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Abstract— Negative Bias Temperature Instability (NBTI) in
PMOS transistors has become a serious reliability concern in
present day digital circuit design. With continued technology
scaling, and reducing oxide thickness, it has become imperative to
accurately determine its effects on temporal circuit degradation,
and thereby ensure reliable operation for a finite period of time.
A reaction-diffusion (R-D) based framework is developed for
determining the number of interface traps as a function of time,
for both the DC (static NBTI) and the AC (dynamic NBTI) stress
cases. The effects of finite oxide thickness, and the influence of
trap generation and annealing in polysilicon, are incorporated.
The model provides a good fit with experimental data, and also
provides a satisfying explanation for most of the physical effects
associated with the dynamics of NBTI. A generalized framework
for estimating the impact of NBTI-induced temporal degradation
in present day digital circuits, is also discussed.

Key Terms : Negative Bias Temperature Instability (NBTI),
Reaction-Diffusion (R-D) Model, Frequency Independence, Oxide
Thickness, Delay.

I. I NTRODUCTION

When a PMOS transistor is biased in inversion (Vgs =
−Vdd), interface traps are generated due to the dissociation
of Si−H bonds along the substrate-oxide interface. The rate
of generation of these traps is accelerated by temperature,and
the time of applied stress. These traps cause an increase in
the threshold voltage (Vth), and a reduction in the saturation
current (Idsat) of the PMOS transistors. This effect, known
as Negative Bias Temperature Instability (NBTI), has become
a significant reliability issue in high-performance digital IC
design, especially in sub-130nm technologies [1]–[6]. An
increase inVth causes the circuit delay to degrade, and when
this degradation exceeds a certain amount, the circuit may fail
to meet its timing specifications.

Experiments have shown that the application of a negative
bias (Vgs = −Vdd) on a PMOS transistor leads to the gener-
ation of interface traps, while removal of the bias (Vgs = 0)
causes a reduction in the number of interface traps due to
annealing [2]–[5], [7]–[11]. Thus, the impact of NBTI on
the PMOS transistor depends on the sequence of stress and
relaxation applied to the gate. Since a digital circuit consists
of millions of nodes with differing signal probabilities and ac-
tivity factors, asymmetric levels of degradation are experienced
by various timing paths. The exact amount of degradation must
be determined using a model that estimates the amount of
NBTI-induced shift in the various parameters of the circuit
that affect the delay. This metric can then be used to design

circuits with appropriate guard-bands, such that they remain
reliable over the desired lifetime of operation, despite temporal
degradation.

Over the past years, there have been many attempts to model
the NBTI effect, based on theories, such as reaction-diffusion,
dispersive diffusion, hole trapping. The reaction-diffusion (R-
D) theory [12], [13] has commonly been used to model NBTI,
leading to various long-term models for circuit degradation [4],
[14]–[16]. However, alternative views among researchers exist,
particularly about the inability of the R-D model to explain
some key phenomena, as detailed in [17]–[21]. This has led
to alternative models such as [17], [22]–[26], as well as efforts
to resolve the controversy between the R-D model theory and
the hole trapping theory [27]–[30]. While, this area is still
under active research, the domain of our work is restricted to
NBTI modeling based on the R-D theory.

This paper compares the existing models for predicting long
term effects of aging on circuit reliability, within the R-D
framework [4], [14]–[16], and finds that these models do not
successfully explain the experimentally observed results. In
this regard, we first sketch an outline for the basic requirements
of any NBTI model, based on observations from a wide realm
of experimental data. Further, most of these models assume
that the oxide thickness (dox) is infinite, which is particularly
not valid in sub-65nm technologies, wheredox is of the order
of a nanometer. Hence, the effect of interface trap generation
and recombination in polysilicon must be considered while
developing a model. Numerical simulations are also performed
to illustrate the drawbacks of existing models based on the R-
D theory, and to highlight the importance of considering the
effect of finite oxide thickness.

Accordingly, we propose an R-D based model for NBTI that
does not consider the oxide to be infinitely thick. The results
show that the model can resolve several inconsistencies, noted
with the reaction-diffusion theory for NBTI generation and
recombination, as observed in [17]–[20]. Further, the model
can also explain the widely distinct experimentally observed
results in [20], [31], [32]. Implications of the model, and its
usage in determining the long-term impact of NBTI on digital
circuit degradation after three years of operation are discussed.
Besides the actual analytical modeling and the framework for
estimating the degradation of digital circuits, our contribution
also involves providing a better understanding of the empirical
constantξ, as used in [4], and has been misinterpreted as being
universal.

The paper is organized as follows. Section II outlines the



previous work in NBTI modeling, and their shortcomings.
Based on these drawbacks, we outline a set of guidelines
that can be used to verify the correctness of an NBTI model.
Section III describes the R-D model equations, while Sec-
tion IV presents a solution to the first stress phase, or the
DC stress case of NBTI action. In Section V, we outline
a numerical simulation framework for the first stress and
recovery phases, thereby showing the origin for some of the
key drawbacks of the R-D based model in [4], as well as
highlighting the role of finite oxide thickness in long term
recovery. Section VI then provides a detailed derivation of
the model for the first recovery phase. Simulation results and
comparison with experimental data are shown in Section VII.
We use the stress and recovery models derived for a single
stress and relaxation phase, and extend this to a multi-cycle
framework in Section VIII. Section IX then shows how this
model can be used to estimate the impact of NBTI on the
delay degradation of digital circuits, followed by inferences in
Section X.

II. PREVIOUS WORKS AND THEIR SHORTCOMINGS

In this section, we present the drawbacks of the existing
NBTI models based on the R-D theory, in literature. We then
proceed to outline a set of requirements that an NBTI model
must adhere to, in order to be able to account for the physics
of interface trap generation and recombination. The Reaction-
Diffusion model was first used in [12] to physically explain
the mechanism of negative bias stress (NBS) in p-channel
MOS memory transistors, based on the activation energy
of electrochemical reactions. Several years later, a detailed
mathematical solution to the R-D model was presented by [13].
Subsequently, [4], [10], [11], [33] have used the R-D model
to describe the NBTI effect in present day PMOS devices.

The analytical model for NBTI in [4] by Alam provides
a simple means to estimate the number of interface traps
for a single stress phase, followed by a relaxation phase,
under the assumption of infinite oxide thickness. The model
does not capture the rapid decrease in the concentration of
hydrogen initially, and predicts a 50% reduction inVth when
the relaxation time is equal to the stress time. The fit with
experimental data (Fig. 3-page 2 of [4]) is not very accurate,
especially during the initial part of recovery. We will show
later on in Section V that this is due to two reasons:

• The use of a single fixed value ofξ = 0.58 for model-
ing the back-diffusing front during recovery, whereas in
reality ξ varies with time.

• Finite oxide thicknesses, and a higher diffusion rate of
H2 in the oxide, as compared with polysilicon.

The work in [14] provides a multi-cycle analytical model
for NBTI, with the framework for the first stress and relax-
ation phases being built upon the work in [4]. The model
demonstrates the widely observed relation that the amount of
trap generation over a large period of time is independent
of the actual frequency of operation, known as frequency
independence [4], [9], [10]. The framework also provides an
analytical proof for frequency independence, and a method
for estimating the delay of digital circuits, after ten years of

degradation. However, the model in [14] does not provide a
good fit with experimental data, particularly during the initial
few seconds of recovery. Further, the analytical modeling is
derived under the assumption of infinite oxide thickness, which
is not valid in current process technologies. Our work extends
the modeling in [14] to remove the limitations listed above.

The work in [15] is also based on an infinite oxide thickness
assumption. To capture the rapid decrease in the number
of interface traps during the initial stages of recovery, the
model lumps a constantδ. The value ofδ is used to fit with
experimental data, and no analytical means of computing this
value is provided. Further, the shape of the curve around
the 1000-1500s region in Fig. 4 of the paper does not fit
well with experimental data, from [34]. The above method
however is insightful, and leads to a case, where a two-level
model for the recovery phase: one for recovery in the oxide,
and another for recovery in polysilicon, may be required for
accurate modeling, as explained in [35].

Accordingly, the work in [16] attempts to incorporate the
effects of finite oxide thickness, and the differing rates of
diffusion of H2 in oxide, and poly, and thereby provides a
comprehensive multi-cycle model. The work in [16] concurs
with [14] in showing frequency independence analytically.The
model provides an excellent fit with experimental data from
[35], and shows more recovery for a higherdox value, which
is consistent with experimental observations in [35].

However, the value ofξ in the model in [16] is deemed to be
universal, and this can lead to unexpected results as follows.
For instance, the recovery phase of the model in [16] for the
dox = 1.2nm case is examined, for a single stress phase of
10000s, followed by continuous recovery for a long period of
time. It is expected that the amount of recovery must continue
to increase, with time, leading to near complete recovery at
infinite time [36]. However, an evaluation of the model shows
that the recovery curve reaches a minimum at around 40000s,
and continues to increase beyond that time. A similar behavior
is seen for thedox = 2.2nm case, with the minimum occurring
at around 20000s, and the deviation from the minimum value
is larger here. This may lead to unexpected behavior, and the
minimum may shift toward a lower time point, for lower stress
periods, and higher oxide thicknesses.

A. Guidelines for an NBTI Model

Based on the drawbacks identified from these models, as
well as observations from several publications such as [19],
[20], [24], we present some key guidelines for an NBTI model
as follows:

1) The model must predict that the number of interface
traps increases rapidly with time initially, as explained
in [10], [37], and asymptotically lead to aNIT (t) ∝
t
1

6 relationship, (assuming that the diffusing species are
neutral hydrogen molecules), as experimentally observed
in [1], [5], [35].

