
Fast Poisson Solvers for Thermal Analysis
HAIFENG QIAN, IBM T. J. Watson Research Center

SACHIN S. SAPATNEKAR, University of Minnesota

EREN KURSUN, IBM T. J. Watson Research Center

Accurate and efficient thermal analysis for a VLSI chip is crucial, both for sign-off reliability verification
and for design-time circuit optimization. To determine an accurate temperature profile, it is important to
simulate a die together with its thermal mounts: this requires solving Poisson’s equation on a non-
rectangular 3D domain. This paper presents a class of eigendecomposition-based fast Poisson solvers (FPS)
for chip-level thermal analysis. We start with a solver that solves a rectangular 3D domain with mixed
boundary conditions in O(N·logN) time, where N is the dimension of the finite-difference matrix. Then we
reveal, for the first time in the literature, a strong relation between fast Poisson solvers and Green-
function-based methods. Finally, we propose an FPS method that leverages the preconditioned conjugate
gradient method to solve non-rectangular 3D domains efficiently. We demonstrate this approach on
thermal analysis of an industrial microprocessor, showing accurate results verified by a commercial tool,
and that it solves a system of dimension 4.54e6 in only 13 Conjugate Gradient iterations, with a runtime of
65 seconds, a 15X speedup over the popular ICCG solver.

Categories and Subject Descriptors: B.7.2 [Integrated Circuits]: Design Aids─Simulation

General Terms: Design, Algorithms, Design, Reliability

Additional Key Words and Phrases: Thermal analysis, fast Poisson solver, Green function

1. INTRODUCTION

As the power density and cooling costs continue to increase temperature modeling
has become a part of the integrated circuit design. Thermal characteristics not only
determine the maximum performance envelope of an integrated circuit in the form of
thermal design point, they also have strong impact on the overall energy efficiency,
cost and reliability of the design. Since the power dissipation is spatially non-
uniform the resulting localized hotspots and thermal gradients create numerous
challenges such as clock skews and timing failures. Hotspots also degrade chip
reliability over time leading to hard-errors. Temperature-leakage feedback
mechanisms imply that hot spots can cause further power increase and even thermal
runaway. Therefore, the ability to obtain an accurate full-chip temperature profile is
a necessity during sign-off performance and reliability verification.

 This work was supported in part by the NSF under award CCF-0634802.
A preliminary and abridged version of this article appeared in IEEE/ACM International Conference on
Computer Aided Design Digest of Technical Papers, pp. 698-702, 2010.
Author’s addresses: H. Qian, IBM T. J. Watson Research Center, 1101 Kitchawan Road, Route 134, P. O.
Box 218, Yorktown Heights, NY 10598; email: qianhaifeng@us.ibm.com; S. S. Sapatnekar, Department of
Electrical and Computer Engineering, 200 Union Street SE, University of Minnesota, Minneapolis, MN
55455; email: sachin@ece.umn.edu; E. Kursun, IBM T. J. Watson Research Center, 1101 Kitchawan Road,
Route 134, P. O. Box 218, Yorktown Heights, NY 10598; email: ekursun@us.ibm.com.
Permission to make digital or hardcopies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credits permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
@2010 ACM 1539-9087/2010/03-ART39 $10.00
DOI10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

Furthermore, accurate and efficient thermal analysis is an indispensable engine
for many design-time circuit optimizations. For example, since the power dissipation
of a circuit depends on temperature, accurate power analysis and optimization
methods must be integrated with thermal analysis. Thermally-driven optimizations
require a large number of thermal solves with different power dissipation
distributions, and therefore demand extremely high efficiency from the thermal
analysis engine.

This paper addresses chip-level analysis, solving for the thermal profile of an
entire chip. In such an analysis, it is reasonable and common practice to model a die
using layered materials, with thermal conductivity being uniform or close to uniform
within a layer. This work does not discuss detailed local analysis, e.g., using fine-
grained models of transistor and metal shapes.

Fast chip-level thermal analysis has been the subject of many prior works [Heriz
et al. 2007; Li et al. 2004; Wang and Mazumder 2007; Zhan and Sapatnekar 2007].
Most of them focus on solving Poisson’s equation on a die, which is a 3D rectangular
domain with layered materials. In a typical model, the boundary conditions on five
surfaces of this domain are assumed to be adiabatic ─ this is in the form of the
Neumann boundary condition, which specifies temperature gradient along the
direction that is perpendicular to a surface. For adiabatic boundary conditions, this
gradient must be zero everywhere on these five surfaces [Li et al. 2004; Zhan and
Sapatnekar 2007]. The sixth surface of this domain is assumed to be convective, and
the form that is typically used here is the Dirichlet boundary condition, which
specifies temperature values on a surface in this case, the temperature on the sixth
surface of the model [Li et al. 2004; Zhan and Sapatnekar 2007], which is often
assumed to be the ambient. A multigrid approach was proposed in [Li et al. 2004],
which uses finite-difference discretization and a geometric multigrid solver. Several
Green-function-based algorithms were proposed in [Wang and Mazumder 2007; Zhan
and Sapatnekar 2007], which use boundary element method and leverage the
efficiency of Fast Fourier Transform (FFT). These Green-function-based algorithms
have a strong relation to the works of [Costa et al. 1999; Gharpurey and Meyer 1996;
Niknejad et al. 1998] on the problems of substrate electrical analysis, which also
involves Poisson’s equation on a 3D rectangular domain with layered materials.

One important limitation of solving a rectangular domain, the die only, is the
simplistic assumption (Dirichlet boundary condition as noted above) about the
surface that connects to the thermal mounts. The temperatures on this surface are
far from uniform and vary greatly depending on packaging structures. A typical
configuration uses a copper heat spreader attached to the die that is wider than the
die, and then a copper heat sink attached to the spreader with even larger size and
also with fins facing the other side for air cooling [Zhan and Sapatnekar 2007], with
thermal interface materials used to ensure good conductivity at the contact surfaces.
Although it is possible to approximate these thermal mounts with an effective heat
transfer coefficient [Zhan and Sapatnekar 2007], such an approximation may incur
substantial error. Therefore, it is important to simulate a die together with its
thermal mounts, which requires solving Poisson’s equation on a non-rectangular 3D
domain [Bagnoli et al. 2007; Heriz et al. 2007].

In fact, it was shown in [Heriz et al. 2007] that, with a typical 7cm×7cm copper
mount under a 1cm×1cm silicon die, the on-chip temperatures can be tens of degrees
different from a simulation where the mount has the same size as the die, and the
shapes of the temperature profiles are also significantly different. Fig. 1 illustrates
the pyramid-shaped model in [Heriz et al. 2007]. This model will be used in Section 5
for discussion and in Section 6 for testcases; however, our solver in Section 5 is not
limited to solving pyramid-shaped domains, and can handle other non-rectangular
models, e.g., those that include fins under the sink.

Fig. 1. The pyramid thermal model from [Heriz et al. 2007].

The difficulty of solving Poisson’s equation on a non-rectangular domain is that an

analytical form is no longer available for the Green function. Therefore many existing
techniques are no longer applicable, and an accurate solution of the finite difference
matrix would require generic methods, for example, the finite difference method with
the popular Incomplete Cholesky preconditioned Conjugate Gradient (ICCG) solver.
As an alternative, [Heriz et al. 2007] proposed an imaging technique which
precomputes impulse heat-to-temperature responses and then applies convolution to
compute temperatures. One drawback of this method is its limited scalability when
higher levels of granularity are needed for the power distribution and the
temperature profile.

