same
functionality. Even for the same netlist topology, global routing may result in different Steiner tree topologies
for multi-pin nets. The correspondingly different graph structures can be handled by a single WAGN model.
This is in contrast to the Gaussian process model in [29], which is restricted to a single topology.

Given a WAGN model with L layers, each layer is characterized by trainable weightsW (l ) ,W (l )
pool ,W

(l )
edдe

and b (l ) , whose sizes depend on node feature size d (l ) , edge channel size p(l ) , and number of node nl . Thus,
we can identify a graph and a convolution/pooling layer in WAGN by 3 parameters {dl ,pl ,nl }. Please note
the parameters {dl ,pl ,nl } in one layer are independent of the input graph {d0,p0,n0}. As such, a single
WAGN model can handle graphs of different sizes and structures.

The model complexity depends on the configuration of attention-pooling layers. Given the fact that
nl ≥ nl+1, dl ≥ dl+1 and pl ≥ pl+1, in the l th attention-pooling layer, the computation complexity is
O (n2l (nl + pl + d

2
l )) for attention construction and compression, O (n2ldl + nld

2
l ) for graph convolution,

O (n2l (nl +dl )) for node pooling andO (n2l (nlpl +p
2
l )) for edge pooling. The overall computation complexity

for the l th attention-pooling layer isO (n2l (nlpl +d
2
l +p

2
l )). The backward propagation and forward evaluation

have the same computation complexity. The training takes much longer time than inference, as training
requires multiple iterations of backward propagations while inference is only one-pass forward evaluation.

4.5 Training of WAGN Model

Given N data samples obtained from post-layout simulations, the i-th sample includes circuit graph Gi and
label yi , which is 0 for satisfactory performance and 1 for unsatisfactory performance. Let θ denote trainable
parameters of a WAGN model, includingW (l ),b (l ) and others, the model can be trained by minimizing the
cross entropy for all data samples, defined as follows.

Loss = −
1
N

N∑
i=1

(yiloд(ŷi ) + (1 − yi )loд(1 − ŷi )) + λ | |θ | |22 (18)

where ŷi is the model output. L2-regularization is used here to avoid overfit and λ is the regularization
parameter. After training, the model is denoted as

ŷi =WAGNθ⋆
(Gi ) (19)

where WAGNθ⋆
(·) represents a WAGN model with trained parameter θ⋆ and ŷi indicates the probability

that sample Gi has unsatisfactory performance.
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5 PERFORMANCE-DRIVENWIRE SIZING OPTIMIZATION

5.1 Optimization Strategy

With a trained WAGN model WAGNθ⋆
, the performance-driven wire sizing problem becomes

min
s

WAGNθ⋆
(s )

s .t . sL ≤ si ≤ sU , i = 1, 2, . . . ,C

si ∈ Z, i = 1, 2, . . . ,C

(20)

The decision variables are integer wire width s for all nets, which are a part of input features for the WAGN
model. In guiding solution search, WAGN and circuit simulation have different tradeoff: WAGN is fast but
relatively inaccurate while circuit simulation is accurate but slow. To integrate the strength of both, we
propose a 2-stage optimization strategy as follows.

• Stage 1: The integer constraints are relaxed and two continuous optimization methods are described
in Sections 5.2 and 5.3. The fractional results are discretized through partial enumeration. If a fractional
wire width is very close to its nearest integer, i.e., the difference is below a threshold, it is directly
rounded to the nearest integer. For the other nets, we enumerate all combinations of rounding each
up and down and evaluate the rounded solutions according to WAGNθ⋆

(s ). The enumeration here
has limited impact on the optimization runtime for two reasons: (1) an analog circuit is typically not
large compared with a digital circuit, and (2) only a portion of the nets are enumerated.
• Stage 2: The top few (by default 10) best solutions from stage 1 are simulated and the optimal one
according to (1) is selected to be the final solution.

5.2 TensorFlow Training-Based Optimization

Wire size optimization (20) after relaxing the integer constraints is a nonlinear programming problem. One
observation is that neural network training is a process of minimizing its loss function in the same way as
solving a nonlinear programming problem. This observation implies that the infrastructure for training
WAGNθ⋆

(s ) can be reused for continuous wire sizing. In this work, TensorFlow [1] is adopted for both
training model WAGNθ⋆

(s ) and wire sizing. The loss function for wire sizing in Tensorflow is defined as

Lsizinд =WAGNθ⋆
(s ) + Lc

Lc = ϕ
C∑
j=1

(
ReLU(sL − sj ) + ReLU(sj − sU )

)
ϕ ⩾ 0

(21)

where θ⋆ indicates WAGN parameters after training by (18) and are fixed during wire sizing. Instead of
θ⋆, s is treated as trainable parameters in minimizing Lsizinд . Constraints sL ≤ si ≤ sU , i = 1, 2, . . . ,C are
relaxed and handled by penalty function Lc where ϕ is an empirical penalty coefficient. Penalty function Lc
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is plotted in Figure 6. One can see that a huge penalty is applied once the value of s is outside of [sL, sU ].
When ϕ is sufficiently large, optimized wire width solutions can be ensured in [sL, sU ]. The TensorFlow
training minimizes Lsizinд and then obtains a feasible solution with the minimum WAGNθ⋆

value, i.e., the
minimum probability of violating performance specifications.

