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Accurate and efficient thermal analysis for a VLSI chip is crucial, both for sign-off reliability verification 
and for design-time circuit optimization. To determine an accurate temperature profile, it is important to 
simulate a die together with its thermal mounts: this requires solving Poisson’s equation on a non-
rectangular 3D domain. This paper presents a class of eigendecomposition-based fast Poisson solvers (FPS) 
for chip-level thermal analysis. We start with a solver that solves a rectangular 3D domain with mixed 
boundary conditions in O(N·logN) time, where N is the dimension of the finite-difference matrix. Then we 
reveal, for the first time in the literature, a strong relation between fast Poisson solvers and Green-
function-based methods. Finally, we propose an FPS method that leverages the preconditioned conjugate 
gradient method to solve non-rectangular 3D domains efficiently. We demonstrate this approach on 
thermal analysis of an industrial microprocessor, showing accurate results verified by a commercial tool, 
and that it solves a system of dimension 4.54e6 in only 13 Conjugate Gradient iterations, with a runtime of 
65 seconds, a 15X speedup over the popular ICCG solver.  
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1. INTRODUCTION 
 
As the power density and cooling costs continue to increase temperature modeling 
has become a part of the integrated circuit design. Thermal characteristics not only 
determine the maximum performance envelope of an integrated circuit in the form of 
thermal design point, they also have strong impact on the overall energy efficiency, 
cost and reliability of the design.  Since the power dissipation is spatially non-
uniform the resulting localized hotspots and thermal gradients create numerous 
challenges such as clock skews and timing failures. Hotspots also degrade chip 
reliability over time leading to hard-errors. Temperature-leakage feedback 
mechanisms imply that hot spots can cause further power increase and even thermal 
runaway. Therefore, the ability to obtain an accurate full-chip temperature profile is 
a necessity during sign-off performance and reliability verification. 
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Furthermore, accurate and efficient thermal analysis is an indispensable engine 
for many design-time circuit optimizations. For example, since the power dissipation 
of a circuit depends on temperature, accurate power analysis and optimization 
methods must be integrated with thermal analysis. Thermally-driven optimizations 
require a large number of thermal solves with different power dissipation 
distributions, and therefore demand extremely high efficiency from the thermal 
analysis engine.  

This paper addresses chip-level analysis, solving for the thermal profile of an 
entire chip. In such an analysis, it is reasonable and common practice to model a die 
using layered materials, with thermal conductivity being uniform or close to uniform 
within a layer. This work does not discuss detailed local analysis, e.g., using fine-
grained models of transistor and metal shapes. 

Fast chip-level thermal analysis has been the subject of many prior works [Heriz 
et al. 2007; Li et al. 2004; Wang and Mazumder 2007; Zhan and Sapatnekar 2007]. 
Most of them focus on solving Poisson’s equation on a die, which is a 3D rectangular 
domain with layered materials. In a typical model, the boundary conditions on five 
surfaces of this domain are assumed to be adiabatic ─ this is in the form of the 
Neumann boundary condition, which specifies temperature gradient along the 
direction that is perpendicular to a surface. For adiabatic boundary conditions, this 
gradient must be zero everywhere on these five surfaces [Li et al. 2004; Zhan and 
Sapatnekar 2007]. The sixth surface of this domain is assumed to be convective, and 
the form that is typically used here is the Dirichlet boundary condition, which 
specifies temperature values on a surface in this case, the temperature on the sixth 
surface of the model [Li et al. 2004; Zhan and Sapatnekar 2007], which is often 
assumed to be the ambient. A multigrid approach was proposed in [Li et al. 2004], 
which uses finite-difference discretization and a geometric multigrid solver. Several 
Green-function-based algorithms were proposed in [Wang and Mazumder 2007; Zhan 
and Sapatnekar 2007], which use boundary element method and leverage the 
efficiency of Fast Fourier Transform (FFT). These Green-function-based algorithms 
have a strong relation to the works of [Costa et al. 1999; Gharpurey and Meyer 1996; 
Niknejad et al. 1998] on the problems of substrate electrical analysis, which also 
involves Poisson’s equation on a 3D rectangular domain with layered materials. 

One important limitation of solving a rectangular domain, the die only, is the 
simplistic assumption (Dirichlet boundary condition as noted above) about the 
surface that connects to the thermal mounts. The temperatures on this surface are 
far from uniform and vary greatly depending on packaging structures. A typical 
configuration uses a copper heat spreader attached to the die that is wider than the 
die, and then a copper heat sink attached to the spreader with even larger size and 
also with fins facing the other side for air cooling [Zhan and Sapatnekar 2007], with 
thermal interface materials used to ensure good conductivity at the contact surfaces. 
Although it is possible to approximate these thermal mounts with an effective heat 
transfer coefficient [Zhan and Sapatnekar 2007], such an approximation may incur 
substantial error. Therefore, it is important to simulate a die together with its 
thermal mounts, which requires solving Poisson’s equation on a non-rectangular 3D 
domain [Bagnoli et al. 2007; Heriz et al. 2007]. 

In fact, it was shown in [Heriz et al. 2007] that, with a typical 7cm×7cm copper 
mount under a 1cm×1cm silicon die, the on-chip temperatures can be tens of degrees 
different from a simulation where the mount has the same size as the die, and the 
shapes of the temperature profiles are also significantly different. Fig. 1 illustrates 
the pyramid-shaped model in [Heriz et al. 2007]. This model will be used in Section 5 
for discussion and in Section 6 for testcases; however, our solver in Section 5 is not 
limited to solving pyramid-shaped domains, and can handle other non-rectangular 
models, e.g., those that include fins under the sink. 