This paper studies eigendecomposition-based fast Poisson solvers for chip-level
thermal analysis, and throughout this paper we will use FPS as a shorthand
notation for these solvers. The idea of FPS has been known for a long time [Saad
2003; Swarztrauber 1977], but it has found limited usage in practical applications. In
the literature, e.g. [Saad 2003; Shi et al. 2009], FPS is often presented in the context
of a 2D-grid Laplacian matrix with uniform diagonal entries, which corresponds to a
finite-difference discretization of a 2D rectangular homogeneous domain with
Dirichlet conditions on all four boundaries. It is rarely discussed with respect to 3D
domains and/or more general boundary conditions [Swarztrauber 1977].

The major contributions of this paper are as follows. Section 3 demonstrates a
FPS solver for 3D rectangular thermal models with mixed boundary conditions as in
[Li et al. 2004; Zhan and Sapatnekar 2007]. The conventional wisdom has been that
FPS solvers were an entirely different class of solvers from other known solvers.
Section 4 investigates and proves, for the first time, a strong relation ─ in fact, an
equivalence under certain conditions ─ between FPS and Green-function-based
methods. Like Green-function solvers, we show that FPS is also restricted to certain
regular structures. Since real circuit structures are not necessarily regular,
particularly as related to chip-package interactions, we demonstrate how these
regular solvers can be used to devise preconditioned iterative solvers. In particular,
Section 5 presents FPS-Preconditioned Conjugate Gradient method that solves non-
rectangular domains efficiently.

Fig. 2. An example for basic 2D FPS.

2. BASICS: 2D FPS WITH ALL-AROUND DIRICHLET BOUNDARY CONDITIONS
In this section, we review some well-known FPS fundamentals in order to set the
stage for introducing more advanced FPS solvers in the rest of this paper.
Specifically, we discuss using FPS to solve 2D domains with all-around Dirichlet
boundary conditions. The discussion is largely based on [Saad 2003], and [Shi et al.
2009] is an example of applying the method in the design automation domain.

Let us consider a hypothetical 2D problem illustrated in Fig. 2. Suppose we use
finite-difference discretization and divide a 2D domain into M·K cells, and let the x
values be the temperatures of each cell; suppose this domain has Dirichlet conditions
on all four boundaries, i.e., the temperatures of the grey cells are known; suppose the
thermal conductivity between any pair of adjacent cells is identical (this is true of a
uniform medium) and is equal to g. Then, if we know the power dissipation in each
cell, the temperature values can be obtained by solving the linear system:

	

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−−

−−

−

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−−

−−

−

==

4100
110

0141
0014

 ,

00
0

0
00

 where,


B

BI
II

IBI
IB

gAA bx
	
 (1)	

Note that the dimension of B is M×M. The eigenvalues λi and normalized
eigenvectors qi of matrix B are well known [Saad 2003]:

	

Τ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
+

⋅⋅
⎟
⎠

⎞
⎜
⎝

⎛
+

⋅⋅
⎟
⎠

⎞
⎜
⎝

⎛
+

⋅
⋅

+
=

⎟
⎠

⎞
⎜
⎝

⎛
+

⋅
−=≤≤∀

1
sin

1
2sin

1
sin

1
2

1
cos24 ,1

M
iM

M
i

M
i

M

M
iMi i

πππ

π
λ

iq

	
 (2)	

Let matrix Q (which is orthonormal, i.e., QTQ = QQT = I) be

	
 ()MQ qqq 21 = 	
 (3)	

Let us perform the following transformation on (1).

	

,

000
000
000
000

 1~ ,

000
000
000
000

~ where

~~

000
000
000
000

00
0

0
00

000
000
000
000

T

T

T

T

T

T

T

T

T

bbxx

bx

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−−

−−

−

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

Q

Q
Q

g
Q

Q
Q

Q

Q
Q

BI
II

IBI
IB

Q

Q
Q




	
 (4)	

which becomes

	

bx ~~

00
0

0
00

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

Λ

−

−Λ−

−Λ

I
II

II
I


	
 (5)	

where Λ is a diagonal matrix with diagonal entries being λ1, λ2, …, λM. Because of the
block form of (5) and each subblock being a diagonal matrix, (5) can be decoupled into
M independent systems, each with a left-hand-side matrix in the following form.

	

Mi

i

i

i

≤≤

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−−

−−

−

1,

100
110
011
001

λ

λ

λ


	
 (6)	

The above is a tridiagonal matrix, and each such sub-system can be solved in
linear time [Saad 2003]. After (5) is solved, the solution to the original system is
simply:

	

xx ~

000
000
000
000

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

Q

Q
Q



	
 (7)	

The efficiency of this FPS comes from the fact that the computation of b~ from b by
(4), and the computation of x from x~ by (7), both can be done using FFT with
O(K·M·logM) complexity.

3. 3D FPS WITH MIXED BOUNDARY CONDITIONS
The previous section reviews known solution to a 2D rectangular homogeneous
domain with Dirichlet conditions on all boundaries. It represents a very restrictive
scenario where the matrix takes the form of (1). In this section, we expand the
applicability of FPS.

3.1 Principles
Let us present the theory in the scenario with Neumann boundary conditions on five
surfaces and Dirichlet boundary condition on the last one, which is a typical model
used for chip-level thermal analysis [Li et al. 2004; Zhan and Sapatnekar 2007].
Implications of other boundary conditions and transient analysis will be discussed in
Section 3.2.

The following is a relaxed sufficient condition for FPS.

	

rs.eigenvecto same thehave ,,

dimension; same with thematrices square are ,,
such that

,

,

,2,1,

,22,21,2

,12,11,1

jiB
jiB

BBB

BBB
BBB

A

ji

ji

KKKK

K

K

∀

∀

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=







	
 (8)	

Let the common normalized eigenvectors of Bi,j be q1, q2, …, qM, where M is the
dimension of Bi,j. Let matrix Q be as in (3), but with these eigenvectors of Bi,j.

To solve Ax=b, let us do the following transformation, as in (4):

	

bbxx

bx

bx

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

=⋅

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

ΛΛΛ

ΛΛΛ

ΛΛΛ

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

T

T

T

T

T

T

,2,1,

,22,21,2

,12,11,1

T

T

T

T

T

T

T

T

T

000
000
000
000

 ~ ,

000
000
000
000

~ where

~~

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

Q

Q
Q

Q

Q
Q

Q

Q
Q

Q

Q
Q

Q

Q
Q

A

Q

Q
Q

KKKK

K

K











	
 (9)	

where Λi,j is a diagonal matrix with diagonal entries being the eigenvalues of Bi,j.
Now that the new left-hand-side matrix A has a block form where each block is a

diagonal submatrix, the overall system of linear equations can be decoupled into M
separate sets of linear equations, each of which has dimension K and can be solved
independently. Note that, if these sets of equations also satisfy condition (8), each of
them can again be transformed and further decoupled into smaller sets of equations.
Again, after x~ is obtained, solution x to the original system can be obtained by (7).

The advantage of FPS comes when Q has a special structure such that a fast way
exists to evaluate b~ from b by (9), and evaluate x from x~ by (7).

Now let us apply the above principles on 3D thermal analysis model with
Neumann boundary conditions on five surfaces, and Dirichlet boundary condition on
the z=0 surface [Li et al. 2004; Zhan and Sapatnekar 2007].

