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1 Introduction

It is rapidly becoming obvious that with the current trends in technology, interconnect delays are

becoming an increasingly dominant factor in determining circuit speed. Until recently, interconnect

resistance was often insigni�cant, while its capacitance was not, and hence optimal interconnect

design frequently involved ensuring that all wire sizes were minimal. However, with advancement

in technology, reduction in circuit geometries, increases in circuit speeds, and the advent of MCM's,

the wire sizing problem for interconnect optimization has become signi�cant.

The problem of wire sizing has not received very much attention until recently. Cong et al.

presented some work in the area in [1, 2]. The approach in [1] used a delay model based on an upper

bound [3] on the Elmore delay, and minimized the delay of the interconnect under minimum and

maximum wire width constraints. This was extended in [2], where the Elmore delay was directly

used to perform the timing optimization. The form of the Elmore delay model in this work makes

the assumption that the critical leaf nodes of the interconnect tree are provided by the user (this

information may, however, not be easily available in all design situations). A weighted sum of the

Elmore delays to these leaf nodes is then minimized, where the weights are apparently user-de�ned.

In this work, we �rst use a form of the Elmore delay that does not require the critical leaf

nodes to be speci�ed. Like [1, 2], this work assumes that the interconnect network to be optimized

is a tree structure. The objective here is to minimize the maximum of all Elmore delays at leaf

nodes of the interconnect tree. Under this model, the separability property of the models in [1, 2]

does not hold, and hence those algorithms will not provide the solution to this problem. Under this

di�erent delay model, we �rst prove some properties of the wire sizing problem, and then show a

counterexample to show the invalidity of separability.

The contributions of this work are as follows. Firstly, this work presents, for the �rst time, a

methodology for wire sizing under delay constraints that subsumes the case of sizing for minimum

delay that has been studied before. Secondly, a smooth area-delay trade-o� is shown, and it
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is experimentally proved that achieving the minimum delay is not a good engineering solution;

rather, a delay goal of 10-15 % above the minimum is a better engineering goal. Thirdly, this

work uses the Elmore delay model where a distinct delay expression is used for the delay to each

leafnode. The algorithms that are used are shown to give good results by comparing the solutions

with lower bounds on the exact solutions.

The problem is formulated and its properties studied in Section 2. Twomeaningful statements

of the wire sizing problem are presented in Section 3. One statement minimizes the overall delay

of the tree, while the other minimizes the wiring area under delay constraints at leaf nodes of

the tree. Two e�cient continuous optimization algorithms are presented in Section 4, of which

one is a heuristic, and the other solves the underlying continuous optimization problem exactly.

In Section 5, a mapping heuristic that transforms the continuous solution to the desired discrete

solution is described. Finally, we present experimental results in Section 6, and conclude the paper

in Section 7.

2 Formulation of the Problem

2.1 Modeling Interconnect and Interconnect Delay

This work models a wire as a succession of RC segments, shown in Figure 1, connected in series.

The resistance, Ri, and capacitance, Ci, of the ith segment are given by the formul�

Ri = �li=wi

Ci = �li � wi; (1)

where wi and li are, respectively, the width and length of the ith segment. Under the above model,

any interconnect tree can be modeled using an equivalent RC tree.

In this work, we will use the words width and size interchangeably.

De�nition 1: A node j is a descendant of node i in a tree T if the path from the root node of T

to j contains node i. The node i is called an ancestor of node j. Similarly, wire Sp is an ancestor

(descendant) of wire Sq if the path from the root node to Sq (Sp) contains wire Sp (Sq).

The delay Td;i of an RC tree is given by the well-known Elmore delay formula [3]. If Pi is

the unique path from the root of the RC tree to node i, and desc(j) represents all nodes that are

descendants of node j in the tree, then according to this formula, the delay to node i is given by

Td;i =
X
j2Pi

Rj

X

k2desc(j)

Ck (2)
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In an actual circuit, the root node is connected to a driver with equivalent resistance Rd,

as shown in Figure 2. Moreover, in addition to wire capacitances, there may be several loading

capacitances along the length of the wire. The Elmore delay to any node of the corresponding RC

tree may easily be calculated using Eq. (2).