 
Fig. 1. The pyramid thermal model from [Heriz et al. 2007]. 

 
The difficulty of solving Poisson’s equation on a non-rectangular domain is that an 

analytical form is no longer available for the Green function. Therefore many existing 
techniques are no longer applicable, and an accurate solution of the finite difference 
matrix would require generic methods, for example, the finite difference method with 
the popular Incomplete Cholesky preconditioned Conjugate Gradient (ICCG) solver. 
As an alternative, [Heriz et al. 2007] proposed an imaging technique which 
precomputes impulse heat-to-temperature responses and then applies convolution to 
compute temperatures. One drawback of this method is its limited scalability when 
higher levels of granularity are needed for the power distribution and the 
temperature profile. 

This paper studies eigendecomposition-based fast Poisson solvers for chip-level 
thermal analysis, and throughout this paper we will use FPS as a shorthand 
notation for these solvers. The idea of FPS has been known for a long time [Saad 
2003; Swarztrauber 1977], but it has found limited usage in practical applications. In 
the literature, e.g. [Saad 2003; Shi et al. 2009], FPS is often presented in the context 
of a 2D-grid Laplacian matrix with uniform diagonal entries, which corresponds to a 
finite-difference discretization of a 2D rectangular homogeneous domain with 
Dirichlet conditions on all four boundaries. It is rarely discussed with respect to 3D 
domains and/or more general boundary conditions [Swarztrauber 1977]. 

The major contributions of this paper are as follows. Section 3 demonstrates a 
FPS solver for 3D rectangular thermal models with mixed boundary conditions as in 
[Li et al. 2004; Zhan and Sapatnekar 2007]. The conventional wisdom has been that 
FPS solvers were an entirely different class of solvers from other known solvers. 
Section 4 investigates and proves, for the first time, a strong relation ─ in fact, an 
equivalence under certain conditions ─ between FPS and Green-function-based 
methods. Like Green-function solvers, we show that FPS is also restricted to certain 
regular structures. Since real circuit structures are not necessarily regular, 
particularly as related to chip-package interactions, we demonstrate how these 
regular solvers can be used to devise preconditioned iterative solvers. In particular, 
Section 5 presents FPS-Preconditioned Conjugate Gradient method that solves non-
rectangular domains efficiently. 

 

 
Fig. 2. An example for basic 2D FPS. 



2. BASICS: 2D FPS WITH ALL-AROUND DIRICHLET BOUNDARY CONDITIONS 
In this section, we review some well-known FPS fundamentals in order to set the 
stage for introducing more advanced FPS solvers in the rest of this paper. 
Specifically, we discuss using FPS to solve 2D domains with all-around Dirichlet 
boundary conditions. The discussion is largely based on [Saad 2003], and [Shi et al. 
2009] is an example of applying the method in the design automation domain. 

Let us consider a hypothetical 2D problem illustrated in Fig. 2. Suppose we use 
finite-difference discretization and divide a 2D domain into M·K cells, and let the x 
values be the temperatures of each cell; suppose this domain has Dirichlet conditions 
on all four boundaries, i.e., the temperatures of the grey cells are known; suppose the 
thermal conductivity between any pair of adjacent cells is identical (this is true of a 
uniform medium) and is equal to g. Then, if we know the power dissipation in each 
cell, the temperature values can be obtained by solving the linear system: 
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Note that the dimension of B is M×M. The eigenvalues λi and normalized 
eigenvectors qi of matrix B are well known [Saad 2003]: 

	
  
Τ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
+

⋅⋅
⎟
⎠

⎞
⎜
⎝

⎛
+

⋅⋅
⎟
⎠

⎞
⎜
⎝

⎛
+

⋅
⋅

+
=

⎟
⎠

⎞
⎜
⎝

⎛
+

⋅
−=≤≤∀

1
sin

1
2sin

1
sin

1
2   

1
cos24          ,1

M
iM

M
i

M
i

M

M
iMi i

πππ

π
λ

iq

	
   (2)	
  

Let matrix Q (which is orthonormal, i.e., QTQ = QQT = I) be 

	
   ( )MQ qqq 21 = 	
   (3)	
  

Let us perform the following transformation on (1). 
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which becomes 
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where Λ is a diagonal matrix with diagonal entries being λ1, λ2, …, λM. Because of the 
block form of (5) and each subblock being a diagonal matrix, (5) can be decoupled into 
M independent systems, each with a left-hand-side matrix in the following form. 
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The above is a tridiagonal matrix, and each such sub-system can be solved in 
linear time [Saad 2003]. After (5) is solved, the solution to the original system is 
simply: 

	
  
xx ~

000
000
000
000

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

Q

Q
Q



	
   (7)	
  

The efficiency of this FPS comes from the fact that the computation of b~ from b by 
(4), and the computation of x from x~  by (7), both can be done using FFT with 
O(K·M·logM) complexity. 

3. 3D FPS WITH MIXED BOUNDARY CONDITIONS 
The previous section reviews known solution to a 2D rectangular homogeneous 
domain with Dirichlet conditions on all boundaries. It represents a very restrictive 
scenario where the matrix takes the form of (1). In this section, we expand the 
applicability of FPS. 

3.1 Principles 
Let us present the theory in the scenario with Neumann boundary conditions on five 
surfaces and Dirichlet boundary condition on the last one, which is a typical model 
used for chip-level thermal analysis [Li et al. 2004; Zhan and Sapatnekar 2007]. 
Implications of other boundary conditions and transient analysis will be discussed in 
Section 3.2. 