2) The model must be able to capture the “fast initial
recovery phase” that is of the order of a second [20],
during which recovery is higher.

3) The model must predict higher fractional recovery for a
PMOS device with a largertox, for the same duration
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of stress, as observed in [35]. This is because, a larger
dox implies a larger number of fast diffusing hydro-
gen molecules in the oxide, and hence implies higher
amounts of annealing.

4) For an AC stress case where the stress duration is equal
to the relaxation time period, the model must predict
larger fractional recovery, with lower stress times [20].
Previous works using an NBTI model [4], [15] and
numerical solutions of the model in [17], [19] all predict
50% recovery, when the ratio of the relaxation time to
the stress time is equal to one, irrespective of the actual
duration of the stress time.

5) The model must predict some form of frequency inde-
pendence, i.e., the number of interface traps generated
must approximately be the same asymptotically, irre-
spective of the frequency of operation. Although, the
exact range of frequencies over which this phenomenon
holds good is still not very clear, some form of frequency
independence is widely observed in the 1Hz - 1MHz
range [4], [34] and has recently been shown to exist
over the entire range of 1Hz - 2GHz in [38].

B. A Note on OTFM and UFM Techniques and Validity of the
R-D Theory

Two current state-of-the-art techniques to measure the im-
pact of NBTI onVth during recovery include OTFM (On-the-
Fly Measurement) which estimates∆Vth by measuring|∆Id

Id0
|,

and UFM (Ultra-FastVth Measurement) which estimates the
intrinsic NBTI andVth degradation directly. UFM-based tech-
niques, which can measure theVth degradation during the
recovery phase, within 1µs after removal of the stress, have
been employed in [18], [19]. Experimental results show that
there is a uniform recovery ofVth during the relaxation phase,
with an almost identical amount of fractional recovery in
every decade. Subsequently, [17], [19] show results comparing
the large differences between an R-D theory-based model for
recovery, and the experimental data, suggesting that the R-
D mechanism does not provide a satisfactory explanation for
the physical action during recovery. Further, [17] explains the
various drawbacks of the R-D theory-based analytical model
proposed by Alam in [4], such as:

1) 50% recovery inVth predicted afterτ seconds of re-
covery, following τ seconds of stress, irrespective of
the value ofτ , whereas experimental results show a
dependence onτ , particularly with smaller values ofτ
producing larger fractional recovery.

2) Numerical simulations of the R-D model predict 100%
recovery, whereas [4] predicts only around 75% recov-
ery, ast → ∞.

3) Poor fit during the beginning of the recovery phase (t ≪
τ ), and fort ≫ τ .

The authors in [17] hence propose a dispersive transport
based model for trap generation and recovery. Further, the
works in [22], [25], [26], [39] support a bulk trapping-
detrapping based model, instead of a reaction-diffusion based
model. However, [29] distinguishes the gate dielectrics into
two types (Type I and Type II) depending on whether they

are PNO (plasma nitrided oxides) or TNO (thermal nitrided
oxides), and explains the discrepancy between the bulk trap-
ping and the R-D models, for each of these types. Recently,
[40] highlights the differences between an OTFM and a UFM-
based technique for analyzing the impact of NBTI. The above
work also shows that the R-D theory is consistent with the
experimental results obtained using OTFM techniques, and the
log-like recovery (equal recovery in every decade) observed
in [18], [19] is consistent with a UFM-based technique. The
authors in [40] also state that the log-based recovery ofVth

observed in [19] is due to the inappropriate usage of the quasi-
state relationship:

∆Vth =
q∆NIT

Cox

(1)

to ultrafast transient conditions. Further [40] explains the
drawbacks in using a UFM-based technique, and strongly sup-
ports the validity of the reaction-diffusion theory for predicting
the impact of NBTI correctly.

It must be noted that our model is presented under the above
assumption that the R-D theory provides a valid and satisfying
explanation for interface trap generation and recombination.
Our work seeks seeks to provide a better understanding of
the R-D mechanism, thereby improving upon the drawbacks
in previous (R-D based) works, as listed in the beginning of
this section. Further, it must be noted that our goal is to build
a modeling mechanism for NBTI action that can be used to
predict the impact on the timing degradation of digital circuits
after several years of operation. Hence, a fast asymptotically
accurate model, as opposed to a slow cycle accurate model that
requires extensive numerical simulations, is of utmost utility.

III. R EACTION DIFFUSION MODEL FORNBTI ACTION

In this section, we describe the framework of the Reaction-
Diffusion (R-D) model, used to develop an analytical model
for NBTI action. The R-D model is solved assuming that al-
ternate periods of stress and relaxation, each of equal duration
τ , are applied to the gate of a PMOS device, whose source
and bulk are tied toVdd while the drain is grounded, as shown
in Fig. 1. It must be noted that the derivation is valid, with
minor changes in the limits of integration, for any arbitrary
sequence of stress and relaxation. However, since the special
case of a square wave-like sequence of “alternating” stress
and relaxation (also called AC stress in the NBTI literature)
is frequently used in experimentation, we consider this case.

A. Reaction-Diffusion Model

The R-D model is used to annotate the process of interface
trap generation and hydrogen diffusion, which is governed by
the following chemical equations:

Si−H + h+ → Si+ +H

H +H → H2 (2)

where the holes in the channel interact with the weakSi−H

bonds, thereby releasing neutral hydrogen atoms, and leaving
behind interface traps. Hydrogen atoms combine to form
hydrogen molecules, which diffuse into the oxide.

3



G

D

S

B

0 CYCLE 2

R S R S RS

CYCLE 1

0

Vdd

Vin

Vdd

CYCLE n

τ 2τ 3τ 4τ (2n− 1)τ

t

Vin

2(n− 1)τ

Fig. 1. Input waveform applied to the gate of the PMOS transistor to simulate alternate stress (S) and relaxation (R) phases of equal durationτ .

According to the R-D model, the rate of generation of
interface traps initially depends on the rate of dissociation
of the Si-H bonds (which is controlled by the forward rate
constant,kf ) and the local self-annealing process (which is
governed by the reverse rate constant,kr). This constitutes
the reaction phasein the R-D model. Thus, we have:

dNIT

dt
= kf [N0 −NIT ]− krNITN

0
H (3)

where NIT is the number of interface traps,N0 is the
maximum density ofSi − H bonds andN0

H is the density
of hydrogen atoms at the substrate-oxide interface. After
sufficient trap generation, the rate of generation of traps is
limited by the diffusion of hydrogen molecules1. The rate
of growth of interface traps is controlled by the diffusion of
hydrogen molecules away from the surface as:

dNIT

dt
= φNH2

(4)

whereφNH2
is the flow of diffusion ofH2 from the interface

to oxide/poly. Hence, when diffusion is limited to the oxide,
it follows the equation:

dNIT

dt
= −Dox

dNH2

dx
(5)

whereDox represents the diffusion coefficient in the oxide,
while Dp is that in polysilicon.

Using Fick’s second law of diffusion, the rate of change in
concentration of the hydrogen molecules inside the oxide is
given by:

dNH2

dt
= Dox

d2NH2

dx2
for 0 < x ≤ dox (6)

where NH2
is the concentration of hydrogen molecules at

a distancex from the interface at timet, (while N0
H2

, at
the substrate-oxide interface)2. This constitutes thediffusion
phase in the R-D model. In order to find a coupling relation
betweenN0

H in the reaction-phase equation in (3) andN0
H2

in the diffusion-phase equation, we use the mass action law:

N0
H2

= kH(N0
H)2 (7)

since two hydrogen atoms can combine to form a hydrogen
molecule with the rate constantkH [10], [41].

1Initial works assumed diffusion of hydrogen atoms, although it is now
widely conjectured that hydrogen molecular diffusion occurs [5], [10], [35].

2We will representN0

H2
(t) and N0

H
(t) as N0

H2
and N0

H
, respectively,

except in cases where the the value oft is not obvious within the context.

B. Solution to the Reaction Phase

During the initial reaction phase, the concentration of hy-
drogen atoms and interface traps are both very low, and there
is virtually no reverse reaction. Hence, the number of interface
traps increases with time linearly as:

NIT (t) = kfN0t (8)

The linear dependence ofNIT on timet correlates with results
from numerical simulations in [5], [41]. This process lasts
for a very short time (around 1ms). Gradually, the process
of interface trap generation begins to slow down due to
the increasing concentration of hydrogen molecules, and the
reverse reaction. The process then attains a quasi-equilibrium
[42], and subsequently becomes diffusion limited.

Fig. 2 shows results from our numerical simulation setup
(described later on in Section V), showing the three regimes
namely:

1) Reaction phase which lasts less than a millisecond,
during whichNIT increases linearly with time, as seen
from Fig. 2.

2) Quasi-equilibrium phase during which the interface trap
count does not increase.

3) Rate-limiting diffusion phase during which the mecha-
nism is diffusion limited.
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0
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0

10
1

time (s)

N
I
T Reaction-dominated

Quasi-equilibrium
Diffusion-dominated

Fig. 2. Results of numerical simulation showing the three regimes of interface
trap generation, during the DC stress phase.

The reaction phase is ignored in the final model, for reasons
that will become apparent at the end of Section IV-A.