Let a and b be the dimensions of the domain in x and y directions. We assume
even-spaced discretization along the x-axis into Dx segments, even-spaced
discretization along the y-axis into Dy segments, and arbitrary discretization along
the z-axis into Dz segments. The result is Dx·Dy·Dz rectangular cells. For 0≤m≤ Dx-1,
0≤n≤ Dy-1, 0≤l≤ Dz-1, we use the notion cell (m,n,l) to refer to the cell formed by the
mth segment of the x axis, the nth segment of the y axis, and the lth segment of the z
axis. Let Tm,n,l be the average temperature of cell (m,n,l), and let Pm,n,l be the total
power dissipation inside cell (m,n,l). We assume a natural ordering in the linear
system Ax=b, in other words:
	

alnmDDlDnm TTx
yxx

−=⋅⋅+⋅+ ,,
	
 (10)	

	

lnmDDlDnm Pb

yxx ,,=⋅⋅+⋅+
	
 (11)	

where Ta is the ambient temperature at the external surface of the heat sink.
Applying equation (8) with M=Dx and K=Dy·Dz, we have special forms for the Bi,j

matrices:

	

scalar. a is where

 ,
110000
101000

010000

000010
000101
000011

 scalars, are and where

 ,

,

,,

,

ji

jiji

ii

iiii

IBji

G

GIBi

γ

γ

βα

βα

⋅=≠∀

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−

−−

−

−

−−

−−

=

⋅+⋅=∀










	
 (12)	

Note that the Bi,i formulation in the above equation is different from (1) and does
not subsume (1). This is due to the fact that we now have Neumann conditions on the
x=0 and x=a surfaces, as opposed to Dirichlet conditions in Section 2. Consequently,
the eigenvectors of Bi,i matrices in (12), which are essentially eigenvectors of G, must
be different from (2).

The eigenvalues and eigenvectors of G also have analytical forms. It can be
verified that they are:

	

()

()

()

() ()
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠

⎞
⎜
⎝

⎛ ⋅−⋅−

⎟
⎠

⎞
⎜
⎝

⎛ ⋅−⋅

⎟
⎠

⎞
⎜
⎝

⎛ ⋅−

⋅=>∀

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⋅=

⎟
⎠

⎞
⎜
⎝

⎛ ⋅−
−=≤≤∀

M
iM

M
i
M

i

M
i

M

M
iMi i

2
112cos

2
13cos

2
1cos

2 ,1

1

1
1

1

1cos2 ,1

1

π

π

π

π
λ


 iqq

	
 (13)	

Let matrix Q be defined as in (3), but using the above eigenvectors instead.
Fortunately, with these vectors, the computation of QTv and Qv, for any vector v, can
also be performed by FFT and with O(M·logM) complexity.

Now we have details of the transformed system in (9).

	

IQBQji

IQBQi

jijiji

M

iiiiii

⋅==Λ≠∀

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⋅+⋅==Λ∀

,,
T

,

2

1

,
T

,

 ,

00

00
00

 ,

γ

λ

λ

λ

βα







	
 (14)	

Let us investigate the complexity of FPS on this thermal analysis. The cost of
computing b~ from b by equation (9), using FFT, is O(K·M·logM) = O(Dx·Dy·Dz·logDx).
The cost of computing the final solution x by equation (7), using FFT, is also
O(Dx·Dy·Dz·logDx). The remaining question is the cost of the middle step, solving
equation (9) as Dx separate systems, each with dimension Dy·Dz.

Studying (9)(12)(14) in more details, it can be shown that each of these Dy·Dz
matrices has a 2D y-z grid structure and also satisfies conditions (8)(12). Therefore,
we can apply the FPS procedure on each of them on the y direction (note that we
have Neumann conditions on y=0 and y=b surfaces). It again is a three step
approach: the first and third steps use the FFT, with complexity O(Dy·Dz·logDy), and
the middle step now solves Dy separate systems, each with dimension Dz. Each of
them is now a 1D structure in the z direction, which is a tridiagonal matrix and can
be solved in linear time. Therefore, the cost of solving a system with dimension Dy·Dz
is O(Dy·Dz·logDy) + O(Dy·Dz) + O(Dy·Dz·logDy), which is bounded by O(Dy·Dz·logDy).

Therefore, the overall cost of solving the original system Ax=b is O(Dx·Dy·Dz·logDx)
+ Dx·O(Dy·Dz·logDy), which is bounded by O(N·logN), where N=Dx·Dy·Dz is the overall
dimension.

3.2 Other thermal models and transient analysis
The previous section covers the most widely used thermal model. This section
discusses other thermal models, in particular the implications on FPS of various
boundary conditions, as well as transient thermal analysis.

One possible thermal model has Neumann boundary conditions on five surfaces as
in the previous section, but has Robin boundary condition instead of Dirichlet
boundary condition on the sixth surface. Robin boundary condition is a linear
combination of Dirichlet and Neumann boundary conditions, and specifies a weighted
sum of the temperature and the perpendicular temperature gradient at every point
on the surface. Typically we can assume uniform material property across the
surface, i.e., that the two weighting coefficients are constant. Under finite-difference
discretization, Robin boundary condition’s implication to our linear system (8)(12) is
that iα ’s in (12) are modified for i’s that correspond to rows on the z=0 surface. These

changes remain only on diagonals in the transformed system (9)(14), similarly
remain after the FPS transformation on y direction, and eventually only affect the
tridiagonal systems in the z direction. Therefore the entire algorithm in Section 3.1
applies and the complexity remains O(N·logN).

More complex thermal models have been applied on chips with microchannel
cooling [Mizunuma et al. 2009; Sridhar et al. 2010; Sabry et al. 2011]. Without loss of
generality, let us assume that the coolant flows from the y=0 surface to the y=b
surface. In the finite-difference matrix (also referred to as equivalent resistive
network in these papers), there are now variations in thermal conductivity along x
and y directions at the microchannel layers. The variation along the x direction can
be handled by the technique to be presented in Section 5, but the variation along the
y direction is significant, particularly with extra elements in [Mizunuma et al. 2009]
to model the thermal-wakes effect. In addition, the boundary condition on the y=0
surface becomes partially Dirichlet (where the coolant inlets are) and partially
Neumann [Sridhar et al. 2010]. With such thermal models, FPS can only perform the
first round of transformation along the x direction, and not the second round along
the y direction. Consequently, as shown in the previous section, the overall
complexity is O(Dx·Dy·Dz·logDx) plus solving equation (9) as Dx separate systems, each
with a 2D grid structure and with dimension Dy·Dz. The complexity of solving each
2D grid with a direct solver with nested-dissection ordering such as METIS[Karypis
et al. 1995] is O(Dy1.5·Dz1.5). Therefore the complexity bound is O(Dx·Dy·Dz·logDx+
Dx·Dy1.5·Dz1.5), which is still more efficient than solving the original 3D system as a
whole.

The proposed FPS method is applicable to transient thermal analysis. A common
practice is to use an equivalent thermal RC network, which includes grounded
capacitors [Huang et al. 2006] to represent heat storage inside each cell per unit
increase of temperature. A transient analysis is thus to solve

() () ()t
dt
tdCtA bxx =+

where A is the same thermal conductance matrix as in the previous session, C is a
diagonal matrix with thermal capacitance values, and b(t) is time-varying power
distribution. With Backward Euler method (other methods follow similar derivations)
with time step size h, the analysis becomes solving the following linear system at
each time step:

() () () .
h
htCtt

h
CA −

+=⎟
⎠

⎞
⎜
⎝

⎛ +
xbx

It is important to note that, since C is a diagonal matrix, the left-hand-side matrix is
only modified at the diagonal entries, and that, assuming layered materials and
hence uniform thermal capacitance per layer, the new left-hand-side matrix still
takes the form of (8)(12). Therefore the entire algorithm in Section 3.1 applies and
the complexity is O(N·logN) per time step.