The following is a relaxed sufficient condition for FPS. 
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Let the common normalized eigenvectors of Bi,j be q1, q2, …, qM, where M is the 
dimension of Bi,j.  Let matrix Q be as in (3), but with these eigenvectors of Bi,j. 

To solve Ax=b, let us do the following transformation, as in (4): 
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where Λi,j is a diagonal matrix with diagonal entries being the eigenvalues of Bi,j. 
Now that the new left-hand-side matrix A has a block form where each block is a 

diagonal submatrix, the overall system of linear equations can be decoupled into M 
separate sets of linear equations, each of which has dimension K and can be solved 
independently. Note that, if these sets of equations also satisfy condition (8), each of 
them can again be transformed and further decoupled into smaller sets of equations. 
Again, after x~  is obtained, solution x to the original system can be obtained by (7). 

The advantage of FPS comes when Q has a special structure such that a fast way 
exists to evaluate b~ from b by (9), and evaluate x from x~  by (7). 

Now let us apply the above principles on 3D thermal analysis model with 
Neumann boundary conditions on five surfaces, and Dirichlet boundary condition on 
the z=0 surface [Li et al. 2004; Zhan and Sapatnekar 2007]. 

Let a and b be the dimensions of the domain in x and y directions. We assume 
even-spaced discretization along the x-axis into Dx segments, even-spaced 
discretization along the y-axis into Dy segments, and arbitrary discretization along 
the z-axis into Dz segments. The result is Dx·Dy·Dz rectangular cells. For 0≤m≤ Dx-1, 
0≤n≤ Dy-1, 0≤l≤ Dz-1, we use the notion cell (m,n,l) to refer to the cell formed by the 
mth segment of the x axis, the nth segment of the y axis, and the lth segment of the z 
axis. Let Tm,n,l be the average temperature of cell (m,n,l), and let Pm,n,l be the total 
power dissipation inside cell (m,n,l). We assume a natural ordering in the linear 
system Ax=b, in other words: 
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where Ta is the ambient temperature at the external surface of the heat sink. 
Applying equation (8) with M=Dx and K=Dy·Dz, we have special forms for the Bi,j 

matrices: 
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Note that the Bi,i formulation in the above equation is different from (1) and does 
not subsume (1). This is due to the fact that we now have Neumann conditions on the 
x=0 and x=a surfaces, as opposed to Dirichlet conditions in Section 2. Consequently, 
the eigenvectors of Bi,i matrices in (12), which are essentially eigenvectors of G, must 
be different from (2). 

The eigenvalues and eigenvectors of G also have analytical forms. It can be 
verified that they are: 
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Let matrix Q be defined as in (3), but using the above eigenvectors instead. 
Fortunately, with these vectors, the computation of QTv and Qv, for any vector v, can 
also be performed by FFT and with O(M·logM) complexity. 

Now we have details of the transformed system in (9). 
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Let us investigate the complexity of FPS on this thermal analysis. The cost of 
computing b~  from b by equation (9), using FFT, is O(K·M·logM) = O(Dx·Dy·Dz·logDx). 
The cost of computing the final solution x by equation (7), using FFT, is also 
O(Dx·Dy·Dz·logDx). The remaining question is the cost of the middle step, solving 
equation (9) as Dx separate systems, each with dimension Dy·Dz. 

Studying (9)(12)(14) in more details, it can be shown that each of these Dy·Dz 
matrices has a 2D y-z grid structure and also satisfies conditions (8)(12). Therefore, 
we can apply the FPS procedure on each of them on the y direction (note that we 
have Neumann conditions on y=0 and y=b surfaces). It again is a three step 
approach: the first and third steps use the FFT, with complexity O(Dy·Dz·logDy), and 
the middle step now solves Dy separate systems, each with dimension Dz. Each of 
them is now a 1D structure in the z direction, which is a tridiagonal matrix and can 
be solved in linear time. Therefore, the cost of solving a system with dimension Dy·Dz 
is O(Dy·Dz·logDy) + O(Dy·Dz) + O(Dy·Dz·logDy), which is bounded by O(Dy·Dz·logDy). 

Therefore, the overall cost of solving the original system Ax=b is O(Dx·Dy·Dz·logDx) 
+ Dx·O(Dy·Dz·logDy), which is bounded by O(N·logN), where N=Dx·Dy·Dz is the overall 
dimension. 

3.2 Other thermal models and transient analysis 
The previous section covers the most widely used thermal model. This section 
discusses other thermal models, in particular the implications on FPS of various 
boundary conditions, as well as transient thermal analysis. 



One possible thermal model has Neumann boundary conditions on five surfaces as 
in the previous section, but has Robin boundary condition instead of Dirichlet 
boundary condition on the sixth surface. Robin boundary condition is a linear 
combination of Dirichlet and Neumann boundary conditions, and specifies a weighted 
sum of the temperature and the perpendicular temperature gradient at every point 
on the surface. Typically we can assume uniform material property across the 
surface, i.e., that the two weighting coefficients are constant. Under finite-difference 
discretization, Robin boundary condition’s implication to our linear system (8)(12) is 
that iα ’s in (12) are modified for i’s that correspond to rows on the z=0 surface. These 

changes remain only on diagonals in the transformed system (9)(14), similarly 
remain after the FPS transformation on y direction, and eventually only affect the 
tridiagonal systems in the z direction. Therefore the entire algorithm in Section 3.1 
applies and the complexity remains O(N·logN). 