C. Diffusion Phase

During this phase, the diffusion of hydrogen molecules
becomes the rate limiting factor. Since the number of interface
traps now grows rather slowly with time, the left hand side
in (3) is approximated as zero. The initial density of Si-H
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bonds is larger than the number of interface traps that are
generated, so thatN0−NIT ≈ N0. This leads to the following
approximation for the reaction equation:

kfN0

kr
≈ NITN

0
H (9)

We initially solve the diffusion equation for the first stress and
relaxation phases, and provide a method to extend the solution
to the subsequent phases, in Section VIII.

IV. T HE FIRST STRESSPHASE

The first stress phase occurs from timet = 0s to τ , as
indicated in Fig. 1. During this stage, the PMOS device is
under negative bias stress, and hence, generation of interface
traps occurs. The stress phase consists of two components,
namely diffusion in oxide and diffusion in polysilicon, leading
to two analytical expressions, respectively.

A. Diffusion in Oxide

The number of interface traps increases with time rapidly
initially, as given by (8), before reaching quasi-equilibrium,
and eventually the mechanism becomes diffusion-limited. At
this point, the rate of generation of hydrogen is rather slow,
and therefore, diffusion within the oxide, described by (6), can
be approximated as:

Dox

d2Nx
H2

(t)

dx2
= 0 (10)

This implies thatNx
H2

(t) is an affine function ofx, wherex is
the extent to which the front has diffused at a given timet. The
diffusion front can be approximated as shown in Fig. 3, which
plots the front at various time points, during the diffusion
process. The concentration of hydrogen molecules is highest
at the interface, where the traps are generated, and gradually
decreases as hydrogen diffuses into the oxide, as illustrated
in Fig. 3(c). The hydrogen concentration at the interface is
denoted byN0

H2
, and can be approximated as zero at a point

known as thediffusion front, which we will denote asxd(t):
this is the extent to which the diffusing species has penetrated,
at time t, into the oxide3. Therefore, we have:

dNH2

dx
= −

N0
H2

xd(t)
(11)

and from the triangular approximation in Fig. 3(c),

Nx
H2

(t) = N0
H2

−
[

N0
H2

xd(t)

]

x (12)

Due to the one-one correspondence between the interface
traps and theH species, the total density of interface traps
must equal the total density of hydrogen atoms (or twice the
number of hydrogen molecules) in the oxide. Therefore,

NIT (t) = 2

∫ x=xd(t)

x=0

Nx
H2

(t)dx (13)

3This is consistent with the right half of Fig. 4a in [4]: the curve there
looks (deceptively) more rounded, but this is because the y-axis is on a log
scale, and on a linear y-axis, the triangle is a reasonable assumption.

NH2

NH2

NH2

NH2

NH2

N0

H2

N0

H2

N0

H2

N0

H2

N
dox
H2

x(t)

x(t)

x(t)

x(t)

x(t)

xd(t)

xd(t)

xd(t)

dox

N
dox
H2

≈ N0

H2

(a)

(b)

(c)

(d)

(e)

(f)

oxide poly

Fig. 3. Diffusion front for the first stress phase: (a) shows the cross section of
the PMOS transistor:x > 0 denotes the direction of the oxide-poly. (b) shows
the front at timet = 0, and the hydrogen concentration is 0. (c)-(f) show the
front during the first stress phase. (c) shows the triangularapproximation of
the diffusion front in the oxide, with the peak denoted byN0

H2
, while the tip

of the front is atxd(t). (d) shows the front at the oxide-poly boundary, i.e.,
whenxd(t) = dox, and the subsequent decrease in the peak concentration. (e)
shows the front extending into poly, while (f) shows that sinceDox ≫ Dp,
the front can be approximated as a rectangle in oxide, followed by a triangle
in poly, i.e.,Ndox

H2
≈ N0

H2
.

The value of the above integral is simply twice the area of the
triangle enclosed by the diffusion front in Fig. 3(c). Therefore,

NIT (t) = N0
H2

xd(t) (14)

The above equations can be expressed equivalently in terms
of N0

H using (7). Hence,

NIT (t) = kH(N0
H)2xd(t) (15)

The approximation comes about because the reaction rate is
fast enough that uncombinedN0

H are sparse: this is supported
by the fact that practically, diffusion is seen to be due toH2

and notH. The above equation relates the number of interface
traps to the number of hydrogen species at the interface. We
may now substitute (15) in the LHS of (5), and (11) in the
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RHS of (5), and further use (7) to obtain:

kH(N0
H)2

dxd(t)

dt
= Dox

kH(N0
H)2

xd(t)

i.e., xd(t)dxd(t) = Doxdt (16)

Integrating this, we obtain:

xd(t) =
√

2Doxt (17)

and using this in (15), we get:

NIT (t) = kH(N0
H)2

√

2Doxt (18)

Finally, we substitute the above relation in (9) to obtain:

NIT (t) =

(

kfN0

√
kH

kr

)

2

3

(2Doxt)
1

6 = kIT (2Doxt)
1

6 (19)

wherekIT =
(

kfN0

√
kH

kr

)
2

3

.
The above equation is valid until the tip of the diffu-

sion front has reached the oxide-poly interface, as shown in
Fig. 3(d). The time at which this occurs is denoted byt1, and
can be computed by substitutingxd(t) = dox in (17) to obtain:

t1 =
dox

2

2Dox

(20)

Typically, t1 is of the order of a second for current technolo-
gies, considering the values of the oxide thickness, andDox.
The number of interface traps for the first stress phase can
thus be expressed as:

NIT (t, 0 < t ≤ t1) = kITxd(t)
1

3 (21)

wherexd(t) =
√
2Doxt.

It must be noted that we ignore the reaction phase equation
given by (8), which captures the rapid initial rise in the number
of interface traps. Fig. 2 shows the extrapolated shape of the
curve (using dotted lines) from a numerical simulation, for
the case where the reaction phase is ignored in the model,
and merely the diffusion phase is considered. The results
show that ignoring the reaction and equilibrium phases leads
to an underestimation inNIT initially, as shown in Fig. 2.
However, the mechanism is clearly diffusion limited, and we
are interested in determining the impact of NBTI after a few
years of operation. Hence, an underestimation in the numberof
interface traps for up to 1s does not affect the overall accuracy
of the model, or the long-term shape of theNIT curve.

B. Diffusion in Poly

Assuming thatτ is greater thant1 (the case whereτ < t1
is handled later), the diffusion front moves into polysilicon as
well, as shown in Fig. 3(e), although the diffusion coefficient
for H2 in poly (denoted asDp), is lower than that in the oxide
[35]. The detailed derivation is presented in Appendix A, and
only the end result is shown here. Thus, from (21) and (53),
the number of interface traps for the first stress phase is given
by:

NIT (t, 0 < t ≤ t1) = kIT (2Doxt)
1

6

NIT (t, t1 < t ≤ τ) = kIT

[

dox(1 + f(t)) +

√

2Dp(t− t1)f(t)
]

1

3

(22)

f(t) =

[

Dox

√

2Dp(t− t1)

Dox

√

2Dp(t− t1) +Dpdox

]

≈ 1 for t > t1 (23)

where the first equation accounts for diffusion in the oxide
leading to a rapid stress phase, followed by the second
equation which involves diffusion in poly, and therefore, a
slower stress phase.

Using the above equations, it is easy to obtain an analytical
expression for the number of interface traps for the static NBTI
stress case, or the DC stress case as follows:

NITDC
(t, 0 < t ≤ t1) = kIT (2Doxt)

1

6

NITDC
(t, t > t1) = kIT

[

dox(1 + f(t)) +

√

2Dp(t− t1)f(t)
]

1

3

(24)

Simulation results for the DC stress case, using the above
model are shown in Section VII - Fig. 12.

V. NUMERICAL SIMULATION FOR THE FIRST STRESS AND

RECOVERY PHASES

Before deriving an analytical model for the first recovery
phase as shown in Fig. 1, we present a detailed numerical
analysis and solution to this case. This section aims to identify
the origin of the drawbacks of the recovery modeling in [4],
and argues that these are not necessarily a limitation of the
R-D mechanism itself, as contended in [17]. Accordingly, a
modified R-D model for recovery, based on the model in [4]
is developed in Section VI. It must be noted that numerical
simulation is only used to aid the reader in understanding the
development of the actual mathematical model for the recovery
phase. The employment of such a numerical simulation-based
model is prohibitively computationally intensive, particularly
in a multi-cycle framework to estimate the asymptotic impact
of NBTI on transistor threshold voltage after three years (≈
1017 cycles at a frequency of 1GHz) of operation.

We present a numerical solution framework for the R-D
model equations, described in Section III-A. We provide an
in-depth analysis of the recovery modeling in [4], and show
that the value of the back-diffusion coefficientξ = 0.5, as used
in [4] is not universal, andξ is actually based on curve-fitting.
We argue that the poor fit between the analytical model in [4]
and measured data is partly due to the misinterpretation of the
value ofξ as being universal, and not the R-D model itself.

We then explore the impact of using a two-region model
considering the finite thickness of the gate-oxide, and a higher
value of the diffusion constant in oxide, as compared with
poly [35]. We show simulation results using this finite-oxide
thickness-based model for NBTI recovery, and argue that
the model further helps eliminate the previously encountered
limitations in using the R-D theory based models.