We take the Elmore delay of a tree as the maximum of the Elmore delays to any leaf node.

An advantage of this de�nition is that the delay value for the tree is a physical quantity that a

circuit designer can relate to immediately. Moreover, as will be shown later, this provides a natural

extension into the problem of wire sizing under delay constraints. Note that our de�nition of the

Elmore delay of a tree di�ers from the model in [2], where the user is required to identify the critical

leaf nodes (we require no such user input), and a weighted sum of the Elmore delays to these leaf

nodes is minimized.

The problem of minimizing the delay of an interconnect tree is a multiple objective opti-

mization, since one must consider the delay at every leafnode as an objective. For such a problem,

one is interested in �nding Pareto critical points [4], which are the rough equivalent of minima

in multicriterion optimization. As shown in [4], a weighted sums method such as that used in [2]

cannot be used to characterize all Pareto critical points. The objective function that we consider for

minimizing the tree delay is the maximum delay to a leafnode; this is a case of a minmax problem

with all weights set to 1. Therefore, this can easily be extended to the general minmax problem

with weights that can, unlike weighted sums, be used to characterize all Pareto points [4].

2.2 Properties of the General Wire Sizing Problem

We begin by proving a few results on the optimal wire sizes. Some of these results have been proved

in [1, 2] for their delay model. We show here that some (but not all) of those results are also valid

under the Elmore delay model that we have used. At this point, we make minimal assumptions, so

that Theorem 1 below is true for any reasonable de�nition of optimality.

De�nition 2 A wire width assignment f for a tree T is a n-tuple of numbers [w1; � � � ; wn], where

n is the number of wires in the interconnect tree, and wi is the width of wire i.

De�nition 3 Given a routing tree T, a wire width assignment f on T is a monotonic assignment

if wp � wc whenever wire Sp is an ancestor of wire Sc.

De�nition 4 Given two wire width assignments f and f 0 on the same tree T, f dominates (is

dominated by) f 0 if and only if wi(f) � wi(f
0) (wi(f) � wi(f

0)) for all wires i 2 T.

De�nition 5 A wire assignment f for a tree T is suboptimal if there exists another wire assignment

f 0 for T, di�erent from f , such that f dominates f 0, and the Elmore delay to every leaf node in T

under assignment f 0 is no greater than that under assignment f .
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Note that the de�nition of an optimal assignment here is open to interpretation under any

formulation that uses the Elmore delay model, and that we have not restricted ourselves to a

strict de�nition of optimality at this point. However, under any reasonable de�nition of optimality,

De�nition 5 must hold. The result in Theorem 1 below is, therefore, similar to, but more general

than the analogous results presented in [1, 2] due to the more general de�nition of optimality that

we use. It is speci�cally targeted to wire segments of equal length. Related statements for the case

of wire segments of unequal length are made in Section 3.3.

Theorem 1 (The monotonicity property) Any nonmonotonic wire width assignment f�, on wire

segments of equal length, is suboptimal.

Proof Assume, for purposes of contradiction, that in the nonsuboptimal assignment f�, there is a

pair of edges (i.e., wires) ep = (vp1; vq1) and eq = (vq1; vq2). Thus, vp1 is the immediate ancestor of

vq1, which in turn, is the immediate ancestor of vq2 in the tree; if the width, wp, of ep is less than

the width, wq, of eq, then f� is nonmonotonic.

We now present three possible cases. In the �rst two, we show that an assignment f in which

all wires have the same width as in f�, except that the wq is set to wp, has a smaller delay than

f�. Note that if so, then f� dominates f , and by De�nition 5, f� must be suboptimal. The above

change alters only the resistance of branch eq, and the capacitance at node vq2 in the RC network.

In the third case, we present an argument that leads to a contradiction.