More complex thermal models have been applied on chips with microchannel 
cooling [Mizunuma et al. 2009; Sridhar et al. 2010; Sabry et al. 2011]. Without loss of 
generality, let us assume that the coolant flows from the y=0 surface to the y=b 
surface. In the finite-difference matrix (also referred to as equivalent resistive 
network in these papers), there are now variations in thermal conductivity along x 
and y directions at the microchannel layers. The variation along the x direction can 
be handled by the technique to be presented in Section 5, but the variation along the 
y direction is significant, particularly with extra elements in [Mizunuma et al. 2009] 
to model the thermal-wakes effect. In addition, the boundary condition on the y=0 
surface becomes partially Dirichlet (where the coolant inlets are) and partially 
Neumann [Sridhar et al. 2010]. With such thermal models, FPS can only perform the 
first round of transformation along the x direction, and not the second round along 
the y direction. Consequently, as shown in the previous section, the overall 
complexity is O(Dx·Dy·Dz·logDx) plus solving equation (9) as Dx separate systems, each 
with a 2D grid structure and with dimension Dy·Dz. The complexity of solving each 
2D grid with a direct solver with nested-dissection ordering such as METIS[Karypis 
et al. 1995] is O(Dy1.5·Dz1.5). Therefore the complexity bound is O(Dx·Dy·Dz·logDx+ 
Dx·Dy1.5·Dz1.5), which is still more efficient than solving the original 3D system as a 
whole. 

The proposed FPS method is applicable to transient thermal analysis. A common 
practice is to use an equivalent thermal RC network, which includes grounded 
capacitors [Huang et al. 2006] to represent heat storage inside each cell per unit 
increase of temperature. A transient analysis is thus to solve 

( ) ( ) ( )t
dt
tdCtA bxx =+  

where A is the same thermal conductance matrix as in the previous session, C is a 
diagonal matrix with thermal capacitance values, and b(t) is time-varying power 
distribution. With Backward Euler method (other methods follow similar derivations) 
with time step size h, the analysis becomes solving the following linear system at 
each time step: 

( ) ( ) ( ) .
h
htCtt

h
CA −

+=⎟
⎠

⎞
⎜
⎝

⎛ +
xbx

 

It is important to note that, since C is a diagonal matrix, the left-hand-side matrix is 
only modified at the diagonal entries, and that, assuming layered materials and 
hence uniform thermal capacitance per layer, the new left-hand-side matrix still 
takes the form of (8)(12). Therefore the entire algorithm in Section 3.1 applies and 
the complexity is O(N·logN) per time step. 

As a last note, a few other boundary conditions, though in 2D domains, were 
discussed in [Swarztrauber 1977]. Their formulation for Neumann condition is 
different from (12). The difference comes from a different approach of sampling 



derivatives under finite-difference discretization. Both formulations are correct, and 
both are within the approximation introduced by the finite-difference method. 

4. RELATION BETWEEN FPS AND GREEN-FUNCTION-BASED METHODS 
This section demonstrates a strong relation ─ in fact equivalence under certain 
conditions ─ between the 3D FPS from Section 3 and Green-function-based Poisson 
solvers [Gharpurey and Meyer 1996; Niknejad et al. 1998; Zhan and Sapatnekar 
2007]. For clarity of presentation, we will only compare with the full-chip thermal 
analysis method, referred to as Algorithm II in [Zhan and Sapatnekar 2007]. The 
relation to other variations of Green-function-based methods follows similar 
derivations. For the rest of the paper, we will use GFS as a short-hand notation for 
Green-function-based solvers. 

For clarity and without loss of generality, we assume, as in [Zhan and Sapatnekar 
2007], that heat sources are located on discrete horizontal planes. Also, like [Zhan 
and Sapatnekar 2007], we assume that each of these planes is divided into Dx×Dy 
rectangular grid cells of equal size, and the power density inside each grid cell is 
uniform. Therefore, the power density distribution function, P, is in the following 
piecewise constant form, which is nonzero only at a finite set of z’ values. 
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   (15)	
  

where again a and b are the dimensions of the domain in x and y directions. Note 
that the discreteness assumption about z axis is not essential, and, on removing it, 
the derivation still stands, only with constants Pm,n(z’) replaced by more complex 
forms. 

4.1 FPS Formulations 
This section gives detailed FPS formulations based on the principles of Section 3, 
such that they can be compared with GFS formulations that will be given in Section 
4.2. 

Let us use the same formation of linear system Ax=b as (10)(11), and assume that 
the x and y discretization is the same as in (15). Let the z coordinates of cell centers 
be z0, z1, …, zDz-1. For clarity of presentation, we further assume that heat source 
planes in (15) coincide these z coordinates. In other words: 

	
   ( ) { }121, ,,'for          ,0),,(        ,0 −∉=ʹ′ʹ′ʹ′=ʹ′
zDnm zzzzzyxPzP  	
   (16)	
  

And we have the following relation between (11) and (15). 
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The first step of FPS is to apply the transformation of (9) with M=Dx and K=Dy·Dz, 
and compute the transformed right hand side: 
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where T
xD

Q  denotes the eigenvector matrix from (3)(13) with dimension M=Dx. 