A. Simulation Setup

A backward-Euler numerical solver based on [43] is im-
plemented with adaptive time stepping, usingkf = 4.66s−1,
kr = 4.48e-9cm3s−1, kH = 1.4e-3s−1, N0 = 5e12cm2, and
Dox = 4e-17cm2s−1. It must be noted that the exact values

6



do not influence the time-dependencies [41]. A minimum step-
size of 1e-4s is used for the simulations. We assume that there
is a one-one correspondence between∆Vth andNIT for each
of the cases, and that the y-axis, which denotes the normalized
NIT values (marked as “ScaledNIT ” in the figures), may also
be interpreted as the normalizedVth values. The results are
shown in the following subsections:

B. DC Stress

We first present the simple case of applying a DC stress on
the PMOS transistors for 10000s. Fig. 4(a) shows the growth
of NIT with time, while Fig. 4(b) shows the evolution of the
diffusion front with time, fort = [100s, 1000s, 10000s]. The tip
of the diffusion front grows as

√
t and the peak concentration

decreases, whileNIT increases asymptotically as∝ t
1

6 . Both
results are consistent with the findings of the analytical model,
detailed in Section IV.

0 5000
0

0.2

0.4

0.6

0.8

1

time(s)

S
ca

le
dN

I
T

10000s

(a) NIT for stress phase.

0 0.5 1 1.5 2

x 10
−6

0

0.5

1

1.5

2

2.5
x 10

17

N
H

2

distance (cm)

10000s

1000s

100s

(b) Evolution of H2 diffusion front
at 100s, 1000s, and 10000s.

Fig. 4. Trap generation and H2 diffusion for DC stress.

C. Effect of Stopping Stress

Fig. 5 shows the evolution of the diffusion front where stress
was applied until timeτ = 10000s, followed by diffusion
of existing hydrogen molecules for timet > τ . The results
show that the peak concentration of hydrogen at the interface
reduces, whereas the tip of the diffusion front continues to
grow as

√
t. The shape of the diffusion front, and the decrease

in N0
H2

for t > τ is obvious since there is no further generation
or annealing of interface traps, and the increase in the baseof
the triangular front must be accompanied by a decrease in its
height.
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Fig. 5. Evolution of diffusion front for 10000 seconds of stress followed by
diffusion of existing species: upper curve shows the front after τ = 10000s,
while the lower curve plots the case where diffusion of existing species occurs
after 10000s of stress, with a lowering of the peak concentration, and widening
of the tip of the diffusion frontxd(t).

Recovery is modeled as a superposition of two mechanisms:

1) Continued diffusion of existing hydrogen molecules
away from the interface.

2) Annealing of interface traps, and backward diffusion of
hydrogen molecules near the interface.

Thus, we have:

NIT (t, t > τ) = NIT (τ)−N∗
IT (t) (25)

whereN∗
IT is the annealed component.

In the absence of annealing, i.e., ifkr = 0 (along with
kf = 0) during the recovery phase, the profile of hydrogen
molecular diffusion must be as shown in Fig. 5. Hence, the
area under both curves in Fig. 5 is the same, and is given by:

NIT (t, t ≥ τ) ∝ xd(t)N
0
H2

(t) = xd(τ)N
0
H2

(τ) (26)

D. Impact of Annealing
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(b) Evolution ofH2 diffusion front.

Fig. 6. Trap generation for AC stress case: 10000s of stress followed by
2500s of recovery.

In order to determine the impact of annealing, we
first simulate the case where 10000s of stress followed
by 2500s of recovery is applied to the PMOS device.
Fig. 6(a) shows the decrease inNIT beyond 10000s, with
NIT (1.25τ = 12500) = 0.673NIT (τ = 10000), whereas
Fig. 6(b) shows the diffusion front, where there is annealing
close to the interface. The peak concentration point moves
away from the interface, unlike the diffusion curves in the
stress phase, which resemble a right angled triangle. However,
the tip of the diffusion front continues to grow further intothe
oxide.

Fig. 7 shows the diffusion front after 2500s of recovery
(Fig. 6(b)), superimposed on the diffusion front for the
case where the device is stressed for 10000s, followed by
continued diffusion (without annealing) for the remaining
2500s, as explained in Section V-C. The area under the black
curve, denoted asdiffusing front representsNIT (τ), as
explained in (26), whereas the area under the shaded curve
(in blue) isNIT (t > τ), and is denoted as theexisting front.
In Fig. 7, the region under the triangular shape filled with
(red) vertical lines, denoted asbackward front indicates the
number of interface traps annealed, given byN∗

IT . Assuming
that all fronts are triangular, which is reasonably accurate
based on Fig. 7, we can write4:

4Number of interface trapsNIT is equal to twice the area under theNH2

curve, from (13).
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NIT (τ) = NH2
(x = 0, t, t > τ)

√

2D(t+ τ)

N∗
IT (t) = NH2

(x = 0, t, t > τ)x∗(t)

NIT (t, t > τ) = NH2
(x∗(t), t)

√

2D(t+ τ)

NIT (t, t > τ) = NIT (τ)−N∗
IT (t) (27)

wherex∗(t) is the point at which the diffusion front during
the recovery phase reaches its peak. Unlike the figures in [14],
where the authors assume that the peak value occurs at∆ ≈ 0,
i.e., close to the Si-SiO2 interface,x∗(t) grows with time, i.e.,
the peak point moves away from the interface, due to forward
diffusion of existing hydrogen species.
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Fig. 7. Diffusion fronts during recovery.

Fig. 8(a) shows the case forτ seconds of stress followed
by τ seconds of recovery, whereτ = 10000s (as this case
is widely used to compare the performance of an analytical
model, as well as to demonstrate experimental results). The
shape of the fronts indicate that the number of interface traps
can be expressed as a difference in the area of the two triangles
between the diffusing front, and the backward front, as shown
in Fig. 7, and derived in (27). We now derive the analytical
modeling in [4] using (27).
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Fig. 8. Trap generation for AC stress case - 10000s of stress followed by
10000s of recovery.

Numerical simulations plotted in Fig. 8(a), for this case
show that:

NIT (2τ) = 0.47NIT (τ) (28)

From Figs. 6(b) and 8(b), we can see thatx∗(t) ∝
√
t, and

can be written as:

x∗(t) =
√

ξ × 2Dt (29)

where ξ is the curve-fitting parameter whose value must be
determined. Using the above relation in (27), we have:

NIT (τ) = NH2
(x = 0, t, t > τ)

√

2D(t+ τ)

N∗
IT (t) = NH2

(x = 0, t, t > τ)
√

2ξDt

NIT (t, t > τ) = NIT (τ)−N∗
IT (t)

= NIT (τ)−
NIT (τ)

√
2ξDt

√

2D(t+ τ)

= NIT (τ)

[

1−
√

ξt

t+ τ

]

(30)

which is the equation for recovery in [4]. Substituting the value
of NIT (2τ) from (28) in (30), we have:

0.47NIT (τ) = NIT (τ)

[

1−
√

ξτ

τ + τ

]

(31)

from which, we obtainξ = 0.58, which is the theoretical value
of ξ for double sided diffusion, as stated in [4]. However, for
simplicity, a fixed value ofξ = 0.5 is used, which results in
NIT (2τ) = 0.5NIT (τ).

We now compare the values of the analytical model for re-
covery using (30) and the results from numerical simulations,
for different values oft, with a fixed value ofξ = 0.58. Table
I shows the values ofNIT (t+τ)

NIT (τ) , i.e., the fractional recovery
numbers during the relaxation phase, computed using numeri-
cal simulations, and using the analytical model from (30) with
ξ = 0.58, for different values oft, whereτ = 10000s. The last

TABLE I

COMPARISON BETWEEN FRACTIONAL RECOVERY NUMBERS OBTAINED

THROUGH NUMERICAL SIMULATIONS AND ANALYTICAL MODEL

time (t) analytical numerical new value ofξ
2500 0.659 0.673 0.534
5000 0.560 0.575 0.542
10000 0.468 0.468 0.580
30000 0.340 0.309 0.637

column of Table I recomputesξ from (30) by substituting the
value ofNIT (t + τ) for each case. The results show thatξ

is not a constant, and increases witht. However, fort < τ ,
the difference between numerical and analytical results using
ξ = 0.58 is not large. Thus, the discrepancy between numerical
simulation results and analytical modeling for the recovery
phase, for large values oft, is clearly attributed to the use of
a fixed value ofξ, based on curve fitting at one time stamp
t = τ . This discrepancy can be resolved by using a curve-
fitted expression forξ, as shown in Fig. 9. Two sample curve
fitted expressions and their accuracies are shown in Fig. 9(a),
while the corrected model is plotted in Fig. 9(b) along with
numerical data, as well as the case whereξ = 0.58 is used.
The results indicate that with a time varyingξ, a good fit
between numerical and analytical results can be obtained. Such
a modified analytical solution from an R-D theory based on
[4], with a time varyingξ does indeed converge well with
numerical simulation results. It must be noted that the curve
fitted expression forξ in Fig. 9 is one of many choices, and is
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merely shown to illustrate the usage of a time-varying model
for ξ5.
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Fig. 9. Curve-fitted expressions for time varyingξ using an exponential
relation (ξ = 0.5843

(

t
τ

).0897
) and a log relation (ξ = .0557log

(

t
τ

)

+
0.5879).

Simulation results also show that the value ofξ depends on
τ , as well, particularly for smaller values ofτ . Hence, any
comparison of recovery models with the R-D theory based
analytical model expression of [4] must be done using the
appropriate value ofξ.