Let Pq2 be the unique path from the root of the tree to vq2. For any leaf node i of the tree,

with path Pi from the root, we have three possibilities:

Case 1. (Figure 3(a)) If Pi \ Pq2 = ;, the change does not a�ect the Elmore delay to node i.

Therefore, we have shown the existence of a wire assignment, f , with the same delay to

node i as f�, that is dominated by f�. Hence, f� is suboptimal with respect to the delays to

all such nodes i.

Case 2. (Figure 3(b) and (c)) If not, if Pi \ Pq2 6= Pq2 (i.e., i is not a descendant of vq2), then the

only contribution of wire eq to the delay to node i is as a capacitance. Since the capacitance

of eq in assignment f is smaller than that in assignment f�, the Elmore delay to node i is

now made smaller. Thus, f� is suboptimal with regard to all nodes that fall under Case 2.

Case 3. (Figure 3(d)) If not, then Pi \ Pq2 = Pq2 (i.e., i is a descendant of vq2), and wire eq

contributes to the delay to node i is as a resistance as well as as a capacitance. Let e1 =

(s; v1); e2 = (v1; v2); � � � ; el = (vl1; vp1); ep = (vp1; vq1); eq = (vq1; vq2); er = (vq2; vr1); � � � ; ex =

(vm�1; vm = vi) be the unique path from the root s to node i in the tree. If Ri is the resistance
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of edge i, and Cj is the capacitance at node vj , then the Elmore delay to node i is

R1 � (C1 + C2 + � � �+ Cm + Co�path;1) +R2 � (C2 + C3 + � � �+ Cm + Co�path;2) + � � �+

Rq � (Cq2 + Cr1 + � � �+ Cm + Co�path;q) + � � �+Rm � (Cm + Co�path;m) (3)

where Co�path;i is the sum of all o�-path capacitances driven by resistance Ri. Note that if

the size of branch q is changed from wq to wp in assignment f1, since all wire segments are of

equal length, we may say that

Cq2(f1) = Cq2(f
�)� c � (wq � wp) (where c is a positive constant);

Rq(f1) = Rq(f
�) �wq=wp;

and wq > wp

Also, note that the term Rq �Cq2 is a independent of the width of wire q due to the relationships

in Equation (1).

The change in the delay to node i caused by this is

�1 = �(R1+ � � �+Rl+Rp) � c � (wq �wp) +Rq � (
wq

wp

� 1) � (Cr1+ � � �+Cm +Coffpath;q) (4)

Similarly, if we were to change the size of branch p from wp to wq, the change in the delay

would be

�2 = �(R1 + � � �+Rl) � c � (wp � wq) +Rp � (
wp

wq

� 1) � (Cq2 + Cr1 + � � �+ Cm + Coffpath;p)

= �(R1 + � � �+Rl) � c � (wp � wq) +Rq � (1�
wq

wp

) � (Cq2 + Cr1 + � � �+ Cm + Coffpath;p) (5)

Note that the value of �1 is the same for any leafnode that is downstream of the branches

p and q (since the sum of resistances in Equation (4) corresponds to the total resistance

upstream of p, and the sum of capacitances corresponds to the total capacitance downstream

of p). An identical statement can be made for �2.

Since f� is assumed not to be suboptimal, it must be true that �1 � 0 for some leafnode

downstream of p and q, and and �2 � 0 for some leafnode downstream of p and q. However,

we have already seen that all such leafnodes have identical values of �1 (�2). Consequently,

we must have

�1 +�2 � 0

i:e:; �Rp � c � (wq � wp) +Rq � (1�
wq

wp

) � (Cq2 + Coffpath;p+ Coffpath;q) � 0 (6)
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which is clearly a contradiction since wq > wp. This implies that f
� must be suboptimal for

all nodes under Case 3.

Therefore, in all cases, we have shown that the nonmonotonic assignment f� is a suboptimal

solution. 2

Although the above result has been proved for the single layer metal case, an analogous result

may also be proved for multilevel interconnect, using the same proof technique.

Theorem 2 Let i be a leafnode, and let Pi be the path from the root node to i. Then the delay

from the root to node i cannot be decreased by increasing any wire size that does not lie on Pi.