The new system (9) is then decoupled into Dx independent systems of linear 
equations. The ith system is, for 0≤i≤Dx-1: 

	
  
ii bx ~~~ =iA 	
   (19)	
  

where iA
~

 is a submatrix of the transformed left hand side in (9), ix~  is a part of x~ , and 

ib
~  is a part of b~ , such that 
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Then we apply the transformation of (9) on (19) with M=Dy and K=Dz, and 
compute another transformed right hand side: 
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where T
yD

Q  denotes the eigenvector matrix from (3)(13) with dimension M=Dy. And 

(19) now becomes 
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Vector ix
~~  can be solved from the above equation in O(Dy·Dz) time because it can be 

decoupled into Dy independent systems, each of which is a tridiagonal matrix of 
dimension Dz. 

After obtaining ix
~~ , we then compute 

	
  
ii xx ~~

000
000
000
000

~

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

y

y

y

D

D

D

Q

Q
Q


	
   (23)	
  



After having ix~  for 0≤i≤Dx-1, we can now recover x~  based on equation (20). Then 
the solution to the original system is 
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Finally, the temperature values at each cell are mapped from (10). 

 

To study the relation to GFS, let us expand the equations of the first two steps. 
Symbol qM,i will be used to denote the ith eigenvector in equation (13) with dimension 
M. By equations (13)(17)(18)(20)(21), we have: 
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Similarly, we can expand the last two steps of FPS, and by (10)(13)(20)(23)(24), 
the average temperature of cell (m,n,l) is: 

Overall, the FPS procedure can be summarized as follows. 
1. Calculate vector b~  from Pm,n(z’) by equations (17)(18), using FFT. 

2. Calculate vectors ib
~~  from b~  by equations (20)(21), for 0≤i≤Dx-1, using FFT. 

3. Calculate vectors ix
~~  by solving (22) as Dy independent linear systems, each 

with dimension Dz, for 0≤i≤Dx-1. 

4. Calculate vector x~  from ix
~~ , 0≤i≤Dx-1, by equations (20)(23), using FFT. 

5. Calculate vector x from x~  by equation (24), using FFT. 
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where χj is as defined in (25). 

4.2 GFS Formulations 
This section is largely based on Algorithm II in [Zhan and Sapatnekar 2007]. The 
GFS approach evaluates the following temperature calculation formula: 
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where G(.) is the Green function. In the special case of Neumann conditions on 4 side 
surfaces (x=0, y=0, x=a, y=b), according to [Niknejad et al. 1998; Zhan and 
Sapatnekar 2007], it has the following special form: 
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and [Niknejad et al. 1998] provided ways to calculate function Ci,j(.) analytically. 
Now suppose we write the power density distribution (15) in the following 

frequency-domain form. 
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By (15) and (29), we can derive 

	
  

( ) ( )

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

≠≠

=≠

≠=

==

=

+
⋅

+
⋅ʹ′⋅⋅⋅=ʹ′ ∑∑

−

=

−

=

0,0,
2

sin
2

sin4

0,0,
2

sin2

0,0,
2

sin2

0,1

   where

)5.0(cos)5.0(cos

2

,

1

0

1

0
,,,

ji
D
j

D
i

ij

ji
D
i

Di

ji
D
j

Dj

ji
DD

D
nj

D
mizPbazp

yx

xy

yx

yx

ji

D

m

D

n yx
nmjiji

x y

ππ
π

π
π

π
π

µ

ππ
µ

	
   (30)	
  

Substituting (28) and (29) into (27), we get an alternative to (27): 
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Now define 
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And we have a cleaner look of (31): 
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Practically, we need to truncate the infinite summations in (33). By truncating the 
two infinite sums at xDʹ′  and yD ʹ′  respectively: 
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Also in practice, as is done in [Zhan and Sapatnekar 2007], often we are 
interested in not the direct outcome of (34), but, by dividing the x-y plane into evenly 

xD ʹ′ʹ′  by yD ʹ′ʹ′  rectangular cells, the average temperature in each cell. They are the 

following numbers. 
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Overall, the GFS procedure can be summarized as follows. 
1. Calculate function Ci,j(z,z’) for 10,10 −ʹ′≤≤−ʹ′≤≤ yx DjDi , analytically as in [8]. 

2. Calculate function pi,j(z’) by (30), for 10 −ʹ′≤≤ xDi , 10 −ʹ′≤≤ yDj , using FFT. 

3. Calculate function Zi,j(z) by (32), for 10 −ʹ′≤≤ xDi , 10 −ʹ′≤≤ yDj . 

4. Calculate function Tm,n(z) by (35), for 10 −ʹ′ʹ′≤≤ xDm , 10 −ʹ′ʹ′≤≤ yDn , using FFT. 



4.3 Relating FPS to GFS 
Let us consider the special case of GFS where xxx DDD ʹ′ʹ′=ʹ′=  and yyy DDD ʹ′ʹ′=ʹ′= . It is 

true that GFS is more flexible than FPS in the sense that it has three resolution 
controls: the resolution (Dx, Dy) of the heat source distribution, the resolution ( )yx DD ʹ′ʹ′ ,  
of frequency domain truncation, and the resolution ( )yx DD ʹ′ʹ′ʹ′ʹ′ ,  of temperature output. 

However, these three are not completely independent choices, for example, it was 
shown in [Zhan and Sapatnekar 2007] that xDʹ′  should be a multiple of Dx and yDʹ′  
should be a multiple of Dy, to enable efficient implementation. 