E. Finite Oxide Thickness

In this section, we propose to account for further discrep-
ancies between the findings from a numerical or an analytical
model and experimental data, such as:

1) Experimental results for a single stress phase followed
by a single recovery phase show more than 80% recov-
ery in [20] for τ = 1000s, around 60% recovery in [35]
for τ = 10000s, and 50% recovery in [4] forτ = 1000s,
for devices with an oxide thickness of 1.2nm-1.3nm.

2) Larger fractional recovery for the same value ofτ for a
higher oxide thickness is seen in [35].

3) Rapid decrease inVth at the beginning of the recovery
phase [20], implying alogt behavior for recovery, where
equal recovery is observed in every decade [17]–[19]6.

Accordingly, a finite oxide thickness-based two-step model
is contended since the diffusion constant of hydrogen in oxide
is larger than that in polysilicon (Dox > Dp). Although the
exact values ofDox and Dp are still widely debated [35],
their relative ratio influences the shape of theNIT curve. We
perform numerical simulations, using our setup, as described
in Section V-A for a case wheredox = 1.3nm. Additional
boundary conditions at the oxide-poly interface are added to
the numerical simulation setup used for the infinitely thick
oxide case, in Section V-A.Dp is assumed to be 0.25Dox.
Fig. 10(a) which plots the simulation results shows that there
is approximately 60% recovery afterτ seconds of recovery
for τ = 10000s, as opposed to Fig. 8(a) which shows 50%
recovery.

5Both the curve-fitted expressions in Fig. 9 do not guarantee that ξ
converges to 1, ast → ∞, and may require to be further modified for the
case of a single stress phase followed by recovery of the device for infinite
time, thereby resetting it to be equivalent to an original unstressed device.
However, these expressions are merely shown to illustrate the fact thatξ is a
function of t, and is not a constant.

6It must be noted that [40] has attributed this behavior to an inaccurate way
of estimating the impact of NBTI by using UFM techniques.
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Fig. 10. Validation of finite oxide thickness-based model.

Fig. 10(b) shows the model for the case ofτ = 10000s, and
τ = 1000s, with higher fractional recovery for the 1000s case,
since more H2 is contained in the oxide, and rapidly diffuses
back to the interface. Unlike the infinite oxide thickness case,
which would have incorrectly predicted a fractional recovery
of ≈ 50% for both τ = 10000s, andτ = 1000s, higher
fractional recovery is seen with lower values ofτ . The shape
of the diffusion profile at the end of the first stress and recovery
phases for the case ofτ = 10000s, andDox = 4 Dp are shown
in Fig. 11. Fig. 11(a) shows the diffusion ofNH2

at the end
of the stress phase, with the rectangular shaped front in the
oxide, followed by a triangular front in poly. The diffusion
profile for recovery in Fig. 11(b) indicates that the fraction of
the hydrogen molecules contained in the oxide quickly diffuses
backwards during recovery.

Thus, it is clear that a two-region based model for recovery
with differing diffusion constants for oxide and poly is neces-
sary to model the recovery phase of NBTI action. Accordingly,
we also use two curve fitting constantsξ1 and ξ2, for the
backward diffusing fronts in oxide and poly, respectively,
and determine the values of these constants to match the
experimental results. The development of the analytical model
for recovery is detailed in the next section.
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Fig. 11. Diffusion front considering finite oxide thickness.

VI. M ODEL FORTHE FIRST RECOVERY PHASE

During the recovery phase, the stress applied to the PMOS
device is released, as shown in Fig. 1. Some of the hydrogen
molecules recombine with Si+ species, to form Si-H bonds,
thereby annealing some of the existing traps. Since the rate
of diffusion of hydrogen molecules in the oxide is greater
than that in poly, rapid annealing of traps occurs in the oxide,
followed by a slow annealing in polysilicon. Accordingly, we

9



have two stages of recovery in each relaxation phase, that are
modeled separately:

A. Recovery in Oxide

The detailed derivation for the first recovery phase of NBTI
action is shown in Appendix B. The final equation is of the
form:

NIT (t+ τ, 0 < t ≤ t2) =
NIT (τ)

1 + g(ξ1, t)
(32)

wheret2 is the time when the back-diffusion front has reached
the oxide-poly interface, and is of the order of less than a
second, while:

g(ξ1, t) =

[ √
2ξ1Doxt

2dox −
√
2Doxt+

√

2Dp(t+ τ)

]

(33)

with the value of ξ1, which is a function of t, τ , and
dox, chosen appropriately using curve fitting, based on the
discussion in Sections V-D and V-E.

B. Slow Recovery in Poly

If recovery continues beyond timet2, the back-diffusion
front now enters poly, where its growth is slower, in compar-
ison with that in the oxide (≡ to the diffusion front during
the first stress phase in Fig. 3). Hence, during this phase, the
rate of annealing of interface traps reduces. However, by this
time, since the oxide is almost completely annealed, only a
slow recovery in poly occurs. The diffusion front in poly is
triangular, and its peak moves further away from the oxide-
poly interface as being proportional to

√
ξ2t whereξ2 is the

curve fitting parameter. The mechanism is similar to recovery
for the case of an infinitely thick oxide. Hence, the model
derived in Section V-D for the infinite oxide case, can be used
here. Thus, we have:

NIT (t+ τ, t > t2) = NIT (τ + t2)

[

1−
√

ξ2(t− t2)

t+ τ

]

(34)

for time τ + t2 to 2τ , whereξ2 is the curve fitting factor. It
must be noted that due to the difference in the coefficients of
oxide and poly, and the slow progression of the back-diffusion
front in poly, the value ofξ is less than 0.58, and is of the
order of around 0.125 fort < t0

7. Thus, the two-step model
for annealing consists of a quick annealing stage where the
number of interface traps decreases rapidly in the first few
milliseconds to about a second, followed by a slow decrease
over the remaining time period.

The model proposed can thus also account for rapid re-
covery during the beginning of the relaxation stage, due to
mechanisms not attributed to a reaction-diffusion process,
using the curve fitted value ofξ1. The authors in [40] argue
that the rapid decrease inVth at the beginning of the recovery
phase, that does not correspond to a simultaneous decrease in
NIT , is an incorrect manifestation of the UFV technique used
to measure recovery in PMOS devices. While it is not clear

7A time varyingξ2, as deemed necessary in Section V-D is used to model
the impact of a single stress phase, followed by long periods of recovery, in
the plots (Fig. 17) shown later on, in Section VII-D.

what the actual physical mechanism is, in nanometer scale
PMOS devices during actual circuit operation, the use of a
curve-fittedξ1 helps fit better the results of the model with
experimental data, while still adhering to the basic guidelines
of the R-D theory.

C. Complete Set of Equations for First Stress and Relaxation
Phase

The equations for the first stress and relaxation phase can
be summarized as follows:

NIT (t, 0 < t ≤ t1) = kIT (2Doxt)
1

6

NIT (t, t1 < t ≤ τ) = kIT

[

dox(1 + f(t)) +

√

2Dp(t− t1)f(t)
]

1

3

NIT (t+ τ, 0 < t ≤ t2) =
NIT (τ)

1 + g(ξ1, t)

NIT (t+ τ, t2 < t ≤ τ) = NIT (τ + t2)

[

1−
√

ξ2(t− t2)

t+ τ

]

(35)

VII. S IMULATION RESULTS AND SANITY CHECK PLOTS

In this section, we compare the results of our model with
the requirements outlined in Section II.

A. DC Stress

The plot for a DC stress case, for a PMOS transistor with
dox = 1.2nm is obtained using (24), and is shown in Fig. 12.
The plot consists of three significant phases:
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Fig. 12. Plot of DC stress fordox = 1.2nm. The curve plots the normalized
interface trap values forkIT = 1.

1) The initial phase oft < 0.1s, during which the reaction
phase is dominant. It must be noted that this phase has
been not been explicitly modeled in (35), and (21) is
used for t ≥ 0, as has been explained in the end of
Section IV-A, using Fig. 2.

2) The transient phase of 0.1s≤ t < 10s, during which the
process is dominated by diffusion in the oxide.

3) The final phase, for large values oft, over which the
mechanism is dominated by diffusion in poly.

It follows from the shape of the log-log plot in Fig. 12, that
as t increases, the number of interface traps asymptotically
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approaches at
1

6 relationship, which satisfies the first guideline
outlined at the end of Section II. It must be noted that in the
analytical model for DC stress, and hence the plots in Fig. 12,
we ignore the reaction and the quasi equilibrium phases of
interface trap generation, for reasons already explained in
Section III-B.

B. AC Stress (Single Stress phase followed by a single relax-
ation phase)

The plot in Fig. 13 shows the simulation results for the
number of interface traps generated for a single stress phase,
followed by a relaxation phase, each of durationτ = 10000s,
using (35), for a PMOS device whose oxide thickness (dox) is
1.2nm. These match the values used in the experimental setup
from [35]. The values ofξ1 andξ2 are chosen based on curve
fitting, with ξ1 >> ξ2. The results of our simulation are shown
in Fig. 13. The curve shows a good fit with experimental
data from [35], [44]. The accurate fit with experimental data,
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Fig. 13. Plot of first stress and recovery phases forτ = 10000s, and
dox = 1.2nm, with experimental data from [35], [44], shown in⋄, on a linear
scale.

particularly during the recovery phase, satisfies the second
requirement outlined in Section II.