Proof The size of any wire that does not lie on Pi may either

(a) never appear in the Elmore delay expression for node i, in which case it does not a�ect the

delay to i, or

(b) appear in the Elmore delay expression to i as a capacitive load, in which case increasing its

size would cause the Elmore delay to i to increase. 2

2.3 Limitations of Monotonicity

The result in Theorem 1, and the work in [1, 2] implicitly assume that the maximum allowable size

for each wire is the same. This may not be so in all situations. For example, in congested routing

regions, one may prefer to limit the maximum wire size, and hence monotonicity fails. However,

the monotonicity property is not critical to the correctness of the work presented here. As will be

shown in Section 3.3, monotonicity holds for the continuous sizing problem even under nonuniform

wire lengths when the objective is to minimize the delay. Under delay constraints and nonuniform

wire lengths, however, monotonicity does not hold, as can be shown through counterexamples.

2.4 Does Separability Hold for this Delay Model?

De�nition 6[1]: A single-stem subtree at a node N is de�ned as a subtree rooted at N , with

exactly one edge, called the stem, incident on N . Figure 4 illustrates this de�nition pictorially.

Under the delay models used in [1, 2], it is shown that the width of each wire depends only on

the widths of its ancestors and descendants. As a result, if TSS1; TSS2 � � �TSSk are the single-stem

subtrees rooted at node N , it has been proven under their delay models that the optimal wire

width assignments for TSSi can be determined independently of TSSj ; j = 1 � � �k; j 6= i. This has

been referred to as separability. By using this property, for a tree with n wires and r possible wire

widths, algorithms of worst-case complexity O(nr�1) have been proposed.
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Under our delay model, however, we can show that separability does not hold; this is shown

by the following counterexample. As a result, the algorithms in [1, 2] cannot be applied to solve

this problem.

Example: Consider the simple example shown in Figure 5. Assume, for simplicity, the following:

� Each branch resistance is related to the branch width by the relation, Ri / 1=wi.

� Each branch capacitance is related to the branch width by the relation, Ci / wi.

� The capacitive load at each branch is as shown in the �gure.

� The maximum allowable wire size is 15 units.

� The driver has a resistance of 1 unit.

The delays to the two leaf nodes are given by the expressions:

D1 = K � (1 +
1

x1
)(x1 + x2 + x3 + C1 + C2) +

1

x3
(x3 + C1)

D2 = K � (1 +
1

x1
)(x1 + x2 + x3 + C1 + C2) +

1

x2
(x2 + C2)

where K corresponds to a proportionality constant. By enumeration, it was found that the mini-

mum delay to leaf node 1 occurs when x1 = 10; x2 = 1; x3 = 7, the minimum delay to leaf node 2

corresponds to the situation where x1 = 10; x2 = 6; x3 = 1, while the maximum of the two delays

was minimized at x1 = 10; x2 = 4; x3 = 5, which shows that the single-stem subtrees cannot be

optimized independently of each other.

An alternative view is as follows: if we apply separability and set the width x1 and compute

widths x2 and x3 independently, and repeat this procedure for all allowable values of x1, it is found

that the obtained solution is x1 = 10; x2 = 6; x3 = 7, which is not the optimum solution.

The reason for this is easy to see. The delay to node 2 depends on the widths x1 and x2,

which act as both resistors and capacitors and the width x3, which acts as a capacitive load. The

optimal delay to node 2 implies that x3 must be minimal; however, this could cause the delay to

node 1 to be too large. At the optimum, there is a \balance" between the resistance of x3 that

causes a small delay to node 1, and the capacitance of x3 that causes a small delay to node 2 as

well. Thus, the sizing along the path from the root to node 2 is dependent on the sizes of branches

that are o� this path, and hence separability does not work. 2
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3 The Wire Sizing Problem

3.1 Statement of the Wire Sizing Problem

As mentioned earlier, several viable de�nitions of optimality are possible. We now address two

problems:

� Wire sizing for minimum delay under maximum width constraints.