As a last note, a few other boundary conditions, though in 2D domains, were
discussed in [Swarztrauber 1977]. Their formulation for Neumann condition is
different from (12). The difference comes from a different approach of sampling

derivatives under finite-difference discretization. Both formulations are correct, and
both are within the approximation introduced by the finite-difference method.

4. RELATION BETWEEN FPS AND GREEN-FUNCTION-BASED METHODS
This section demonstrates a strong relation ─ in fact equivalence under certain
conditions ─ between the 3D FPS from Section 3 and Green-function-based Poisson
solvers [Gharpurey and Meyer 1996; Niknejad et al. 1998; Zhan and Sapatnekar
2007]. For clarity of presentation, we will only compare with the full-chip thermal
analysis method, referred to as Algorithm II in [Zhan and Sapatnekar 2007]. The
relation to other variations of Green-function-based methods follows similar
derivations. For the rest of the paper, we will use GFS as a short-hand notation for
Green-function-based solvers.

For clarity and without loss of generality, we assume, as in [Zhan and Sapatnekar
2007], that heat sources are located on discrete horizontal planes. Also, like [Zhan
and Sapatnekar 2007], we assume that each of these planes is divided into Dx×Dy
rectangular grid cells of equal size, and the power density inside each grid cell is
uniform. Therefore, the power density distribution function, P, is in the following
piecewise constant form, which is nonzero only at a finite set of z’ values.

	

() () ()

()
⎪⎩

⎪
⎨

⎧ <ʹ′<ʹ′
=ʹ′ʹ′Θ

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−ʹ′+−ʹ′Θ⋅ʹ′=ʹ′ʹ′ʹ′ ∑∑

−

=

−

=

otherwise,0
2

,
2

,1
,

where

5.0,5.0),,(
1

0

1

0
,

yx

D

m

D

n yx
nm

D
by

D
ax

yx

D
bny

D
amxzPzyxP

x y

	
 (15)	

where again a and b are the dimensions of the domain in x and y directions. Note
that the discreteness assumption about z axis is not essential, and, on removing it,
the derivation still stands, only with constants Pm,n(z’) replaced by more complex
forms.

4.1 FPS Formulations
This section gives detailed FPS formulations based on the principles of Section 3,
such that they can be compared with GFS formulations that will be given in Section
4.2.

Let us use the same formation of linear system Ax=b as (10)(11), and assume that
the x and y discretization is the same as in (15). Let the z coordinates of cell centers
be z0, z1, …, zDz-1. For clarity of presentation, we further assume that heat source
planes in (15) coincide these z coordinates. In other words:

	
 () { }121, ,,'for ,0),,(,0 −∉=ʹ′ʹ′ʹ′=ʹ′
zDnm zzzzzyxPzP  	
 (16)	

And we have the following relation between (11) and (15).

	
 ()
yx

lnmlnmDDlDnm DD
bazPPb

yxx ⋅
⋅

⋅==⋅⋅+⋅+ ,,, 	
 (17)	

The first step of FPS is to apply the transformation of (9) with M=Dx and K=Dy·Dz,
and compute the transformed right hand side:

	

bb

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

T

T

T

000
000
000
000

~

x

x

x

D

D

D

Q

Q
Q



	
 (18)	

where T
xD

Q denotes the eigenvector matrix from (3)(13) with dimension M=Dx.

The new system (9) is then decoupled into Dx independent systems of linear
equations. The ith system is, for 0≤i≤Dx-1:

	

ii bx ~~~ =iA 	
 (19)	

where iA
~

 is a submatrix of the transformed left hand side in (9), ix~ is a part of x~ , and

ib
~ is a part of b~ , such that

	
 10,~~,~~
,, −⋅≤≤∀== ⋅+⋅+ zyrDirirDiri DDrbbxx

xx
	
 (20)	

Then we apply the transformation of (9) on (19) with M=Dy and K=Dz, and
compute another transformed right hand side:

	

ii bb ~

000
000
000
000

~~

T

T

T

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

y

y

y

D

D

D

Q

Q
Q



	
 (21)	

where T
yD

Q denotes the eigenvector matrix from (3)(13) with dimension M=Dy. And

(19) now becomes

	

ii

ii

xx

bx

~

000
000
000
000

~~ where

~~~~

000
000
000
000

~

000
000
000
000

T

T

T

T

T

T

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

y

y

y

y

y

y

y

y

y

D

D

D

D

D

D

i

D

D

D

Q

Q
Q

Q

Q
Q

A

Q

Q
Q



 	
   (22)	
  

Vector ix
~~  can be solved from the above equation in O(Dy·Dz) time because it can be 

decoupled into Dy independent systems, each of which is a tridiagonal matrix of 
dimension Dz. 

After obtaining ix
~~ , we then compute 

	
  
ii xx ~~

000
000
000
000

~

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

y

y

y

D

D

D

Q

Q
Q


	
   (23)	
  



After having ix~  for 0≤i≤Dx-1, we can now recover x~  based on equation (20). Then 
the solution to the original system is 

	
  
xx ~

000
000
000
000

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

x

x

x

D

D

D

Q

Q
Q


	
   (24)	
  

Finally, the temperature values at each cell are mapped from (10). 

 

To study the relation to GFS, let us expand the equations of the first two steps. 
Symbol qM,i will be used to denote the ith eigenvector in equation (13) with dimension 
M. By equations (13)(17)(18)(20)(21), we have: 

	
  

( ) ( )

( )

( )

⎩
⎨
⎧

>

=
=

+
⋅

+
⋅⋅

⋅

⋅⋅⋅
=

+
⋅

+
⋅⋅⋅⋅=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅⋅
+

⋅⋅=

⋅
+

⋅⋅=

⋅
+

⋅⋅=

⋅=

−≤≤−≤≤−≤≤

∑∑

∑∑

∑

∑

∑

−

=

−

=

−

=

−

=

−

=

−+⋅+⋅

+⋅+⋅

⋅+⋅

+

−

=
⋅⋅+⋅+

−

=
+⋅

−+⋅+⋅⋅+⋅+

⋅

⋅

⋅

0,2
0,1

  where

)5.0(cos)5.0(cos

)5.0(cos)5.0(cos1

)5.0(cos1

~)5.0(cos1

~)5.0(cos1

~~~~~
10,10,10for

1

0

1

0
,5.15.1

1

0

1

0
,,

1

0

1

1T
1,

1

0

1

0
,

T

1,1,,
T

1,,

j
j

D
nj

D
mizP

DD

ba

D
nj

D
miP

DD

b

b
b

D
nj

D

b
D
nj

D

b
D
nj

D

bbbb

DlDjDi

j

D

m

D

n yx
lnm

yx

ji

D

m

D

n yx
lnm

yx
ji

D

n

DlDDnD

lDDnD

lDDnD

iD
yy

j

D

n
lDDnDi

yy
j

D

n
nlDi

yy
j

DlDilDilDijDlDji

zyx

x y

x y

y

xyxx

yxx

yxx

x

y

yxx

y

y

yyyyyy

χ

ππχχ

ππ
χχ

π
χ

π
χ

π
χ





q

q

	
 (25)	

Similarly, we can expand the last two steps of FPS, and by (10)(13)(20)(23)(24),
the average temperature of cell (m,n,l) is:

Overall, the FPS procedure can be summarized as follows.
1. Calculate vector b~ from Pm,n(z’) by equations (17)(18), using FFT.