It is easy to see the relation between equation (25), which is steps 1 and 2 of FPS, 
and equation (30), which is step 2 of GFS. Specifically, both equations represent the 
same computation and produce values merely differing by a scaling factor: 
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Similarly, there is a correspondence between (26), which is steps 4 and 5 of FPS, 
and equation (35), which is step 4 of GFS. Specifically, both equations represent the 
same computation and produce the same temperature outcome (subject to numerical 
errors), based on input values ix

~~  and Zi,j(z) respectively, which merely differ by a 
scaling factor: 
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Note that the above is not an exact equality, because ix
~~  and Zi,j(z) are obtained in 

different ways. Specifically, step 3 of FPS computes ix
~~  by solving Dx·Dy independent 

linear systems, while steps 1 and 3 of GFS obtain Zi,j(z) by solving the z-direction 
analytically. Although through different approaches, step 3 of FPS and steps 1 and 3 
of GFS essentially do the same task, ─ they take the same input, as shown in (36), 
and produce approximately the same output, as shown in (37). 

In conclusion, FPS and GFS are mathematically equivalent for the special case of 

xxx DDD ʹ′ʹ′=ʹ′=  and yyy DDD ʹ′ʹ′=ʹ′= . In other words, Green-function based approach with 

frequency-domain truncation is equivalent to even-spaced finite-difference 
discretization. This is not surprising, because it is well known in signal processing 
theory that frequency-domain truncation is equivalent to time-domain (in this case 
space-domain) sampling. 

5. FPS-PCG FOR IRREGULAR GEOMETRIES 
A limitation in both GFS and FPS is that they can only solve a rectangular 3D 
domain with layered materials. For GFS, this limitation comes from the need for an 
analytical form of the Green function like (28). For FPS, this comes from condition 
(8). 

As discussed in Section 1, an accurate thermal model of a die with its spreader 
and heat sink should be a non-rectangular domain, and that significant errors can be 
introduced if the spreader and sink are ignored or simplistically modeled as a 
convective surface of the die. 



To solve non-rectangular models, and in general to solve thermal models with 
material or geometry irregularities, we propose a thermal analysis method called 
FPS-PCG: FPS-preconditioned Conjugate Gradient. 

This method is built upon prior works: the “two-problem approach” from [Johnson 
et al. 1984; Xu et al. 2005], and the “boundary iteration process” from [Shi et al. 
2009]. The common idea is that if we need to solve Ax=b where A does not satisfy the 
conditions of FPS/GFS, we can separate A into two parts: 

	
   A = A’ + B	
   (38)	
  

where A’ is a system that can be handled efficiently with FPS or GFS, and B 
represents the abnormities and is much sparser and/or smaller in value than A’. 

The proposed FPS-PCG works by using FPS as a preconditioner for 
Preconditioned Conjugate Gradient (PCG). Given any right hand side vector v, FPS 
can provide in an exact solution to A’x=v in O(N·logN) time, which would be an 
approximate solution to Ax=v. Since any approximate solving process can serve as a 
preconditioner [Saad 2003], it is natural to put FPS and PCG together. 

 

 
Fig. 3. Applying FPS-PCG on the pyramid thermal model. (a) Original system A. (b) 

Approximate system A'. (c) Abnormity system B. 
 

Fig. 3 illustrates FPS-PCG on the pyramid thermal model from [Heriz et al. 2007]. 
Note that FPS-PCG is not limited to solving pyramid-shaped domains, and can 
handle other non-rectangular models, e.g., those that include fins under the sink. The 
model in Fig. 3(a) is expanded to form the rectangular approximation in Fig. 3(b). 

Like in any PCG scheme, the better approximation FPS provides, the less PCG 
iterations are needed to converge. It can be argued that FPS on Fig. 3(b) provides a 
good approximation, ─ assuming that the spreader and sink design provides 
reasonably good thermal performance, they should be such that heat flows would 
remain relatively constant even if the spreader or the die was widened, as is the case 
in Fig. 3(b). The performance of FPS-PCG will be verified in the next section. 

Given the relation between FPS and GFS from Section 4, in principle it is also 
possible to use GFS as a preconditioner and hence GFS-PCG. In practice, this 
requires a GFS solver that takes a full residual vector as power distribution and 
outputs a full 3D temperature profile like FPS. 

FPS-PCG is also applicable to transient thermal analysis. As discussed in Section 
3.2, a transient analysis involves solving a linear system per time step, and, in the 
case of a non-rectangular domain, FPS-PCG can be used to solve each time step 
efficiently. 

Finally, as is done similarly in [Zhan and Sapatnekar 2007], it is possible to solve 
part of the domain in finer levels of granularity. We obtain, from a FPS-PCG 
solution, the temperature profile at the thermal contact surface of the die, i.e., the 
interface between the top and middle sections of the pyramid. Then we can solve the 
die alone and with this temperature profile as the boundary temperatures. Since the 
die is a rectangular domain, this can be done with one pass of FPS or GFS efficiently, 
and therefore we can afford to solve with much finer resolution. 

 



 
Fig. 4. POWER6 floorplan [Le et al. 2007]. 

6. RESULTS 
Two chip testcases are used in this section. 

1. Testcase #1 uses a power map of POWER6 microprocessor [Jimenez et al. 
2010][Le et al. 2007][Stolt et al. 2008], representing one scenario with total 
power dissipation of 185W. Actual geometries of its die, spreader and sink are 
used. Material properties are assumed to be the same as in [Heriz et al. 
2007]. Fig. 4 shows the floorplan of the chip [Le et al. 2007]. 

2. Testcase #2 uses an artificially generated power map to model a scenario of 
a four-core chip, with one core idle, one core with peak load, and two others 
with median loads; total power is 175W. The geometries of die, spreader and 
sink, as well as material properties, are the same as in [Heriz et al. 2007]. 

 

            
(a)                                                            (b) 

Fig. 5. Power maps used for (a) Testcase #1, and (b) Testcase #2. 
 