Recent publications [18], [19] have motivated the plotting
of stress and relaxation data, on a semi-log scale, to compare
the accuracy of the fit, over the broad spectrum of time
constants. The fit with experimental data from [35] on a semi-
log scale is shown in Fig. 14. Fig. 14(a) shows the plot for
the first stress and recovery phases, while Fig. 14(b), for
the recovery phase only. The fit for our model is not very
accurate, during the beginning of the stress phase, as seen
from Fig. 14(a), and our model shows a higher exponent as
opposed to experimental data. Recently published works [29],
[30], [41] have shown that this is nevertheless consistent with a
H2 diffusion based R-D model, and attribute this discrepancy
in short-term measurements to the assumption that H-to-
H2 conversion is extremely fast, which may not be realistic
[41]. A detailed analysis of the H↔H2 conversion has been
incorporated into an analytical model recently by [29], andthe
fit of the model with the experimental data indeed verifies that
this is true. The shape of the plots from [41] are similar to that
shown in Fig. 14, with measurement data showing an initial
slope of t

1

3 , whereas the R-D model solution using only H2

diffusion predicts at
1

6 behavior. However, for the purposes of
circuit delay degradation estimation and optimization, weare
more concerned about long term effects of aging after a few
years of circuit operation under various conditions, rather than
actual cycle accurate values. In this context, the accuracyof
the plot toward the end of the stress phase, and the asymptotic
fit is more important, since this governs the shape of the next
recovery phase, and the subsequent stress phases.
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Fig. 14. Plot of first stress and recovery phases forτ = 10000s, and
dox = 1.2nm, with experimental data from [35], [44], shown in⋄, on a log
scale: (a) shows the plot for both the phases, while (b) showsthe plot for the
recovery phase only, as a function of the time of recovery (t− τ ).

C. Effect of thicker oxides

Experimental results have shown that as the oxide thickness
increases, greater amount of recovery is expected. We verify
this by simulating the case ofdox = 2.2nm, andτ = 10000s.
While the dox = 1.2nm case showed≈60% recovery afterτ
seconds of relaxation, we expect a higher fractional recovery
for this case, since moreNH2

is contained in the oxide, and
hence diffuses back faster. The results are shown in Fig. 15,
and expectedly there is 80% recovery afterτ seconds of
relaxation. The results match well with experimental data from
[35], thereby satisfying the third requirement in Section II.
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Fig. 15. Plot of first stress and recovery phases forτ = 10000s, and
dox = 2.2nm, with experimental data from [35], [44], shown in⋄, on a linear
scale.

D. Effect of lower stress times on the amount of recovery

Previous solutions to the R-D model ignored the effect
of finite oxide thickness, and the difference in the diffusion
rates in polysilicon and the oxide. Hence, these results always
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showed 50% recovery, when the ratio of recovery time to
stress time was one, independent of the stress time. However,
experimental results [20] show that a higher fractionalVth

recovery is observed for lower stress times. We verify this by
plotting the results for the case oftox = 1.2nm, with stress
times of 10000s and 1000s, respectively, in Fig. 16.
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Fig. 16. Plot of the first stress and recovery phase forτ = 10000s, and
τ = 1000s, showing the effect of reduced stress times.

Further, we also use compare the results of our model with
experimental data from [20], for the case of a single stress
phase followed by variable amounts of recovery, for different
values ofτ . Fig. 17 shows the case where a single stress phase
was followed by 100 seconds of recovery for four cases of
stress times: 1000s, 100s, 10s, and 1s, respectively, for a 1.3nm
oxide case.
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Fig. 17. Experimental data from [20] compared with model results to
demonstrate the effect of reducingτ .

Fig. 17 indicates that our two-stage model for recovery
with two sets of curve fitted constantsξ1 and ξ2 provide a
reasonably accurate fit with the experimental results. Some
key findings are:

1) The plots in [45] shows results where a 1000s of NBTI
stress on a PMOS device with an oxide thickness of
1.3nm causes a threshold voltage shift of 30mV. Subse-
quent recovery causes an approximate 50% reduction in
the amount ofVth degradation. However, the results in
[20] show approximately 120mV increase inVth with
1000s of stress, and a large amount of recovery as well,
after 100s of relaxation.

2) The curve fitted value ofξ1 is largest for the case of
1000s of stress, and decreases with a reduction in the
value ofτ .

3) A single value ofξ2 suffices for theτ = 1000s and
τ = 100s cases of stress, followed by 100s of recovery,
(since t =100s is≤ τ for these two cases). However,
a curve fitted expression forξ2 of the form ξ20(

t
τ
)α is

used for the cases of 10s and 1s of stress followed by
continuous recovery for 100s, sincet >> τ .

4) The value ofξ2 decreases withτ , as well. This can be
explained as follows. For the case of 1000s of stress,
the tip of the diffusion front is well into the polysilicon
region, implying that the base of the triangular diffusion
front is large, and its height relatively narrower. Hence,
with 100s of recovery, the back diffusion front moves
deeper into the poly region with its narrower height - as
compared with the 100s case, implying a largerξ2 for
a largerτ .

Thus, our model satisfies the guidelines outlined in Sec-
tion II (the last observation about frequency independenceis
deferred to Section VIII-C), and provides reasonably accurate
fits with experimental data. We now present the extension of
our single cycle model, to a multi-cycle operation, i.e., we
calculate the number of interface traps for anykth stress or
relaxation phase, assuming the input pattern in Fig. 1.

VIII. E XTENSION FORMULTI -CYCLE AND

HIGH-FREQUENCYOPERATION

The detailed derivation for the second stress and recovery
phases are shown in Appendix C. The plot for the first two
stress and relaxation phases is shown in Fig. 18.
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Fig. 18. Plot of the first two stress and recovery phases forτ = 10000s, and
dox = 1.2nm.

The figure shows the number of interface traps rapidly
increasing during the beginning of the second stress phase,
because of rapid dissociation of theSi − H bonds, which
is consistent with the results in [4]. Recovery during the
second relaxation phase is expectedly less than that during
the first relaxation phase, since the peak concentration hasnow
decreased, due to further diffusion of hydrogen molecules into
the poly region.
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A. Comparison with Experimental Results

We also compare the results of our multicycle model with
some published experimental results. Fig. VIII-A shows the
model results for the first stress phase, first recovery phase, as
well as the second stress phase for a 1.3nm oxide thickness
case, andτ = 1000s. Experimental results from [45] for this
case indicate a 50% recovery afterτ seconds of relaxation.
Fig. VIII-A shows that the fit is reasonably accurate.
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Fig. 19. Comparison of experimental data and model results for subsequent
stress and relaxation phases.

B. Final Simplified Model and Range of Operation

For a multi-cycle periodic operation, where an AC stress is
applied on the PMOS device, with stress time being the same
as relaxation time, both being equal toτ , as shown in Fig. 1,
we obtain the following expressions for the(n + 1)th cycle,
consisting of stress from time2nτ to (2n+1)τ , and relaxation
from time (2n+ 1)τ to 2(n+ 1)τ , respectively:
Stress Phase:

NIT (2nτ + t, 0 < t ≤ t1) = kIT

[

(

NIT (2nτ)

kIT

)

6

+ 2Doxt

] 1
6

NIT (2nτ + t, t1 < t ≤ τ) = kIT

[

√

(

NIT (2nτ)

kIT

)

6

+ (2dox)2 +

√

2Dp(t − t1)

] 1
3

(36)

Relaxation Phase:

NIT ((2n + 1)τ + t, 0 < t ≤ t2) =
NIT ((2n + 1)τ)

1 + h1(ξ1, t)

NIT ((2n + 1)τ + t, t2 < t ≤ τ) = NIT ((2n + 1)τ + t2) [1 − h2(ξ2, t)]

whereh1(ξ1, t) =

[ √
ξ1 × 2Doxt

2dox −
√
2Doxt +

√

2Dp(t + (2n + 1)τ)

]

h2(ξ2, t) =

[
√

ξ2(t − t2)

t + (2n + 1)τ

]

(37)

The above model is valid forτ > t1 and τ > t2, i.e., for
τ > 1s. Simulation results using this model forτ = 10000s, for
10 years of operation are shown in Fig. 20. The results show
that the number of traps produced by AC stress is about 0.7
times that produced by a DC stress. The shape of the curves
also indicates that the asymptotic slopes of the two stress cases
are the same. This is suggestive of the fact that AC stress can
be modeled as a linear function of DC stress, for long term
estimates, as explained in Section IX.
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Fig. 20. Plot showing interface trap generation forτ = 10000s for AC and
DC stress cases up to 10 years of operation, on a log-log scale.

C. NBTI Model for High Frequency Operation

For high frequency operation, the above multicycle model
cannot be used, due to the underlying assumptions about the
shape of the diffusion front, and the various approximations
made during the course of the derivations. However, for a
1GHz frequency operation, it is computationally infeasible to
compute the interface trap concentration on a cycle accurate
basis for 10 years of operation, amounting to≈ 1017 cycles,
either using analytical models or through simulations. Hence
we seek transformations of high frequency waveforms into
extremely low frequency waveforms (say, of the order of≤
1Hz), thereby obtaining tractable and fairly accurate asymp-
totic estimates with a large speed-up. In this regard, we explore
a key property of the dynamics of interface trap generation,
namely, frequency independence.

Experimental results have shown that the number of in-
terface traps, measured after a large duration of time is
approximately the same irrespective of the actual frequency
of the input AC waveform being applied [3], [4], [10],
[14], [16], implying identical asymptoticNIT estimates. This
property is known asfrequency independence. Although
several differing experimental results have been observed,
recent experiments have shown that this holds good over
the 1Hz-1GHz bandwidth [38], which seconds the analytical
findings in [16]. However, as we move closer to DC, some
form of frequency dependence is expected. We verify this
phenomenon by plotting the number of interface traps up to
106s for five differentτ values differing by an order each,
ranging from 1s to 10000s. The values are compared with the
DC case as well, and the plots are shown in Fig. 21. The
results show that with increasingτ , the NIT curves tend to
become closer. Hence, forτ = 1s, some form of frequency
independence can be assumed to hold good asymptotically.