Fig. 6. Penalty function.

TensorFlow minimizes Equation (21) through gradient descent method, which
is an iterative algorithm depending on the initial solution. To reduce the chance
of being trapped into local minimum,we suggest amulti-start approach. That is,
multiple sequences of iterations are performed with different initial solutions.
The top few best solutions among all sequences are simulated and the one
with the maximum FOM is chosen as the final continuous sizing solution.

5.3 WAGN-guided Bayesian Optimization

Bayesian optimization is for solving problems with a black box model as its objective function [37]. Through
initial sampling to this black box model, a probabilistic surrogate model is constructed. In later iterations,
new samples are decided by an acquisition function and the surrogate model is continuously trained. At the
end, the best solution found during the iterations is returned.

The sampling in Bayesian optimization-based transistor sizing [29] is through circuit simulation, which
becomes overly expensive for evaluating wire sizing solutions. A neural network is employed for Bayesian
optimization in [50] to act as a surrogate model. However, its sampling is still obtained through circuit
simulations. In this work, we propose a hybrid use of WAGN and circuit simulation in Bayesian optimization-
based wire sizing and the framework is outlined in Algorithm 1. In this framework, the initial sampling
(step 1) and the main sampling iterations (step 5) are through our WAGN network, which is much faster
than the simulation-based sampling in [29]. Only a few top solutions obtained by step 8 are simulated to
obtain the max-FOM solution with high accuracy.

Algorithm 1 WAGN-guided Bayesian Optimization
1: Sample Ns solutions and evaluate them by WAGN
2: Construct a probabilistic surrogate model from the Ns samples
3: for t=1,2,3,. . . , Niter do
4: Find s∗ that optimizes the acquisition function [29]
5: Sample y∗ =WAGNθ⋆

(s∗)
6: Update probabilistic surrogate model according to y∗
7: end for
8: Collect top few best solutions Stop
9: Simulate FOM for all solutions in Stop
10: return the solution with the max simulated FOM

In our implementation, the surrogate model is a Gaussian process with Radial Basis Function kernel.
The acquisition function is decided according to Expected Improvement [18]. The L-BFGS-B algorithm [6],
which can handle constraints and thereby ensure that all wire width values are within [sL, sU ], is used in step



14 Y. Li, et al.

4. More details of Bayesian optimization can be found in [7]. Let N = Ns + Niter , where Ns is the number
of initial samples (line 1 of Algorithm 1) and Niter is the number of iterations (line 3). The computational
complexity of training the surrogate model is O (N 3) (line 6) and the complexity of the surrogate model
inference is O (N 2) (line 4). A derivation of these complexities can be found in [50]. The computational cost
of sampling (lines 1 and 5) is the WAGN model inference and its complexity has been discussed in Sec. 4.4.

6 EXPERIMENTS

circuit benchmark3.jpg

Fig. 7. Analog circuit testcases. Comp1 and Comp2 share the same topology but with different transistor sizes. SCF1
and SCF2 share the same switch structures width different opamps. VCO1 has 4 repeating oscillator structures while
VCO2 has 6 repeating structures.

Our experiments are conducted on a Linux machine (64-core) using Xeon (R) E5-2680 V2 processor
with 2.8GHz frequency and 256G memory. The machine learning models are implemented in Python. Our
analog IC placer and router based on [41] are programmed in C++, and support symmetry, matching
and common centroid constraints. SPICE2 simulations are performed for schematic and layout solutions.
Parasitic extractions are performed using Calibre. Both the simulation time and extraction time are counted
in the data sampling process. The layout generation and their post-layout simulations are conducted in
parallel on the 64-core machine.