� Wire sizing under maximum delay and maximum width constraints.

The optimization problems associated with the above two de�nitions are:

Problem P1 minimize ( max
i2leafnode(T)

di)

subject to wj < wj;spec 8 j = 1 � � �n.

Problem P2 minimize
X
i2T

wi

subject to di < Dspec 8 i 2 leafnode(T) and wj < wj;spec 8 j = 1 � � �n.

In the remainder of this work, we will address the two problems above.

For Problem P1, clearly, by Theorem 1, any nonmonotonic solution is suboptimal. The same

property also holds for the Problem P2, since by Theorem 1, corresponding to any nonmonotonic

feasible solution, there exists a monotonic feasible solution with a smaller objective function value.

3.2 Properties of the Continuous Wire Sizing Problem

De�nition 7: The continuous wire sizing problem is the problem of �nding optimal wire widths to

solve the wire sizing problem, such that wire widths may take on any real value. This is in contrast

to the (discrete) wire sizing problem where the wire widths are constrained to be integers.

Property 1: The delay along any path of an RC tree is a posynomial [5] function of the sizes of

wires in the tree.

Property 2: The continuous wire sizing problems P1 and P2, stated in Section 3.1, are unimodal,

i.e., any local minimum of these optimization problems is a global minimum.

To observe this, note that the simple transformation,

(wi) = (exi); (7)
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transforms any posynomial function of the wi's to a convex function of the xi's [5]. Hence, under

this transformation, for both problems, the objective function as well as the constraints are convex.

As a consequence of the fact that the mapping function is one-to-one, it is easy to see that the

optimization problems P1 and P2 are unimodal.

It may be worthwhile to caution the reader here that it is only the continuous wire sizing

problem that is unimodal; the (discrete) wire sizing problem is combinatorial, and no such state-

ments can be made about it. However, a solution to the continuous wire sizing problem gives a

lower bound on the solution to the discrete problem.

3.3 Monotonicity and Nonuniform Wire Segment Lengths

The following is an extension of Theorem 1 for wire segments of nonuniform length; however it

is not a generalization of Theorem 1 in two respects: �rstly, we have only been able to prove its

applicability to the continuous wire sizing problem, and secondly, this result is not valid for the

problem of minimizing area under a delay constraint.

Although the proof is not applicable to the discrete wire sizing problem, based on our expe-

rience on the relation between the continuous and discrete wire sizing problems, we believe that

a wire sizing solution restricted to monotonic solutions only would give close to optimal, if not

optimal solutions.

Theorem 3: For the continuous sizing problem, any nonmonotonic wire width assignment f� is

suboptimal.

Proof The proof proceeds as in the proof of Theorem 1. Cases 1 and 2 are dealt with in a similar

manner. The treatment for Case 3 is di�erent, and is dealt with here. Unless speci�cally mentioned,

all of the terminology is the same as that in Theorem 1.

Let the resistance and capacitance, respectively, of a wire of length l and width w be given

by � l
w
and � � l � w, where � and � are technology-dependent constants.

Referring back to Figure 3(d), if i is a descendant of vq2, then we can write the delay to node

i as a function of wp and wq as

Di(wp; wq) = Rprev � (� � lpwp + � � lqwq + Crest) + �
lp
wp

� (� � lpwp + � � lqwq + Crest) +

�
lq
wq

� (� � lqwq + Crest) +K (8)

where Rprev is the sum of all resistances on the path from the root node to node vp1, Crest is the
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sum of all downstream capacitances beyond node vq2, and K corresponds to the delay terms that

are independent of wp and wq.