Thus, on the basis of experimental data from [38], and the
trend seen in Fig. 21, we conclude that the interface trap count
determined forτ = 1s, asymptotically equals the number for
a case whereτ = 1ns, overtlife , wheretlife is the lifetime of
the circuit, and is assumed to be 10 years of operation:

NIT (t = tlife , τ = 1s) ≈ NIT (t = tlife , τ = 1ns) (38)

Thus, we can use our multi-cycle model derived in the previous
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Fig. 21. Plot showing interface trap generation for different time periods,
along with the DC stress case, to demonstrate frequency independence.

subsection, withτ = 1s, to estimate the impact of NBTI on
gigascale circuits.

IX. A F RAMEWORK FORESTIMATING THE IMPACT OF

NBTI ON CIRCUIT DELAY

In this section, we present a framework for using the
NBTI model to estimate the temporal delay degradation of
digital circuits over 10 years of operation. We use the method
described in [46], where the authors claim that AC NBTI can
be represented as being asymptotically equal to someα times
DC NBTI, whereα represents the ratio between the number
of interface traps for the AC and DC stress cases:

α =
NITAC

(t = tlife = Nτ)

NITDC
(t, t = tlife)

(39)

whereN denotes the number of half cycles, each of duration
τ , in 10 years of operation. Accordingly, AC stress can be
approximated as:

NITAC
(t, τ < 1s) ≡ αNITDC

(t) (40)

where NITAC
(t) is the number of interface traps due to

AC stress, andNITDC
(t), that due to DC stress, at timet.

We verify this method graphically by plotting the actual AC
waveform and the scaled DC waveform, whereα is the ratio
of the number of interface traps computed after 10 years of
operation, forτ = 10000s, in Figs. 22(a) and (b). A good fit
in the linear plot (Fig. 22(a)) guarantees correct estimates, for
the circuit lifetime, ranging over the 1 year-10 year period.
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Fig. 22. Plot showing AC stress represented as an equivalentscaled DC
stress. The two curves almost perfectly overlap.

Although, the equivalent DC stress model may not provide
an exact upper bound, especially, over the first few stress and
relaxation phases, and may not show the exact transient re-
sponse initially, the overall fit is fairly accurate for asymptotic
NBTI estimates, over a period of time, as large as 10 years, as
seen from Fig. 22(b). Since reliability estimates do not require
cycle accurate behavior of the number of interface traps, the
scaled DC model is simple and sufficient.

The above method in conjunction with frequency indepen-
dence can be used to estimate the number of interface traps
as follows:

1) Convert the high frequency waveforms to equivalent 1Hz
waveforms, by using the SPAF method outlined in [14]
or otherwise.

2) Calculate the number of interface traps up to 10 years
of operation, for the 1Hz square waveform, and the DC
waveform using the model.

3) Compute the value ofα, and use the scaled DC model
as an approximate temporal estimate of the number of
interface traps, at various time stamps.

4) Repeat this method for waveforms of different duty cy-
cles, and compute the value ofα in each case, to obtain
a simple look-up table ofα versus signal probability
(such that∆Vth for each signal probability = someα
times the∆Vth for DC stress), as described in [14], or
even a smooth curve fitting-based model, as desired.

5) Compute the number of interface traps and theVth

degradation at any desired time stamp, for any signal
probability, using this scaled DC model.

Since NIT is linearly proportional toVth, experimental
results can be used to compute this ratio, and theNIT numbers
can accordingly be converted toVth values. We present a
generic framework in our work, and hence, simply work with
normalizedNIT values. A plot ofVth versus the probability
that a PMOS device is stressed, computed using the method
outlined above, is shown in Fig. 23. The figure shows an initial
steep rise, sinceNIT and∆Vth are∝ t

1

6 . A lookup table built
using this figure can then be used to determine the sensitivity
of gate delays to temporal degradation caused by aging, and
thereby shifts in timing numbers can be estimated.
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Fig. 23. PMOSVth, after three years of aging, as a function of the probability
that the transistor is stressed.

X. CONCLUSION

NBTI (Negative Bias Temperature Instability) is a growing
threat to temporal circuit reliability and hence its accurate
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estimation is essential for suitably guard-banding our designs.
The dynamics of interface trap generation and annealing
depend on a large number of complex factors, which can
be analytically captured using the framework of Reaction-
Diffusion (R-D) model. Existing NBTI models fail to account
for all of these factors, particularly the effect of finite oxide
thickness, and the role of the reaction phase during recovery,
thereby leading to poor scalability, or an inaccurate fit with
experimental data. We propose a new model for estimating
the number of interface traps and suitably account for these
effects in our model. A framework for using this model in a
multi-cycle gigahertz operation is proposed, which can be used
to estimate the temporal delay degradation of digital circuits.
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XI. A PPENDIX A - FIRST STRESSPHASE: DIFFUSION IN

POLY

In this section, we provide the details of the derivation for
computing the interface traps during the first stress phase,on
account of diffusion in polysilicon layer.

The rate of change in concentration of the hydrogen
molecules inside poly is given by:

dNH2

dt
= Dp

d2NH2

dx2
for x > dox (41)

which is similar to the equation for oxide in (6). Assuming
steady state diffusion, as in the case with the oxide (10) in
Section IV, the above expression can also be approximated
as:

Dp

d2Nx
H2

(t)

dx2
= 0 (42)

implying that the diffusion front in poly is also linear. The
diffusion front assumes a quadrilateral shape inside the oxide,
followed by a triangle in poly, with the tip of the diffusion

front being at somexd(t) > dox. Hence, we have:

φNH2
= −Dp

dNH2

dx

dNH2

dx
=

Ndox

H2

xd − dox
(43)

for x > dox and

Nx
H2

, x > dox = Ndox

H2
−

Ndox

H2

xd − dox
(x− dox) (44)

For large values oft, i.e., t ≫ t1, the shape of the plot
can be approximated as a rectangle in oxide, followed by a
triangle in poly, since the oxide thickness is of the order of
a few angstroms, andDox ≫ Dp. We verify this analytically
by computingN tox

H2
as a function ofN0

H2
, as follows:

The number of interface traps is equal to the integral from
(13), which is equal to the area under the curve in Fig. 3(e),
as follows:

NIT (t, t > t1) =
[

dox

(

N0
H2

+Ndox

H2

)

+Ndox

H2
(xd − dox)

]

(45)
whereNdox

H2
is the hydrogen molecular concentration at the

oxide. Differentiating, with respect to time, and ignoringthe
dN

dox
H2

dt
component, sinceNdox

H2
is a slowly decreasing function

of time8, we have:

dNIT

dt
≈ Ndox

H2

dxd

dt
(46)

From (43) and (46), we have:

(xd − dox)dx = DP dt (47)

Integrating, and using initial conditions, i.e.,xd(t1) = dox, we
have:

xd = dox +
√

2Dp(t− t1) (48)

We now use the diffusion equation in (4) to compute the value
of Ndox

H2
in (45). Along the oxide-poly interface, the outgoing

flux from the oxide is equal to the incoming flux into poly.
Therefore, we have:

φdox

NH2

= Dox

dNH2

dx
= Dp

dNH2

dx
(49)

at x = dox. Since,NH2
is a linear function ofx, we have, at

the interface:

Dox

(

N0
H2

−Ndox

H2

)

dox
= Dp

Ndox

H2

xd − dox
(50)

Substituting and simplifying, we have:

Ndox

H2
= N0

H2

[

Dox

√

2Dp(t− t1)

Dox

√

2Dp(t− t1) +Dpdox

]

= N0
H2

f(t) for brevity (51)

It is easy to see that fort ≫ t1, the value ofNdox

H2

almost becomes equal toN0
H2

. The diffusion front is shown in

8The value ofNdox
H2

andN0

H2
are determined by the rate of generation of

interface traps at the surface (increases as∼ t
1

6 ), and the rate of diffusion
of hydrogen molecules at the tip of the diffusion front (decreases as∼

√
t),

causingNH2
to be a slowly decreasing function of time.
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Fig. 3(f) for this case. The front almost becomes a rectangle
in the oxide followed by a right angled triangle in poly. Using
(51) in (45), we have:

NIT (t, t1 < t < τ) =
[

doxN
0
H2

(1 + f(t)) +

N0
H2

√

2Dp(t− t1)f(t)
]

(52)

Lumping the terms in (52), we have:

xequiv(t, t1 < t ≤ τ) = dox(1 + f(t)) +
√

2Dp(t− t1)f(t)

(53)
wherexequiv represents the tip of an equivalent triangular front
that has the same area. This step is performed such that the
expression resembles the form in (21). Thus, we have the final
expression:

NIT (t, 0 < t ≤ t1) = kIT (2Doxt)
1

6

NIT (t, t1 < t ≤ τ) = kIT

[

dox(1 + f(t)) +

√

2Dp(t− t1)f(t)
]

1

3

(54)

XII. A PPENDIX B - FIRST RELAXATION PHASE:
RECOVERY IN OXIDE

In this section, we describe the detailed derivation for the
oxide recovery phase of NBTI action, during the first relax-
ation phase. During this stage, rapid annealing of interface
traps occurs, andNIT (t) decreases significantly. It is vital to
model this phase explicitly, to consider the impact of recovery
during the time lag between the end of stress and the first time
of recovery measurement9.