The testcases include five different OTA designs (5-transistor OTA, cascode OTA, current mirror OTA, two
two-stage OTAs), three comparator designs, two VCO (voltage controlled oscillator) designs and two SCF
(switched capacitor filter) designs. The ASAP 7nm (ASAP7) process technology [12] and GlobalFoundries
2Both Hspice and Spectre are used. Spectre is used for SCF circuits for the PAC (Periodic AC) and PSS (Periodic Steady-State) analysis.
Hspice is used for the simulations of the rest circuits.
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Design Specifications
CC-OTA Gain: 37.0dB, UGF:1522.9MHz, BW:21.82MHz, PM:82.10◦
CM-OTA Gain: 32.57dB, UGF:531.0MHz, BW:12.4MHz, PM: 82.82◦
5T-OTA Gain: 32.43dB, UGF:1105MHz, BW:26.45MHz,PM:86.47◦
TS-OTA1 Gain: 37dB, UGF: 400MHz, BW:6.0MHz, PM:60◦
TS-OTA2 Gain: 48dB, UGF: 550MHz, BW:2.5MHz, PM:60◦
Comp1 Evaluation delay: 22.27ps, Precharge delay: 26.48ps, Power: 108µW, Offset: 2.60mV
Comp2 Evaluation delay: 37.28ps, Precharge delay: 17.65ps, Power: 297.5µW, Offset:2.40 mV
Comp3 Evaluation delay: 71.32ps, Precharge delay: 9.73ps, Power: 91.13µW, Offset: 2.00mV

VCO1/VCO2 Power: 31.7mW, Max Frequency: 1GHz, Min Frequency:0.38GHz
SCF1/SCF2 Gain: 17.5dB, UGF:3.3MHz, BW:1.2MHz

Table 1. Circuit specifications.

12nm (GF12) technology are employed in the testcases. Their schematics are depicted in Figure 7 and circuit
specifications are provided in Table 1. The specifications are obtained according to schematic designs so
that the goal of wire sizing is to approach the schematic design performance as much as possible. For each
schematic design, 2000 layouts with different placement, routing and wire sizes are generated by varying
tool parameters and layout constraints. Among the data, 80% of the samples are for training and the other
20% are for testing so that no training data is seen in testing. During the WAGN model construction, cross
validation is performed to tune model hyperparameters. We implement the proposed WAGN model with 4
attention-pooling layers and 5 MLP layers. Table 2 summarizes the configuration of the WAGN network.

Feature #nodes #node #edge
Extractor features features

WAGN layers

12 11 31
12 11 31
6 5 12
6 5 12

Predictor #neurons

MLP layers

32
16
8
4
1

Table 2. WAGN network configuration.

We consider discrete wire sizing in the context of gridded routing, where each net has wire width
options of 1×, 2× and 3×. According to our experience, the upper bound of 3× is high enough for sufficient
performance improvement and low enough for reducing routability problems. Indeed, 99% of our wire
sizing solutions are routable. In the rare event that a net is not routable with increased wire width, it can be
captured by our flow and restored to its original wire width. The overall impact of wire sizing to routability
is very small. Although only 3 width options are considered, the solution space is still huge, e.g., a circuit
with only 20 nets has over 3 billion wire sizing solutions, which is immensely more than the 2000 training
samples.

The wire widths decided by a sizing solution are realized in detailed routing through parallel routes. An
example with different wire width implementations is depicted in Fig. 8. There are 3(2) parallel routes from
Pin B to Pin A(C) to realize the 3(2)× wire widths, and design rules are well followed. The path lengths for
the parallel routes might be slightly different, but the impact on performance is negligible.
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Fig. 8. Wire sizing through parallel routes.

6.1 Results on ML Performance Models

A classification model is evaluated by the following metrics based on TP (True Positive), TN (True Negative),
FP (False Positive) and FN (False Negative).

• Recall, a.k.a. TPR (True Positive Rate): T P
T P+FN

• FPR (False Positive Rate): F P
FP+T N

• Accuracy: T P+T N
T P+T N+F P+FN

• Precision: T P
T P+F P

With different thresholds in the classification, there is a tradeoff between TPR and FPR. ROC (Receiver
Operating Characteristic) curve shows the TPR-FPR tradeoff. AUROC (Area under the ROC curve) is a
metric for assessing the overall performance of the entire tradeoff. AUROC is 1 if the model is perfect and
0.5 if the model performs random guesses. The proposed WAGN model is evaluated by comparisons with
PEA [20], RF (Random Forest) and SVM (Support Vector Machine).

Table 3. Comparison among different circuit performance models on average of the 12 testcases and details are
provided in Table 12. TPR: True Positive Rate; FPR: False Positive Rate; AUROC: Area Under Receiver Operating
Characteristic curve.

Accuracy Precision TPR FPR AUROC
WAGN 94.0% 83.3% 89.5% 4.7% 0.971
PEA 91.0% 81.3% 77.1% 4.9% 0.932
SVM 85.0% 76.6% 58.7% 5.4% 0.892
RF 83.9% 76.6% 47.4% 4.5% 0.881

Table 3 compares different models where training and testing data are for the same schematic topology.
One can see that GNN techniques, including both WAGN and PEA, are superior to RF and SVM. Compared
to PEA [20], our WAGN model improves TPR from 77.1% to 89.5% with around 5% FPR.

Table 4. Source-target topology pairs for transfer learning.