2. Calculate vectors ib
~~ from b~ by equations (20)(21), for 0≤i≤Dx-1, using FFT.

3. Calculate vectors ix
~~ by solving (22) as Dy independent linear systems, each

with dimension Dz, for 0≤i≤Dx-1.

4. Calculate vector x~ from ix
~~ , 0≤i≤Dx-1, by equations (20)(23), using FFT.

5. Calculate vector x from x~ by equation (24), using FFT.

	

∑∑

∑

∑

−

=

−

=
⋅+

−

=
⋅+⋅

−

=
⋅⋅+⋅+

⋅⋅+⋅+

+
⋅

+
⋅⋅⋅⋅+=

⋅
+

⋅⋅+=

⋅
+

⋅⋅+=

+=

−≤≤−≤≤−≤≤

1

0

1

0
,

1

0
,

1

0

,,

)5.0(cos)5.0(cos~~1

~)5.0(cos1

~)5.0(cos1

10,10,10for

x y

y

x

y

x

yxx

yxx

D

i

D

j yx
Dljiji

yx
a

D

i
Dlni

x
i

x
a

D

i
DDlDni

x
i

x
a

DDlDnmalnm

zyx

D
nj

D
mix

DD
T

x
D
mi

D
T

x
D
mi

D
T

xTT
DlDnDm

ππ
χχ

π
χ

π
χ

	
 (26)	

where χj is as defined in (25).

4.2 GFS Formulations
This section is largely based on Algorithm II in [Zhan and Sapatnekar 2007]. The
GFS approach evaluates the following temperature calculation formula:

	
 () () ()∑∫ ∫
ʹ′

ʹ′ʹ′ʹ′ʹ′ʹ′ʹ′ʹ′ʹ′+=
z

a b

a zyxPzyxzyxGydxdTzyxT
0 0

,,,,,,,,, 	
 (27)	

where G(.) is the Green function. In the special case of Neumann conditions on 4 side
surfaces (x=0, y=0, x=a, y=b), according to [Niknejad et al. 1998; Zhan and
Sapatnekar 2007], it has the following special form:

	
 () ()∑∑
∞

=

∞

=

ʹ′
⋅
ʹ′

⋅⋅⋅ʹ′=ʹ′ʹ′ʹ′
0 0

, coscoscoscos,,,,,,
i j

ji b
yj

a
xi

b
yj

a
xizzCzyxzyxG ππππ 	
 (28)	

and [Niknejad et al. 1998] provided ways to calculate function Ci,j(.) analytically.
Now suppose we write the power density distribution (15) in the following

frequency-domain form.

	
 ()∑∑
∞

=

∞

=

ʹ′
⋅
ʹ′

⋅ʹ′=ʹ′ʹ′ʹ′
0 0

, coscos),,(
i j

ji b
yj

a
xizpzyxP ππ 	
 (29)	

By (15) and (29), we can derive

	

() ()

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

≠≠

=≠

≠=

==

=

+
⋅

+
⋅ʹ′⋅⋅⋅=ʹ′ ∑∑

−

=

−

=

0,0,
2

sin
2

sin4

0,0,
2

sin2

0,0,
2

sin2

0,1

 where

)5.0(cos)5.0(cos

2

,

1

0

1

0
,,,

ji
D
j

D
i

ij

ji
D
i

Di

ji
D
j

Dj

ji
DD

D
nj

D
mizPbazp

yx

xy

yx

yx

ji

D

m

D

n yx
nmjiji

x y

ππ
π

π
π

π
π

µ

ππ
µ

	
 (30)	

Substituting (28) and (29) into (27), we get an alternative to (27):

	

() () ()

0,0,25.0
0,0,5.0
0,0,5.0

0,1

 where

coscos,,,

,

0 0
,,,

⎪
⎪
⎩

⎪
⎪
⎨

⎧

≠≠

=≠

≠=

==

=

⋅⋅ʹ′⋅ʹ′⋅⋅⋅+= ∑∑∑
ʹ′

∞

=

∞

=

ji
ji
ji

ji
b
yj

a
xizzCzpbaTzyxT

ji

z i j
jijijia

ω

ππ
ω

	
 (31)	

Now define

	
 () () ()∑
ʹ′

ʹ′⋅ʹ′⋅=
z

jijijiji zzCzpzZ ,,,,, ω 	
 (32)	

And we have a cleaner look of (31):

	
 () () coscos,,
0 0

,∑∑
∞

=

∞

=

⋅⋅⋅⋅+=
i j

jia b
yj

a
xizZbaTzyxT ππ 	
 (33)	

Practically, we need to truncate the infinite summations in (33). By truncating the
two infinite sums at xDʹ′ and yD ʹ′ respectively:

	
 () () coscos,,
1

0

1

0
,∑∑

−ʹ′

=

−ʹ′

=

⋅⋅⋅⋅+=
x yD

i

D

j
jia b

yj
a
xizZbaTzyxT ππ 	
 (34)	

Also in practice, as is done in [Zhan and Sapatnekar 2007], often we are
interested in not the direct outcome of (34), but, by dividing the x-y plane into evenly

xD ʹ′ʹ′ by yD ʹ′ʹ′ rectangular cells, the average temperature in each cell. They are the

following numbers.

	

() ()

()()

()

0,0,
2

sin
2

sin4

0,0,
2

sin2

0,0,
2

sin2

0,1

 where

)5.0(
cos

)5.0(
cos

,,

10,10for

2

,

1

0

1

0
,,

1 1

,

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

≠≠
ʹ′ʹ′ʹ′ʹ′

=≠
ʹ′ʹ′ʹ′ʹ′

≠=
ʹ′ʹ′ʹ′ʹ′

==
ʹ′ʹ′ʹ′ʹ′

=

ʹ′ʹ′
+

⋅
ʹ′ʹ′
+

⋅⋅⋅ʹ′ʹ′⋅ʹ′ʹ′⋅⋅+=

ʹ′ʹ′ʹ′ʹ′
=

−ʹ′ʹ′≤≤−ʹ′ʹ′≤≤

∑ ∑

∫ ∫

−ʹ′

=

−ʹ′

=

ʹ′ʹ′

+

ʹ′ʹ′
=

ʹ′ʹ′

+

ʹ′ʹ′
=

ji
D
j

D
i

ij

ji
D
i

Di

ji
D
j

Dj

ji
DD

D
nj

D
mizZDDbaT

zyxdyTdx
ab
DD

zT

DnDm

yx

xy

yx

yx

ji

D

i

D

j yx
jijiyxa

D
ma

D
amx

D
nb

D
bny

yx
nm

yx

x y

x

x

y

y

ππ
π

π
π

π
π

θ

ππ
θ

	
 (35)	

Overall, the GFS procedure can be summarized as follows.
1. Calculate function Ci,j(z,z’) for 10,10 −ʹ′≤≤−ʹ′≤≤ yx DjDi , analytically as in [8].