Recovery in oxide consists of two sub-phases, namely, a
reaction phase and a diffusion phase. During the reaction
phase, we have from (3):

dNIT

dt
= −krNITN

0
H (55)

where kf is zero since there is no trap generation. The
hydrogen concentration decreases exponentially during the
beginning of the recovery phase, as shown in Fig. 24. A
decrease in the concentration of interface traps occurs during
this process. However, the reaction phase lasts only a few mil-
liseconds, as seen from the simulation results. As the hydrogen
concentration remains almost constant, diffusion becomesthe
dominant physical mechanism. During this diffusion phase,
annealing of interface traps near the interface, followed by
back-diffusion of existing hydrogen molecular species in the
oxide occurs. For simplicity in modeling, we combine the
reaction phase and the diffusion phase into a single stage of
modeling as follows:

We model the rapid annealing of interface traps inside the
oxide, which occurs from timeτ to τ+t2, wheret2 is the time
at which annealing proceeds into poly. Let us model the events
at the interface as a superposition of two effects: “forward”
diffusion, away from the interface, and “reverse” diffusion,

9For instance, undesired recovery during the time lag betweenend of
stress and the first time of measurement which was not modeled previously,
incorrectly led researchers to believe that the dynamics ofNIT generation
followed a t

1

4 dependence, instead of the actualt
1

6 dependence [10].
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Fig. 24. Hydrogen concentration at the oxide-substrate interface during the
first stress and recovery phases, showing the rapid decreasein N0

H
at the

beginning of the recovery phase.

toward the interface; the latter anneals the interface traps, as
explained in Section V-D. During this condition, the diffusion
of existing species continues asx(t + τ) ∝

√

2Dp(t+ τ)
inside poly, while the peak of the diffusion front decreases
from N0

H2
to N∆

H2
, as shown in Fig. 25(c), for some∆ ≤ dox.

x(t)

x(t)

xd(t)

NH2

NH2

N∆

H2

N
dox
H2

≈ N0

H2

(a)

(b)

(c)

oxide poly

peak decreases

Fig. 25. Diffusion front for the first recovery phase: (a) shows the cross
section of the PMOS transistor, (b) shows the front at timeτ , i.e., at the end
of the first stress phase, while (c) shows the front at timeτ + t, into the first
recovery phase.

We may approximate the hydrogen concentration in the
oxide as being a triangle plus a quadrilateral: at time(τ + t),
it goes from 0 atx = 0, to N∆

H2
(τ + t) at x = ∆, for some

∆ ≤ dox. The hydrogen molecular concentration follows a
right angled triangle profile in poly, since there is no effect
of annealing here yet, with the concentration beingNdox

H2
≈

N∆
H2

(τ + t) at the oxide-poly interface, and decreasing to 0
again atxd(τ + t). During this phase, the rate of decrease
of interface traps can be assumed to be low, and is hence
approximated as 0. Using the same notation as [4], page 3,
we have:

dNIT

dt
≈ 0 = −kr(N

0
IT −N∗

IT )(N
0
H −N∗

H) (56)

Since the residual number of interface traps,(N0
IT −N∗

IT ), is
significantly larger than zero, it must mean that the residual
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hydrogen concentration at the interface,(N0
H −N∗

H) must be
near-zero. Denoting the number of annealed traps asN∗

IT (τ+
t), we can express the net number of interface traps during
the relaxation phase as the original number of traps, minus
the number of annealed traps:

NIT (τ + t) = NIT (τ)−N∗
IT (τ + t) (57)

The number of interface traps annealed due to backward
diffusion [4] can be expressed as:

N∗
IT (τ + t) = N∆

H2

√

ξ1 × 2Doxt (58)

Intuitively, this can be considered to be equivalent to a triangle
whose height is given byN∆

H2
, and the backward diffusion

front beginning at timeτ is given from [4] as:

x∗(t) =
√

2ξ1Doxt (59)

ξ1 is a parameter that captures the effect of two-sided dif-
fusion, and its original value is of the order of≈ 0.58 [4].
However, in order to account for the exponential decrease in
the interface trap concentration during the reaction phaseof
the first recovery phase, using a single analytical model,ξ1
is set to a large number, and its exact value is determined
through curve fitting.

Based on the argument in Section IV, the total number
of interface traps is given by the area enclosed under the
quadrilateral plus the triangles in Fig. 25(c) as:

NIT (t+ τ) ≈ N∆
H2

(

2dox −∆+
√

2Dp(t+ τ)

)

(60)

where ∆, i.e., the location of the peak concentration of
hydrogen molecules during recovery (follows the dynamics
of the diffusion front for stress phase, and hence from (17))
increases with time as:

∆ =
√

2Doxt (61)

The tip of the diffusion frontxd(t), computed from (53), is
approximately at:

xd(t) = dox +
√

2Dp(t+ τ) (62)

Solving forN∆
H2

in (60), we have:

N∗
H2

=
NIT (t+ τ)

2dox −
√
2Doxt+

√

2Dp(t+ τ)
(63)

Since, the number of interface traps is given by the difference
between the number of traps atτ , and the number of traps
annealed, we have:

NIT (t+ τ) = NIT (τ)−N∗
IT (t+ τ) (64)

Substituting forN∗
IT (t+ τ), and simplifying, we have:

NIT (t+ τ) = NIT (τ)−NIT (t+ τ)g(ξ1, t) (65)

where for brevity,g(ξ1, t) =

[ √
2ξ1Doxt

2dox −
√
2Doxt+

√

2Dp(t+ τ)

]

(66)
Simplifying, we have:

NIT (t+ τ, 0 < t ≤ t2) =
NIT (τ)

1 + g(ξ1, t)
(67)

This process continues until timet2, when the back-diffusion
front has reached the oxide-poly interface.

XIII. A PPENDIX C - SECOND STRESS ANDRECOVERY

PHASES

A. Second Stress Phase

For the second stress phase, we use boundary conditions at
time 2τ , to determine the tip of the effective diffusion front.
We solve forxeff(2τ) by assuming an equivalent front which
has diffused from time 0 to2τ , and has the same interface
trap concentration asNIT (2τ):

NIT (2τ) = kITxeff(2τ)
1

3 (68)

The integral forxd(t) from (16) is now solved with the limits
modified, to obtain:

xd(t) =

√

xeff(2τ)
2
+ 2Doxt (69)

instead of (17). This equation can be used in (21) to estimate
the rapid increase in interface traps due to diffusion inside the
oxide for the second stress phase as follows:

NIT (t+ 2τ, 0 < t ≤ t1) = kIT [2Doxt+ xeff(2τ)
2
]
1

6 (70)

This process continues until timet1, beyond which diffusion
occurs in poly. Diffusion inside poly can be computed using
the method outlined in the previous section, and the number
of interface traps is approximated as:

NIT (t + 2τ, t1 < t ≤ τ) = kIT

[

√

((1 + f(t))dox)
2 + xeff(2τ)

2

+f(t)
√

2Dp(t − t1)

] 1
3

(71)

for time 2τ + t1 to 3τ . For large values oft, f(t) ≈ 1. Hence,
we can approximate the above expression as:

NIT (t+ 2τ, t1 < t ≤ τ) = kIT

[

√

2dox
2 + xeff(2τ)

2
+

√

2Dp(t− t1)
]

1

3

(72)

As a sanity check, settingxeff(2τ) in (70), we obtain:

NIT (t) = kIT [2Doxt]
1

6 (73)

which is the equation for the interface trap generation inside
the oxide for the first stress phase, from (19). Similarly, setting
t = t1 and thereforef(t) = 0 in (71), we have:

NIT (t1 + 2τ) = kIT [d
2
ox + xeff(2τ)

2
]
1

6

= kIT [2Doxt+ xeff(2τ)
2
]
1

6 (74)

which is the equation for interface trap generation inside the
oxide during the stress phase, from (70).
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B. Second Recovery Phase

Recovery modeling for the second relaxation phase is simi-
lar to that in the first relaxation phase. We assume that by this
time, the diffusion front has recovered to its original shape of
almost a rectangle in the oxide, followed by a triangle in poly
(Fig. 3(f)). The above assumption has been verified through
numerical simulations to be valid for large values ofτ >1s.
Accordingly, the front for the second recovery phase is similar
to that in (62) and (53), and is given by:

xd(3τ) ≈ dox +
√

2Dp(3τ) (75)

During the second recovery phase, the tip of the existing front
is away from the interface, and hence grows as:

xd(t+ 3τ) = dox +
√

2Dp(3τ + t) (76)

However, rapid annealing occurs near the interface, causing
a decrease in the number of interface traps. Accordingly, we
have the equation:

NIT (t+ 3τ, 0 < t ≤ t2) =
NIT (3τ)

1 + g′(t)
(77)

whereg′(t) =

[

ξ1
√
2Doxt

2dox −
√
2Doxt+

√

2Dp(t+ 3τ)

]

(78)

for time 3τ to 3τ + t2, which is similar to the expression for
the first recovery phase, in the oxide, given by (67). Modeling
for the slow recovery phase is similar to that derived in the
previous section, and the final expression is given by:

NIT (t+3τ, t2 < t ≤ τ) = NIT (3τ + t2)

[

1−
√

ξ2(t− t2)

t+ 3τ

]

(79)
for time 3τ + t1 to 4τ .
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