Source CC-OTA CC-OTA CM-OTA TS-OTA1 TS-OTA2 Comp1 Comp2 Comp1 VCO1 VCO2 SCF1 SCF2
Target CM-OTA 5T-OTA 5T-OTA TS-OTA2 TS-OTA1 Comp2 Comp1 Comp3 VCO2 VCO1 SCF2 SCF1
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We also evaluate knowledge transfer capability of different models. Here, “transfer” means that a model
is trained with 80% data of a source (S) topology and applied to a target (T) topology with fine-tune training
by 10% data from T. As such, the knowledge learned from S is applied (transferred) to T. Twelve S-T transfer
pairs listed in Table 4 are tested. The transfer learning results are shown in Table 5, where “fine-tune-only”
means the training is based on 10% of T data only. Please note that “fine-tune-only” is different from
WAGN/PEA where the model is trained with 80% of T data and its inference is performed on T topology.
For WAGN, the transfer leads to 12.9% improvement on TPR for similar false positive rate. By contrast,
the TPR improvement from PEA transfer learning is only 4.6%. Please note that the knowledge transfer is
restricted to be between different topologies of the same type of circuit, e.g., different topologies of OTAs.
Knowledge transfer among different types of circuits is much more difficult as they often have different
performance metrics, e.g., gain for OTA and linearity for ADC.

Table 5. Transfer learning results averaged from the 12 circuits. Detailed results are provided in Table 13. TPR: True
Positive Rate; FPR: False Positive Rate; AUROC: Area Under Receiver Operating Characteristic curve.

Accuracy Precision TPR FPR AUROC
WAGN transfer 90.0% 81.2% 73.9% 4.9% 0.916

WAGN fine-tune-only 86.5% 77.4% 61.0% 5.3% 0.872
PEA transfer 87.4% 79.6% 63.7% 4.9% 0.895

PEA fine-tune-only 86.3% 78.1% 59.1% 5.0% 0.886

6.2 Results on Wire Sizing

There is no previous work on performance- driven analog wire sizing. Thus, we use a uniform sizing strategy
and conventional Bayesian optimization, which is a recent approach to transistor sizing [29], as the main
baselines for comparison. Overall, the following methods are compared.

• 1× (2×, 3×) width. All nets of a circuit have the same 1× (2×, 3×) wire width.
• BO1. A baseline approach of conventional Bayesian optimization [29], which is guided by circuit
simulation. The number of circuit simulations is 14, which is derived in a way such that BO1 CPU
runtime is similar to our techniques.
• BO2. This is almost the same as BO1 except that it allows 110 circuit simulation runs, which is a
typical number of total samplings in conventional use.
• BO-WAGN. Wire sizes are optimized by our Bayesian optimization, which is guided by a hybrid of
WAGN and 10 circuit simulations.
• BO-WAGN-transfer. Wire sizes are optimized by our Bayesian optimization, which is guided by a
hybrid of WAGN with transfer learning (Sec. 6.1) and 10 circuit simulations.
• TF. Wire sizes are optimized by our TensorFlow-based sizing optimization, where WAGN and 10
circuit simulations are employed for each design.
• TF-transfer. Wire sizes are optimized by TensorFlow-based sizing, where WAGN with transfer
learning (Sec. 6.1) and 10 circuit simulations are employed for each design.
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Please note 3× width is realized by three parallel routes for a net, and possibly with different wirelength
resulted from detailed routing. Therefore, the wire area, which is the product of wirelength and wire width,
of 3× width can be more than 3× of the wire area of 1× width.

Fig. 9. Post-layout performance results from different wire sizing methods in terms of FOM. BO: Bayesian Optimization;
TF: TensorFlow; VCO: Voltage Controlled Oscillator; SCF: Switched Capacitor Filter.

A comparison among different methods on post-layout circuit performance in terms of FOM is plotted
in Figure 9. The best of our approach - BO-WAGN-transfer leads to 8%-21% average FOM improvement
compared to the uniform sizing strategy (1×, 2×, 3× width). The reason why BO-WAGN-transfer is better
than BO-WAGN is mostly because of circuit Comp1. For Comp1, BO-WAGN-transfer finds a solution with
FOM 0.77 (BO2 also finds this solution). However, BO-WAGN only finds a solution with FOM 0.68. For
other circuits, BO-WAGN-transfer and BO-WAGN achieve the same or similar solutions. The others of our
techniques obtain similar FOMs as BO-WAGN-transfer, with only 1% difference on average. These results
confirm that uniform wire sizing is insufficient for performance improvement and our sizing techniques are
indeed effective.
Runtime comparisons are provided in Table 6. All results are normalized with respect to that of BO-