Let us first validate, with Testcase #1, the need for thermal analysis that 
incorporates thermal mounts of a chip. Fig. 6 demonstrates the difference between 
thermal analysis with a non-rectangular model and that with a rectangular model. 
For fairness, the convection coefficient at the thermal contact surface of the die in the 
rectangular model is adjusted such that Fig. 6(a) and Fig. 6(b) have the same average 
temperature. Note that there is significant difference between the shape of 
temperature distribution between Fig. 6(a) and Fig. 6(b), and between the two curves 
in Fig. 6(c), and this difference is acute in the hottest regions. This verifies the need 
for thermal analysis engine, such as the proposed FPS-PCG, for non-rectangular 
domains. 



 
Fig. 6. (a) Chip temperature profile by non-rectangular model. (b) Chip temperature 
profile by rectangular model. (c) Temperature curves across vertical centerline of the 

chip by both models. Ta is ambient temperature. 
 
Then let us validate, again with Testcase #1, the accuracy of the FPS-PCG method 

by checking its solutions against those by a commercial finite element analysis tool 
ANSYS. Fig. 7 plots the maximum error and average error in temperature profiles 
computed by FPS-PCG as functions of the granularity of its analysis, measured by 
the number of finite-difference sample points at the device layer. With finer 
granularity, error quickly comes down to a range that is acceptable in practice; in 
fact, based on a 30-by-30 solution by FPS-PCG (in 4.93 seconds runtime), we can 
interpolate a temperature profile that matches ANSYS based commercial thermal 
model with a max difference of 0.93 degree and an average difference of 0.36 degree. 

 

 
Fig. 7. Maximum and average errors of FPS-PCG as functions of the number of finite-

difference sample points at the device layer. 



Now let us demonstrate, using both testcases, the efficiency and scalability of the 
FPS-PCG method. Finite difference discretization is applied on both testcases with 
different resolutions, resulting in finite difference matrices m1 to m9 in Table 1 for 
the Testcase #1, and m10-m19 in Table 2 for the Testcase #2. Their dimensions range 
from 9.83e3 in the coarsest resolution to 7.68e6 in the finest resolution. 

Tables 1 and 2 compare the performance of FPS-PCG against a direct solver and 
an Incomplete Cholesky preconditioned Conjugate Gradient (ICCG) solver. The direct 
solver is based on Cholesky factorization with approximate minimum degree (AMD) 
ordering [Amestoy et al. 1996]. The ICCG solver is based on incomplete Cholesky 
factorization with zero fill-in, which is known as IC(0) or the symmetric version of 
ILU(0) [Saad 2003], and with AMD ordering as well. All three solvers are coded in 
Matlab, and all runtimes are measured on a 64-bit Linux workstation with 8 CPUs at 
2.9GHz frequency and 80GB memory. The direct solver uses 5-7 CPUs during its 
runs, while ICCG and FPS-PCG both use a single CPU. The ICCG runtimes do not 
include the overhead of building its IC(0) preconditioner. For both ICCG and FPS-
PCG, the convergence criterion is 1e-6 error tolerance. 

 
Table I. Runtime comparison of FPS-PCG against direct solver and ICCG on Testcase #1. N is the dimension of 

a matrix; T is the runtime; I is the number of conjugate-gradient iterations. The direct solver uses 5-7 CPUs 
during its runs, while ICCG and FPS-PCG both use a single CPU.  

Matrix N 
Direct 
Solver ICCG FPS-PCG 

T (sec) I T (sec) I T (sec) 
m1 9.83e3 0.13 159 0.28 8 0.25 

m2 3.93e4 1.85 227 1.14 10 0.73 

m3 1.57e5 8.35 343 6.82 10 2.18 

m4 3.54e5 38.76 458 22.96 11 4.93 

m5 6.60e5 73.10 575 57.14 11 8.38 
m6 9.73e5 102.93 571 83.69 11 11.96 
m7 1.41e6 212.88 776 172.20 12 18.65 
m8 2.42e6 438.14 980 370.66 12 30.81 
m9 4.54e6 1013.83 1360 969.13 13 64.78 

 
Table II. Runtime comparison of FPS-PCG against direct solver and ICCG on Testcase #2. N is the dimension 
of a matrix; T is the runtime; I is the number of conjugate-gradient iterations. The direct solver uses 5-7 CPUs 

during its runs, while ICCG and FPS-PCG both use a single CPU. 

Matrix N 
Direct 
Solver ICCG FPS-PCG 

T (sec) I T (sec) I T (sec) 
m10 1.33e4 0.63 62 0.14 7 0.27 

m11 5.33e4 3.73 76 0.58 8 0.77 

m12 2.13e5 14.38 114 3.17 10 2.82 

m13 4.80e5 62.55 151 12.11 10 6.01 

m14 8.53e5 117.41 188 25.87 10 10.19 
m15 1.33e6 168.69 221 39.52 10 15.05 
m16 1.92e6 222.27 258 81.41 11 23.01 
m17 3.41e6 551.71 342 172.99 11 42.52 
m18 5.33e6 934.74 425 336.72 11 66.77 
m19 7.68e6 N/A 512 594.89 12 102.12 

 
As can be observed in Tables 1 and 2, the direct solver runtime increases at the 

fastest rate among the three solvers, and in fact its memory consumption becomes 
impractical first and is the reason for its absence for testcase m19. Comparing with 
ICCG, the FPS-PCG scales better as the matrix size increases, and its advantage 



widens, eventually with approximately 15X speedup over ICCG on m9 (Testcase #1), 
and approximately 6X speedup over ICCG on m19 (Testcase #2). This trend is 
visualized in Fig. 8. 