2. Calculate function pi,j(z’) by (30), for 10 −ʹ′≤≤ xDi , 10 −ʹ′≤≤ yDj , using FFT.

3. Calculate function Zi,j(z) by (32), for 10 −ʹ′≤≤ xDi , 10 −ʹ′≤≤ yDj .

4. Calculate function Tm,n(z) by (35), for 10 −ʹ′ʹ′≤≤ xDm , 10 −ʹ′ʹ′≤≤ yDn , using FFT.

4.3 Relating FPS to GFS
Let us consider the special case of GFS where xxx DDD ʹ′ʹ′=ʹ′= and yyy DDD ʹ′ʹ′=ʹ′= . It is

true that GFS is more flexible than FPS in the sense that it has three resolution
controls: the resolution (Dx, Dy) of the heat source distribution, the resolution ()yx DD ʹ′ʹ′ ,
of frequency domain truncation, and the resolution ()yx DD ʹ′ʹ′ʹ′ʹ′ , of temperature output.

However, these three are not completely independent choices, for example, it was
shown in [Zhan and Sapatnekar 2007] that xDʹ′ should be a multiple of Dx and yDʹ′
should be a multiple of Dy, to enable efficient implementation.

It is easy to see the relation between equation (25), which is steps 1 and 2 of FPS,
and equation (30), which is step 2 of GFS. Specifically, both equations represent the
same computation and produce values merely differing by a scaling factor:

	

() lDji

ji

yxji
lji

zyx

y
b

DD
zp

DlDjDi

⋅+⋅
⋅

⋅⋅
≡

−≤≤−≤≤−≤≤

,

5.15.1
,

,

~~

10,10,10for

χχ

µ
	
 (36)	

Similarly, there is a correspondence between (26), which is steps 4 and 5 of FPS,
and equation (35), which is step 4 of GFS. Specifically, both equations represent the
same computation and produce the same temperature outcome (subject to numerical
errors), based on input values ix

~~ and Zi,j(z) respectively, which merely differ by a
scaling factor:

	

()

()
yDlji

jiyx

ji
lji

lnmlnm

zyx

x
DDba

zZ

TzT
DlDjDi

⋅+⋅
⋅⋅⋅⋅

⋅
≈

≈

−≤≤−≤≤−≤≤

,
,

5.15.1,

,,,

~~

10,10,10for

θ

χχ

	
 (37)	

Note that the above is not an exact equality, because ix
~~ and Zi,j(z) are obtained in

different ways. Specifically, step 3 of FPS computes ix
~~ by solving Dx·Dy independent

linear systems, while steps 1 and 3 of GFS obtain Zi,j(z) by solving the z-direction
analytically. Although through different approaches, step 3 of FPS and steps 1 and 3
of GFS essentially do the same task, ─ they take the same input, as shown in (36),
and produce approximately the same output, as shown in (37).

In conclusion, FPS and GFS are mathematically equivalent for the special case of

xxx DDD ʹ′ʹ′=ʹ′= and yyy DDD ʹ′ʹ′=ʹ′= . In other words, Green-function based approach with

frequency-domain truncation is equivalent to even-spaced finite-difference
discretization. This is not surprising, because it is well known in signal processing
theory that frequency-domain truncation is equivalent to time-domain (in this case
space-domain) sampling.

5. FPS-PCG FOR IRREGULAR GEOMETRIES
A limitation in both GFS and FPS is that they can only solve a rectangular 3D
domain with layered materials. For GFS, this limitation comes from the need for an
analytical form of the Green function like (28). For FPS, this comes from condition
(8).

As discussed in Section 1, an accurate thermal model of a die with its spreader
and heat sink should be a non-rectangular domain, and that significant errors can be
introduced if the spreader and sink are ignored or simplistically modeled as a
convective surface of the die.

To solve non-rectangular models, and in general to solve thermal models with
material or geometry irregularities, we propose a thermal analysis method called
FPS-PCG: FPS-preconditioned Conjugate Gradient.

This method is built upon prior works: the “two-problem approach” from [Johnson
et al. 1984; Xu et al. 2005], and the “boundary iteration process” from [Shi et al.
2009]. The common idea is that if we need to solve Ax=b where A does not satisfy the
conditions of FPS/GFS, we can separate A into two parts:

	
 A = A’ + B	
 (38)	

where A’ is a system that can be handled efficiently with FPS or GFS, and B
represents the abnormities and is much sparser and/or smaller in value than A’.

The proposed FPS-PCG works by using FPS as a preconditioner for
Preconditioned Conjugate Gradient (PCG). Given any right hand side vector v, FPS
can provide in an exact solution to A’x=v in O(N·logN) time, which would be an
approximate solution to Ax=v. Since any approximate solving process can serve as a
preconditioner [Saad 2003], it is natural to put FPS and PCG together.

Fig. 3. Applying FPS-PCG on the pyramid thermal model. (a) Original system A. (b)

Approximate system A'. (c) Abnormity system B.

Fig. 3 illustrates FPS-PCG on the pyramid thermal model from [Heriz et al. 2007].
Note that FPS-PCG is not limited to solving pyramid-shaped domains, and can
handle other non-rectangular models, e.g., those that include fins under the sink. The
model in Fig. 3(a) is expanded to form the rectangular approximation in Fig. 3(b).

Like in any PCG scheme, the better approximation FPS provides, the less PCG
iterations are needed to converge. It can be argued that FPS on Fig. 3(b) provides a
good approximation, ─ assuming that the spreader and sink design provides
reasonably good thermal performance, they should be such that heat flows would
remain relatively constant even if the spreader or the die was widened, as is the case
in Fig. 3(b). The performance of FPS-PCG will be verified in the next section.

Given the relation between FPS and GFS from Section 4, in principle it is also
possible to use GFS as a preconditioner and hence GFS-PCG. In practice, this
requires a GFS solver that takes a full residual vector as power distribution and
outputs a full 3D temperature profile like FPS.

FPS-PCG is also applicable to transient thermal analysis. As discussed in Section
3.2, a transient analysis involves solving a linear system per time step, and, in the
case of a non-rectangular domain, FPS-PCG can be used to solve each time step
efficiently.

Finally, as is done similarly in [Zhan and Sapatnekar 2007], it is possible to solve
part of the domain in finer levels of granularity. We obtain, from a FPS-PCG
solution, the temperature profile at the thermal contact surface of the die, i.e., the
interface between the top and middle sections of the pyramid. Then we can solve the
die alone and with this temperature profile as the boundary temperatures. Since the
die is a rectangular domain, this can be done with one pass of FPS or GFS efficiently,
and therefore we can afford to solve with much finer resolution.

Fig. 4. POWER6 floorplan [Le et al. 2007].

6. RESULTS
Two chip testcases are used in this section.

1. Testcase #1 uses a power map of POWER6 microprocessor [Jimenez et al.
2010][Le et al. 2007][Stolt et al. 2008], representing one scenario with total
power dissipation of 185W. Actual geometries of its die, spreader and sink are
used. Material properties are assumed to be the same as in [Heriz et al.
2007]. Fig. 4 shows the floorplan of the chip [Le et al. 2007].

2. Testcase #2 uses an artificially generated power map to model a scenario of
a four-core chip, with one core idle, one core with peak load, and two others
with median loads; total power is 175W. The geometries of die, spreader and
sink, as well as material properties, are the same as in [Heriz et al. 2007].

(a) (b)

Fig. 5. Power maps used for (a) Testcase #1, and (b) Testcase #2.

Let us first validate, with Testcase #1, the need for thermal analysis that
incorporates thermal mounts of a chip. Fig. 6 demonstrates the difference between
thermal analysis with a non-rectangular model and that with a rectangular model.
For fairness, the convection coefficient at the thermal contact surface of the die in the
rectangular model is adjusted such that Fig. 6(a) and Fig. 6(b) have the same average
temperature. Note that there is significant difference between the shape of
temperature distribution between Fig. 6(a) and Fig. 6(b), and between the two curves
in Fig. 6(c), and this difference is acute in the hottest regions. This verifies the need
for thermal analysis engine, such as the proposed FPS-PCG, for non-rectangular
domains.