WAGN-transfer. The runtimes of BO-WAGN-transfer and TF-transfer cover the training cost of WAGN,
which includes the time of training dataset generation (layout generation, parasitic extraction and post-
layout simulation) and WAGN model training. The runtime of BO-WAGN-transfer (TF-transfer) is similar
to that of BO-WAGN (TF) when training cost is not considered. Thus, the runtime of BO-WAGN-transfer
and TF-transfer without considering training cost is omitted in the table. Its dominating part is circuit
simulations, which are performed in parallel easily. The simulations in BO1 and BO2 are difficult to be
parallelized as a sample (or a new sizing solution) depends on the results of previous iterations. The parallel
Bayesian optimization in [44] is for multi-objective optimization, which is different from the wire sizing here.
The runtime of BO1 is similar to BO-WAGN-transfer, but its circuit performance (FOM) is 11% worse. BO2
can achieve similar circuit performance as our techniques but is 8.7× slower. According to [40], machine
learning model transfer among different technology generations is not hard. Thus, our WAGN train cost can
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Table 6. Runtime comparison of different methods. WOTC: without considering training cost (training data generation
+ training time). WTC: with consideration of training cost. Training cost is also considered for both BO-WAGN-transfer
and TF-transfer.

BO1 BO2 BO-WAGN (min) BO-WAGN TF (min) TF-transfer
(min) (min) WOTC WTC -transfer (min) WOTC WTC (min)

5T-OTA 17.1 116.8 11.2 39.5 14.6 17.1 45.4 20.0
CC-OTA 19.4 130.9 12.2 33.3 14.3 15.9 37.0 18.0
CM-OTA 18.1 124.9 11.8 28.9 13.5 12.6 29.7 14.3
TS-OTA1 68.6 510.9 48.10 208.51 59.18 54.7 221.61 72.54
TS-OTA2 48.0 363.3 33.01 134.97 44.11 35.1 141.86 46.70
Comp1 35.2 244.3 21.3 60.6 25.2 27.1 66.4 31.0
Comp2 53.8 386.2 32.4 70.0 36.2 25.8 63.4 29.6
Comp3 35.1 273.0 23.3 60.5 27.0 26.9 64.1 30.6
VCO1 128.4 934.7 88.3 262.5 105.7 132.5 306.7 150.0
VCO2 122.5 892.3 93.1 300.6 113.8 230.4 437.4 251.1
SCF1 129.3 962.0 99.0 278.4 116.9 97.3 276.3 115.2
SCF2 94.6 669.0 62.5 168.6 73.1 61.4 167.4 72.0

Avg. 64.21 467.4 44.7 137.2 53.6 61.4 154.77 70.93
Norm 1.2× 8.7× 0.8× 2.6× 1× 1.1× 2.9× 1.3×

be potentially further amortized across different technology generations. TF and BO-WAGN optimization
methods can achieve about the same FOM improvement (Figure 9). While BO-WAGN is moderately faster
than TF, the implementation effort of TF is lower than BO-WAGN as the same code infrastructure is used
for both the model construction and optimization in TF.

Table 7. Post-layout results of CM-OTA.

1x width 2x width 3x width BO1 BO2 BO-WAGN BO-WAGN-transfer TF TF-transfer
Gain (dB) 33.1 32.3 31.1 29.9 32.6 32.4 32.6 32.8 32.4
UGF (MHz) 451.0 470.5 511.4 517.0 516.5 524.7 507.2 520.0 513.7
BW (MHz) 10.2 11.4 14.5 16.9 12.3 12.9 13.2 12.1 12.5
PM (◦ ) 78.5 77.7 77.6 76.9 77.4 77.0 76.4 77.5 77.3

FOM 0.92 0.93 0.90 0.91 1.00 0.99 1.00 0.97 1.00

Wire Area (µm2) 0.24 0.63 0.86 0.52 0.57 0.44 0.51 0.66 0.67

Detailed results for an OTA, two-stage OTAs and a comparator are shown in Tables 7, 8, 9 and 10,
respectively. One can observe that the wire area from wire size optimization is always smaller than that of
3× width layout and often similar to 2× width layout. Please note that wire area increase hardly affects chip
area as the redundant routes use existing white space without changing device placement. We notice that
wire width values in a layout after optimization are often uniformly distributed, i.e., each wire width occurs
in about 1/3 of the nets of a circuit. This indicates that wires of different nets need to be sized differently.
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Table 8. Post-layout results of TS-OTA1.

1x width 2x width 3x width BO1 BO2 BO-WAGN BO-WAGN-transfer TF TF-transfer
Gain (dB) 18.25 35.6 36.1 35.76 36.22 36.23 35.91 36.02 36.27
UGF (MHz) 88.0 283.0 324.6 302.8 364.9 364.2 350.6 357.2 357.7
BW (MHz) 10.79 4.46 4.92 4.66 5.43 5.43 5.35 5.51 5.21
PM (degree) 76.12 65.56 64.79 62.86 61.97 62.63 62.03 62.8 61.13

FOM 0.59 0.83 0.88 0.86 0.94 0.94 0.92 0.93 0.92

Wire Area (µm2) 1.13 2.35 3.68 2.08 2.79 2.98 2.95 2.70 2.60

Table 9. Post-layout results of TS-OTA2.