 

 
Fig. 8. Runtime T as a function of matrix dimension N for the results in Tables 1 and 

2. The direct solver uses 5-7 CPUs during its runs, while ICCG and FPS-PCG both 
use a single CPU. 

 
A closer look at Tables 1 and 2 reveals the reason for FPS-PCG’s efficiency and 

scalability ─ it needs consistently less PCG iterations to converge to the given 
accuracy. The computational complexity per iteration, which can be measured by T/I 
in the two tables, is O(N) for ICCG and O(NlogN) for FPS-PCG. However, as matrix 
dimension increases from m1 to m9, the number of iterations needed, I in the two 
tables, increases from 159 to 1360 for ICCG, while increase only from 8 to 13 for FPS-
PCG. This verifies the claim in Section 5 that the FPS process is a good 
approximation to the original linear system, and therefore serves as an effective and 
scalable preconditioner for PCG. 

 
Table III. Preconditioning performance on benchmarks with increasing irregularities. N is the dimension of a 
matrix; C1 is the condition number of the original system; C2 is the condition number after preconditioning. 

Matrix N C1 C2 

m4_1 3.56e5 5.73e4 1 

m4_2 3.57e5 5.11e4 12.32 

m4 3.54e5 4.88e4 15.55 

m4_3 3.64e5 4.87e4 16.40 

m4_4 3.64e5 4.88e4 20.43 

 
Table 3 studies the relation between the performance of the proposed FPS 

preconditioner and the degree of irregularity in the system. We take benchmark m4, 
and artificially generated benchmarks m4_1 – m4_4 with similar finite-difference-
matrix dimensions but with increasing irregularities. Specifically, m4_1 is a 
rectangular model; m4_2 uses smaller spreader and sink than m4 and hence is closer 
to rectangular than m4; m4_3 uses larger spreader and sink than m4 and hence is 



more irregular than m4; m4_4 is m4_3 plus non-uniform thermal conductivities in 
certain layers to represent the effect of varying metal density in routing layers (or 
the effect of through-silicon-via distribution in a 3D design). In the extreme case of 
m4_1, FPS solves the system exactly, hence condition number becomes 1. Table 3 
shows a clear trend that, as the system contains more irregularities and increasingly 
deviates from a rectangular domain with layered materials, the quality of the FPS 
preconditioning decreases. It also shows that the degradation is moderate on m4_4, 
and hence FPS-PCG would likely remain competitive even when solving detailed 
models that include intra-layer material variation.  

 

 

 
Fig. 9. (a) A 1200-by-1300 resolution chip temperature profile by solving a die-only 

rectangular model with ambient temperature distribution provided by solving a full 
model. (b) The left hot-spot region in (a). (c) The left hot-spot region in Fig. 6(a). 

 
As discussed in Section 5, after solving a full model, we have the temperature 

distribution at the thermal contact surface of the die, and therefore can use that as 
an ambient temperature distribution to solve the die again with a rectangular model 
and with even finer resolution, which can be done efficiently using Green function 
method or the FPS method of Section 3. Fig. 9(a) plots a 1200 by 1300 temperature 
profile, which is computed by a single pass of FPS method in 7.31 seconds. As 
expected, given the relation discussed in Section 4 between Green function methods 
and FPS, this is consistent with the data reported in [Zhan and Sapatnekar 2007]. 
However, unlike [Zhan and Sapatnekar 2007], the FPS-PCG method can also handle 
irregular geometries. Comparing Fig. 6(a) and Fig. 9(a), Fig. 9(b) and Fig. 9(c), a 
general agreement is observed, and the high-resolution solution provides more 
details, which are useful particularly at hot-spot regions. 

Finally, to verify the proposed solver on transient analysis, we derived four 
benchmarks RC1 – RC4 based on m1 – m4 respectively and generated artificial time-
varying power distributions. We solve them with FPS-PCG for each time step and 
Table 4 shows runtime measurements, where the time step size is 0.1ms. It can be 
observed that runtime per time step is smaller than Table 1; the reason is that the 



extra diagonal components from thermal capacitances lower the condition numbers of 
the matrices, and FPS-PCG converges in less iterations. 

 
Table IV. Runtime of transient thermal analysis by FPS-PCG. N is the dimension of a matrix; S is the number of 

time steps; T is the runtime.  

Matrix N S T (sec) 

RC1 9.83e3 300 45.14 

RC2 3.93e4 300 141.05 

RC3 1.57e5 300 479.98 

RC4 3.54e5 300 1004.28 

 

7. CONCLUSIONS 
Fast and accurate thermal analysis is an important step in integrated circuit design. 
Thermal characteristics not only affect the performance, they also determine the 
energy efficiency, cost and reliability of the resulting design. This paper studies a 
class of eigendecomposition-based fast Poisson solvers for chip-level thermal analysis. 
The proposed FPS-PCG solver demonstrates superior efficiency and scalability in 
solving the realistic non-rectangular thermal models.  This paper also proves a strong 
mathematical relation between fast Poisson solvers and Green-function-based 
methods. We demonstrate the proposed FPS based approach on thermal analysis of 
an industrial microprocessor, showing accurate results verified by a commercial tool, 
and that it solves a system of dimension 4.54e6 in only 13 Conjugate Gradient 
iterations, with a runtime of 65 seconds, a 15X speedup over the popular ICCG 
solver. 
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