Fig. 6. (a) Chip temperature profile by non-rectangular model. (b) Chip temperature
profile by rectangular model. (c) Temperature curves across vertical centerline of the

chip by both models. Ta is ambient temperature.

Then let us validate, again with Testcase #1, the accuracy of the FPS-PCG method

by checking its solutions against those by a commercial finite element analysis tool
ANSYS. Fig. 7 plots the maximum error and average error in temperature profiles
computed by FPS-PCG as functions of the granularity of its analysis, measured by
the number of finite-difference sample points at the device layer. With finer
granularity, error quickly comes down to a range that is acceptable in practice; in
fact, based on a 30-by-30 solution by FPS-PCG (in 4.93 seconds runtime), we can
interpolate a temperature profile that matches ANSYS based commercial thermal
model with a max difference of 0.93 degree and an average difference of 0.36 degree.

Fig. 7. Maximum and average errors of FPS-PCG as functions of the number of finite-

difference sample points at the device layer.

Now let us demonstrate, using both testcases, the efficiency and scalability of the
FPS-PCG method. Finite difference discretization is applied on both testcases with
different resolutions, resulting in finite difference matrices m1 to m9 in Table 1 for
the Testcase #1, and m10-m19 in Table 2 for the Testcase #2. Their dimensions range
from 9.83e3 in the coarsest resolution to 7.68e6 in the finest resolution.

Tables 1 and 2 compare the performance of FPS-PCG against a direct solver and
an Incomplete Cholesky preconditioned Conjugate Gradient (ICCG) solver. The direct
solver is based on Cholesky factorization with approximate minimum degree (AMD)
ordering [Amestoy et al. 1996]. The ICCG solver is based on incomplete Cholesky
factorization with zero fill-in, which is known as IC(0) or the symmetric version of
ILU(0) [Saad 2003], and with AMD ordering as well. All three solvers are coded in
Matlab, and all runtimes are measured on a 64-bit Linux workstation with 8 CPUs at
2.9GHz frequency and 80GB memory. The direct solver uses 5-7 CPUs during its
runs, while ICCG and FPS-PCG both use a single CPU. The ICCG runtimes do not
include the overhead of building its IC(0) preconditioner. For both ICCG and FPS-
PCG, the convergence criterion is 1e-6 error tolerance.

Table I. Runtime comparison of FPS-PCG against direct solver and ICCG on Testcase #1. N is the dimension of

a matrix; T is the runtime; I is the number of conjugate-gradient iterations. The direct solver uses 5-7 CPUs
during its runs, while ICCG and FPS-PCG both use a single CPU.

Matrix N
Direct
Solver ICCG FPS-PCG

T (sec) I T (sec) I T (sec)
m1 9.83e3 0.13 159 0.28 8 0.25

m2 3.93e4 1.85 227 1.14 10 0.73

m3 1.57e5 8.35 343 6.82 10 2.18

m4 3.54e5 38.76 458 22.96 11 4.93

m5 6.60e5 73.10 575 57.14 11 8.38
m6 9.73e5 102.93 571 83.69 11 11.96
m7 1.41e6 212.88 776 172.20 12 18.65
m8 2.42e6 438.14 980 370.66 12 30.81
m9 4.54e6 1013.83 1360 969.13 13 64.78

Table II. Runtime comparison of FPS-PCG against direct solver and ICCG on Testcase #2. N is the dimension
of a matrix; T is the runtime; I is the number of conjugate-gradient iterations. The direct solver uses 5-7 CPUs

during its runs, while ICCG and FPS-PCG both use a single CPU.

Matrix N
Direct
Solver ICCG FPS-PCG

T (sec) I T (sec) I T (sec)
m10 1.33e4 0.63 62 0.14 7 0.27

m11 5.33e4 3.73 76 0.58 8 0.77

m12 2.13e5 14.38 114 3.17 10 2.82

m13 4.80e5 62.55 151 12.11 10 6.01

m14 8.53e5 117.41 188 25.87 10 10.19
m15 1.33e6 168.69 221 39.52 10 15.05
m16 1.92e6 222.27 258 81.41 11 23.01
m17 3.41e6 551.71 342 172.99 11 42.52
m18 5.33e6 934.74 425 336.72 11 66.77
m19 7.68e6 N/A 512 594.89 12 102.12

As can be observed in Tables 1 and 2, the direct solver runtime increases at the

fastest rate among the three solvers, and in fact its memory consumption becomes
impractical first and is the reason for its absence for testcase m19. Comparing with
ICCG, the FPS-PCG scales better as the matrix size increases, and its advantage

widens, eventually with approximately 15X speedup over ICCG on m9 (Testcase #1),
and approximately 6X speedup over ICCG on m19 (Testcase #2). This trend is
visualized in Fig. 8.

Fig. 8. Runtime T as a function of matrix dimension N for the results in Tables 1 and

2. The direct solver uses 5-7 CPUs during its runs, while ICCG and FPS-PCG both
use a single CPU.

A closer look at Tables 1 and 2 reveals the reason for FPS-PCG’s efficiency and

scalability ─ it needs consistently less PCG iterations to converge to the given
accuracy. The computational complexity per iteration, which can be measured by T/I
in the two tables, is O(N) for ICCG and O(NlogN) for FPS-PCG. However, as matrix
dimension increases from m1 to m9, the number of iterations needed, I in the two
tables, increases from 159 to 1360 for ICCG, while increase only from 8 to 13 for FPS-
PCG. This verifies the claim in Section 5 that the FPS process is a good
approximation to the original linear system, and therefore serves as an effective and
scalable preconditioner for PCG.

Table III. Preconditioning performance on benchmarks with increasing irregularities. N is the dimension of a
matrix; C1 is the condition number of the original system; C2 is the condition number after preconditioning.

Matrix N C1 C2

m4_1 3.56e5 5.73e4 1

m4_2 3.57e5 5.11e4 12.32

m4 3.54e5 4.88e4 15.55

m4_3 3.64e5 4.87e4 16.40

m4_4 3.64e5 4.88e4 20.43

Table 3 studies the relation between the performance of the proposed FPS

preconditioner and the degree of irregularity in the system. We take benchmark m4,
and artificially generated benchmarks m4_1 – m4_4 with similar finite-difference-
matrix dimensions but with increasing irregularities. Specifically, m4_1 is a
rectangular model; m4_2 uses smaller spreader and sink than m4 and hence is closer
to rectangular than m4; m4_3 uses larger spreader and sink than m4 and hence is

more irregular than m4; m4_4 is m4_3 plus non-uniform thermal conductivities in
certain layers to represent the effect of varying metal density in routing layers (or
the effect of through-silicon-via distribution in a 3D design). In the extreme case of
m4_1, FPS solves the system exactly, hence condition number becomes 1. Table 3
shows a clear trend that, as the system contains more irregularities and increasingly
deviates from a rectangular domain with layered materials, the quality of the FPS
preconditioning decreases. It also shows that the degradation is moderate on m4_4,
and hence FPS-PCG would likely remain competitive even when solving detailed
models that include intra-layer material variation.

Fig. 9. (a) A 1200-by-1300 resolution chip temperature profile by solving a die-only

rectangular model with ambient temperature distribution provided by solving a full
model. (b) The left hot-spot region in (a). (c) The left hot-spot region in Fig. 6(a).