1x width 2x width 3x width BO1 BO2 BO-WAGN BO-WAGN-transfer TF TF-transfer
Gain (dB) 36.70 42.56 46.4 41.86 47.43 46.79 46.77 47.32 46.81
UGF (MHz) 356.3 412.2 470.5 437.8 517.8 503.3 503.3 508.5 468.1
BW (MHz) 5.43 3.27 2.30 37.13 2.14 2.28 2.28 2.16 2.21
PM (◦ ) 61.48 58.08 61.6 58.98 67.9 65.98 65.79 65.42 61.20

FOM 0.73 0.82 0.91 0.82 0.93 0.92 0.92 0.93 0.90

Wire Area (µm2) 0.38 0.72 1.15 1.01 1.02 0.59 0.59 0.95 0.46

Table 10. Post-layout results of Comp1.

1x width 2x width 3x width BO1 BO2 BO-WAGN BO-WAGN-transfer TF TF-transfer
Evaluation delay (ps) 36.2 31.7 31.1 32.9 32.4 32.8 32.4 31.7 32.2
Precharge delay (ps) 45.6 43.5 40.7 44.1 41.1 41.4 41.1 43.5 41.1

Power (µW) 124.0 123.3 125.4 125.0 125.3 125.0 125.0 124.6 124.7
Offset (mV) 17.8 17.8 13.4 10.5 1.8 6.1 1.8 6.1 6.1

FOM 0.60 0.64 0.65 0.64 0.77 0.68 0.77 0.68 0.68

Wire Area (µm2) 0.16 0.40 0.68 0.36 0.39 0.35 0.37 0.40 0.34

(a) CC-OTA gain (b) Comp2 offset

Fig. 10. Post-layout results of CC-OTA and Comp2.

The gain of CC-OTA and the offset results of Comp2 are plotted in Figure 10 for different methods.
Without degradation on other performance metrics, wire sizing improves the gain by about 3dB for CC-OTA
and reduces offset by about 7mV for Comp2. The plots also confirm that our techniques achieve remarkably
better gain and offset than BO1.
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(a) CM-OTA (b) Comp1

Fig. 11. FOM of TF with respect to ξ and η.

(a) CM-OTA (b) Comp1

Fig. 12. FOM of BO-WAGN with respect to ξ and η.

6.3 Parameter Analysis for TF and BO-based Optimizations

Both TF (TensorFlow) and BO (Bayesian Optimization)-based wire size optimizations consist of multiple
runs with different initial solutions, and the number of runs is denoted by ξ . At the end of TF as well as
BO-WAGN, top η solutions according to WAGNθ⋆

(·) are simulated to find the solution with the maximum
FOM . In our default setting ξ = 100 and η = 10. It is conceivable that solution quality should improve with
increase of ξ and η. This effect is evaluated in a couple of circuits and the results are shown in Figures 11 and
12, where a lighter color means a higher FOM. For TF, FOM increases with η but its dependence on ξ is weak.
For BO-WAGN, the effect of increasing ξ is more obvious. Interestingly, TF is sensitive to small changes of ξ
and η while BO is not. Both ξ and η are parameters whose values can be determined by users. Alternatively,
their values can be dynamically increased during runtime till the saturation of FOM improvement.
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Fig. 13. Manual annotated circuits.

Table 11. Post-layout results of TS-OTA1 and TS-OTA2.

Circuit TS-OTA1 TS-OTA2
Method MA BO-WAGN MA BO-WAGN
Gain (dB) 36.15 36.23 35.91 46.79
UGF (MHz) 329.4 364.2 349.8 503.3
BW (MHz) 4.99 5.43 5.87 2.28
PM (degree) 63.92 63.63 61.75 64.98

FOM 0.89 0.94 0.74 0.92

Wire Area (µm2) 2.89 2.98 1.08 0.59

6.4 Comparison with a Manual Annotated Method

We compare our approach with a manual annotated (MA) method, where the sensitivity of nets is annotated
by analog designers and the wire width is sized up accordingly. As shown in Figure 13, the sensitivity of
nets is annotated for two circuits, TS-OTA1 and TS-OTA2. Some nets (marked in black) are not sensitive.
Some nets (marked in blue) are sensitive to R only, and the wires can be made as wide as possible. Some
other nets are sensitive to both R and C (marked in red). For these nets, the wires shouldn’t be too narrow
(R limiting) or too wide (C limiting). In our experiment, we set 1X width for non-sensitive nets, 3X width
for R-sensitive nets, and 2X width for RC-sensitive nets. Their post-layout results are shown in Table 11.
We can see that our approach, BO-WAGN, is able to find better solutions than the MA method. This is not
surprising, as the critical/load sensitive nets are usually identified based on the circuit topology. However,
the RC trade-offs and their impacts on circuit performance are actually design-dependent (transistor and
capacitor size-dependent). Such trade-offs and impacts are hard for the designer to capture manually.