As discussed in Section 5, after solving a full model, we have the temperature

distribution at the thermal contact surface of the die, and therefore can use that as
an ambient temperature distribution to solve the die again with a rectangular model
and with even finer resolution, which can be done efficiently using Green function
method or the FPS method of Section 3. Fig. 9(a) plots a 1200 by 1300 temperature
profile, which is computed by a single pass of FPS method in 7.31 seconds. As
expected, given the relation discussed in Section 4 between Green function methods
and FPS, this is consistent with the data reported in [Zhan and Sapatnekar 2007].
However, unlike [Zhan and Sapatnekar 2007], the FPS-PCG method can also handle
irregular geometries. Comparing Fig. 6(a) and Fig. 9(a), Fig. 9(b) and Fig. 9(c), a
general agreement is observed, and the high-resolution solution provides more
details, which are useful particularly at hot-spot regions.

Finally, to verify the proposed solver on transient analysis, we derived four
benchmarks RC1 – RC4 based on m1 – m4 respectively and generated artificial time-
varying power distributions. We solve them with FPS-PCG for each time step and
Table 4 shows runtime measurements, where the time step size is 0.1ms. It can be
observed that runtime per time step is smaller than Table 1; the reason is that the

extra diagonal components from thermal capacitances lower the condition numbers of
the matrices, and FPS-PCG converges in less iterations.

Table IV. Runtime of transient thermal analysis by FPS-PCG. N is the dimension of a matrix; S is the number of

time steps; T is the runtime.

Matrix N S T (sec)

RC1 9.83e3 300 45.14

RC2 3.93e4 300 141.05

RC3 1.57e5 300 479.98

RC4 3.54e5 300 1004.28

7. CONCLUSIONS
Fast and accurate thermal analysis is an important step in integrated circuit design.
Thermal characteristics not only affect the performance, they also determine the
energy efficiency, cost and reliability of the resulting design. This paper studies a
class of eigendecomposition-based fast Poisson solvers for chip-level thermal analysis.
The proposed FPS-PCG solver demonstrates superior efficiency and scalability in
solving the realistic non-rectangular thermal models. This paper also proves a strong
mathematical relation between fast Poisson solvers and Green-function-based
methods. We demonstrate the proposed FPS based approach on thermal analysis of
an industrial microprocessor, showing accurate results verified by a commercial tool,
and that it solves a system of dimension 4.54e6 in only 13 Conjugate Gradient
iterations, with a runtime of 65 seconds, a 15X speedup over the popular ICCG
solver.

REFERENCES
Amestoy, P. R., Davis, T. A., and Duff, I. S. An approximate minimum degree ordering algorithm. SIAM J.

Matrix Anal. Appl. (1996), 886-905.
Bagnoli, P. E., Casarosa, C., and Stefani, F. DJOSER: Analytical thermal simulator for multilayer

electronic structures. Theory and numerical implementation. Proceedings of International Conference
on Thermal Issues in Emerging Technologies, Theory and Applications. (2007), 111-118.

Costa, J. P., Chou, M., and Silveira, L. M. Efficient techniques for accurate modeling and simulation of
substrate coupling in mixed-signal IC's. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems. 18, 5 (1999), 597-607.

Gharpurey, R., and Meyer, R. G. Modeling and analysis of substrate coupling in integrated circuits. IEEE
Journal of Solid-State Circuits. 31, 3 (1996), 344-353.

Heriz, V. M., Park, J., Kemper, T., Kang, S., and Shakouri, A. Method of images for the fast calculation of
temperature distributions in packaged VLSI chips. Proceedings of 13th International Workshop on
Thermal Investigation of ICs and Systems. (2007) 18-25.

Huang, W., Ghosh, S., Velusamy, S., Sankaranarayanan, K., Skadron, K., and Stan, M. R. HotSpot: a
compact thermal modeling methodology for early-stage VLSI design. IEEE Transactions on Very Large
Scale Integration Systems, 14, 5 (2006), 501-513.

Jimenez, V., Gioiosa, R., Kursun, E., Cazorla, F. J., Cher C., Buyuktosunoglu, A., Bose, P., and Valero, M.
Trends and techniques for energy efficient architectures. Proceedings of IEEE/IFIP VLSI System on
Chip Conference. (2010) 276-279.

Johnson, T. A., Knepper, R. W., Marcello, V., and Wang, W. Chip substrate resistance modeling technique
for integrated circuit design. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems. 3 (1984), 126-134.

Karypis G. and Kumar V., METIS - Unstructured Graph Partitioning and Sparse Matrix Ordering
System, Version 2.0 (1995).
http://glaros.dtc.umn.edu/gkhome/views/metis

Le, H. Q., Starke, W. J., Fields, J. S., O'Connell, F. P., Nguyen, D. Q., Ronchetti, B. J., Sauer, W. M.,
Schwarz, E. M., and Vaden, M. T. IBM POWER6TM microarchitecture. IBM Journal of Research and
Development. 51, 6 (2007), 639-662.

Li, P., Pileggi, L. T., Asheghi, M., and Chandra, R. Efficient full-chip thermal modeling and analysis.
IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers. (2004),
319-326.

Mizunuma, H., Yang, C., and Lu, Y. Thermal modeling for 3D-ICs with integrated microchannel cooling.
IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers. (2009),
256-263.

Niknejad, A. M., Gharpurey, R., and Meyer, R. G. Numerically stable Green function for modeling and
analysis of substrate coupling in integrated circuits. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems. 17, 4 (1998), 305-315.

Saad, Y. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, PA, 2003.
Sabry, M. M., Coskun, A. K., Atienza, D., Rosing, T. S., and Brunschwiler, T. Energy-efficient

multiobjective thermal control for liquid-cooled 3-D stacked architectures. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems. 30, 12 (2011), 1883-1896.

Shi, J., Cai, Y., Hou, W., Ma, L., Tan, S. X.-D., Ho, P., and Wang, X. GPU friendly fast Poisson solver for
structured power grid network analysis. Proceedings of ACM/IEEE Design Automation Conference.
(2009), 178-183.

Sridhar, A., Vincenzi, A., Ruggiero, M., Brunschwiler, T., and Atienza, D. 3D-ICE: Fast compact transient
thermal modeling for 3D ICs with inter-tier liquid cooling. IEEE/ACM International Conference on
Computer-Aided Design Digest of Technical Papers. (2010), 463-470.

Stolt, B., Mittlefehldt Y., Dubey S., Mittal G., Lee M., Friedrich J., and Fluhr E. Design and
implementation of the POWER6TM microprocessor, IEEE Journal of Solid State Circuits. 43, 1 (2008),
21-28.

Swarztrauber, P. N. The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the
discrete solution of Poisson's equation on a rectangle. SIAM Review. 19, 3 (1977), 490-501.

Wang, B., and Mazumder, P. Accelerated chip-level thermal analysis using multilayer Green’s function.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 26, 2 (2007), 325-
344.

Xu, C., Gharpurey, R., Fiez, T. S., and Mayaram, K. A Green function-based parasitic extraction method
for inhomogeneous substrate layers. Proceedings of ACM/IEEE Design Automation Conference. (2005),
141-146.

Zhan Y., and Sapatnekar, S. S. High Efficiency Green function-based thermal simulation algorithms.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 26, 9 (2007), 1661-
1675.

ANSYS Thermal Modeling Reference
 http://www1.ansys.com/customer/content/documentation/121/ans_the.pdf