7 CONCLUSION AND FUTURE RESEARCH

Wire width can significantly affect analog IC performance while performance-driven analog wire sizing has
been rarely studied. In this work, a customized graph neural network model, WAGN (Wire Attention Graph
Network), is developed for quickly estimating the performance of wire sizing solutions. Experimental results
show that WAGN not only is superior to SVM and random forest but also outperforms a state-of-the-art
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previous work. Two wire sizing optimization techniques are investigated: one is Bayesian optimization
(BO) guided by WAGN and the other is based on TensorFlow training, which is also guided by WAGN. The
former is slightly faster and the latter requires significantly less implementation effort. Experimental results
show that our best technique achieve either an average of 11% overall circuit performance improvement or
8.7× speedup compared to conventional Bayesian optimization.
The proposed techniques have three weaknesses. First, the effectiveness of each ML model is restricted

to only one type of circuits and its knowledge cannot be easily transferred to a different type of circuits.
Second, the ML models can only perform classification while a regression model is more useful in practice.
Third, the effectiveness of the ML models are difficult to scale to large circuits such as ADC/DAC. These
weaknesses will be addressed in our future research. Additionally, we will further improve wire sizing
techniques to account for the effect of process variations and accommodate joint transistor-wire sizing.
Another future research direction will be simultaneous transistor and wire sizing.
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APPENDIX

Detailed Experimental Results on Circuit Performance Models

Table 12. Comparisons of circuit performance models. TPR: True Positive Rate. FPR: False Positive Rate. AUROC: Area
under the ROC curve.

Circuit WAGN PEA WAGN PEA WAGN PEA WAGN PEA WAGN PEA
Accuracy Precision Recall/TPR FPR AUROC

CC-OTA 94.0% 91.5% 58.5% 53.1% 87.8% 68.9% 5.4% 5.9% 0.974 0.920
CM-OTA 97.0% 94.0% 89.9% 85.1% 98.6% 80.3% 3.5% 3.0% 0.998 0.975
5T-OTA 96.5% 94.7% 84.3% 85.3% 98.6% 95.5% 4.0% 5.6% 0.996 0.986
TS-OTA1 95.2% 92.5% 86.3% 87.1% 96.3% 82.1% 5.1% 4.0% 0.988 0.954
TS-OTA2 95.3% 93.8% 86.5% 86.4% 96.1% 86.4% 5.0% 4.0% 0.994 0.967
Comp1 92.0% 86.3% 83.0% 77.5% 82.0% 62.6% 5.0% 6.0% 0.962 0.905
Comp2 91.5% 88.0% 84.9% 79.3% 82.7% 69.7% 5.3% 6.0% 0.961 0.898
Comp3 91.8% 89.0% 83.0% 80.2% 83.8% 73.7% 5.7% 6.0% 0.954 0.920
VCO1 92.2% 87.9% 87.2% 81.5% 80.9% 70.7% 4.0% 5.8% 0.937 0.893
VCO2 92.3% 89.0% 86.8% 87.9% 81.6% 68.0% 4.2% 3.4% 0.933 0.919
SCF1 95.3% 92.4% 83.3% 85.6% 91.6% 83.8% 4.0% 4.7% 0.972 0.922
SCF2 95.0% 92.6% 86.1% 86.2% 94.4% 83.8% 4.9% 4.5% 0.983 0.931
Avg. 94.0% 91.0% 83.3% 81.3% 89.5% 77.1% 4.7% 4.9% 0.971 0.932

Circuit SVM RF SVM RF SVM RF SVM RF SVM RF
Accuracy Precision Recall/TPR FPR AUROC

CC-OTA 83.5% 82.8% 69.7% 77.9% 50.6% 43.5% 6.6% 4.1% 0.874 0.887
CM-OTA 89.0% 82.0% 79.1% 77.4% 73.6% 39.8% 6.2% 3.9% 0.853 0.751
5T-OTA 97.0% 78.0% 86.4% 66.7% 98.6% 24.0% 3.3% 4.0% 0.994 0.720
TS-OTA1 83.3% 83.0% 70.2% 72.0% 45.5% 40.9% 5.7% 4.7% 0.921 0.929
TS-OTA2 86.1% 84.5% 77.4% 75.9% 54.6% 46.9% 4.7% 4.3% 0.911 0.921
Comp1 82.5% 84.4% 67.2% 74.6% 46.1% 50.0% 6.7% 5.2% 0.859 0.883
Comp2 81.9% 84.4% 75.0% 79.7% 48.0% 50.4% 5.8% 4.3% 0.889 0.924
Comp3 83.5% 86.2% 78.0% 81.3% 46.5% 58.2% 4.3% 4.5% 0.880 0.929
VCO1 82.6% 84.1% 76.0% 72.6% 50.7% 50.0% 5.8% 5.7% 0.864 0.893
VCO2 85.1% 84.6% 76.8% 81.7% 57.8% 59.0% 5.8% 5.3% 0.916 0.912
SCF1 88.6% 84.4% 81.0% 80.0% 71.4% 50.0% 5.6% 4.2% 0.885 0.910
SCF2 87.0% 88.7% 82.4% 80.0% 61.3% 60.3% 4.4% 3.9% 0.863 0.914
Avg. 85.8% 83.9% 76.6% 76.6% 58.7% 47.7% 5.4% 4.5% 0.892 0.881
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Table 13. Detailed transfer learning results. FTO: fine-tune-only.

Model Circuit Transfer FTO Transfer FTO Transfer FTO Transfer FTO Transfer FTO
S T Accuracy Precision Recall/TPR FPR AUROC

WAGN

CC-OTA CM-OTA 88.0% 83.6% 79.0% 75.6% 68.1% 47.2% 5.7% 4.9% 0.898 0.808
CC-OTA 5T-OTA 94.8% 93.8% 80.5% 81.9% 93.0% 83.1% 4.9% 4.0% 0.975 0.960
CM-OTA 5T-OTA 96.0% 93.8% 84.8% 81.9% 94.4% 83.1% 3.7% 4.0% 0.977 0.960
TS-OTA2 TS-OTA1 95.9% 89.4% 87.1% 80.7% 97.9% 75.1% 4.8% 5.9% 0.989 0.928
TS-OTA1 TS-OTA2 93.4% 88.5% 83.9% 80.1% 90.7% 71.2% 5.7% 5.8% 0.976 0.930
Comp1 Comp2 85.4% 83.6% 81.5% 78.4% 58.7% 53.3% 4.9% 5.3% 0.858 0.848
Comp2 Comp1 85.6% 86.4% 81.6% 75.7% 58.9% 59.6% 5.0% 5.7% 0.858 0.801
Comp1 Comp3 86.8% 84.8% 79.5% 75.7% 62.6% 56.6% 5.3% 6.0% 0.899 0.885
VCO1 VCO2 86.4% 82.9% 82.2% 77.6% 58.2% 50.7% 4.2% 5.3% 0.860 0.816
VCO2 VCO1 86.1% 82.9% 82.1% 77.6% 61.3% 50.7% 4.9% 5.3% 0.857 0.809
SCF1 SCF2 90.8% 84.3% 75.8% 72.6% 70.4% 50.6% 4.9% 5.7% 0.936 0.848
SCF2 SCF1 91.3% 84.1% 76.5% 71.4% 73.2% 50.6% 4.9% 6.0% 0.911 0.876

Avg. 90.0% 86.5% 81.2% 77.4% 73.9% 61.0% 4.9% 5.3% 0.916 0.872

PEA

CC-OTA CM-OTA 82.8% 80.9% 75.5% 73.0% 46.3% 37.5% 5.0% 4.6% 0.870 0.803
CC-OTA 5T-OTA 93.8% 92.0% 78.8% 76.7% 88.7% 78.9% 5.2% 5.2% 0.990 0.983
CM-OTA 5T-OTA 94.3% 92.0% 81.6% 76.7% 87.3% 78.9% 4.3% 5.2% 0.974 0.983
TS-OTA2 TS-OTA1 92.7% 92.2% 86.6% 85.0% 84.0% 83.8% 4.4% 5.0% 0.976 0.972
TS-OTA1 TS-OTA2 90.0% 88.9% 83.4% 83.7% 75.3% 69.5% 5.0% 5.4% 0.958 0.949
Comp1 Comp2 85.0% 83.5% 79.1% 76.2% 53.5% 48.5% 4.7% 5.0% 0.858 0.876
Comp2 Comp1 84.0% 83.5% 77.8% 77.1% 49.5% 47.5% 4.7% 4.7% 0.840 0.826
Comp1 Comp3 85.0% 84.5% 77.5% 76.1% 55.6% 54.6% 5.3% 5.7% 0.866 0.869
VCO1 VCO2 83.9% 83.4% 77.3% 75.2% 50.4% 50.6% 5.0% 5.6% 0.816 0.811
VCO2 VCO1 84.0% 83.7% 75.1% 76.3% 53.9% 50.6% 6.0% 5.3% 0.836 0.814
SCF1 SCF2 86.7% 85.0% 81.2% 79.2% 60.9% 54.4% 4.7% 4.8% 0.871 0.872
SCF2 SCF1 86.4% 85.5% 81.5% 80.8% 59.0% 55.1% 4.5% 4.4% 0.886 0.869

Avg. 87.4% 86.3% 79.6% 78.1% 63.7% 59.1% 4.9% 5.0% 0.895 0.886
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