For any downstream node covered by Case 3, the sensitivity of Di to wp and wq is equal and

is given by:

@Di

@wp

= Rprev�lp � ��lplq
wq

w2
p

� �Crest

lp
w2
p

(9)

@Di

@wq

= Rprev�lq + ��lplq
1

wp

� �Crest

lq
w2
q

(10)

At the minimum, @Di

@wp
= ��p and

@Di

@wp
= ��q, where �p and �q are the Lagrange multipliers

associated with the interval constraints for wp and wq, respectively. Note that the maximum

allowable wire width for each segment must be uniform, as stated in Section 2.3. At the point where

the delay is minimum, the values of �p and �q are nonnegative for the upper bound constraint and

nonpositive for the lower bound constraint [6]. We have the following relation:

�lq
@Di

@wp
+ lp

@Di

@wq
= lq�p � lp�q;

i.e. ��lplq
�

lp
wp

+ lqwq

w2
p

�
+ �Crestlplq

�
1
w2
p
� 1

w2
q

�
= lq�p � lp�q: (11)

Notice that on the left hand side, the �rst term is always strictly positive, and the second term

is strictly positive since wp < wq by assumption. Therefore, the left hand side is always strictly

positive.

We now consider the following possibilities:

Case a. When the maximum width constraint on segment q is inactive, i.e., wq 6= Wmax, then

�q = 0. Note that wq cannot equal Wmin since wq > wp � Wmin. Since wp < wq, we must

have either (i) wp 6= Wmin, in which case �p = 0 and the right hand side of Equation (11) is

zero, or (ii) wp = Wmin, in which case �p � 0 and the right hand side is nonpositive. Since

the left hand side of Equation (11) is positive, this leads to a contradiction in either case.

Case b. When the maximum width constraint on segment q is active, then �q > 0; �p = 0, and

wq = Wmax � wp. Therefore, if (i) wp 6= Wmin, in which case �p = 0 and the right hand side

of Equation (11) is negative, or (ii) wp = Wmin, in which case �p � 0 and the right hand side

is nonpositive. Thus, in either case, the right hand side of Equation (11) is negative, leading

to a contradiction.

Therefore, the assumption of nonmonotonicity at the minimum is incorrect. 2
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4 Solving the Continuous Wire Sizing Problem

We now present two alternatives to solving the continuous wire sizing problem. The �rst method is

a sensitivity-based heuristic that has quick runtimes, but is not guaranteed to be optimal. However,

as will be seen from our experimental results the quality of the solution is reasonably good. The

second method is a convex optimization technique that �nds the exact solution to the continuous

optimization problem, at the expense of larger runtimes.

4.1 A Sensitivity-based Algorithm for Wire Sizing

Since the enumerative solution to the wire sizing problem with n wires and r permissible sizes is

of complexity O(rn), we propose an e�cient heuristic for solving the problem.

The heuristic presented here is e�cient and sensitivity-based; such heuristics have been used

successfully in �nding solutions to posynomial programming problems, for example, in the transistor

sizing algorithm, TILOS [7]. The heuristic �rst �nds a solution to the continuous wire sizing

problem, and then �nds the discrete solution by using a sensitivity-based mapping algorithm to

round o� wire sizes to the next higher or lower integer. As shown in Section 6, this causes an

insigni�cant degradation in the quality of the solution.

Rather than using a heuristic to solve the continuous problem, one could use an exact opti-

mization algorithm, such as the convex programming algorithm used in [8], the method of Lagrange

multipliers, etc. However, since the number of variables, which equals the number of RC sections

in the wire, may be very large, the employment of any such algorithm would be computationally

expensive.

The pseudo-code representing the algorithm WIMIN is shown below:

BEGIN ALGORITHM WIMIN()

F = bumping factor;

while (stopping criterion not met)

current leaf node = leaf node with the

largest delay violation;

maxsensitivity = 0;

maxsensitivity wire = -1;

for each wire i that is an ancestor

of current leaf node

if F � width(i) > width(predecessor[i])

continue;
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if sensitivity Si < maxsensitivity

maxsensitivity = Si;

maxsensitivity wire = i;

if (maxsensitivity wire == -1)

/* minimum delay has been found */

exit;

width(maxsensitivity wire) *= F;

MAP();

END ALGORITHM WIMIN()

In each iteration, the leafnode with the largest violation is identi�ed; this will be referred to

as the current leaf node. We de�ne the sensitivity, Si of wire i as

Si =
Delay(wire i size = F �wi)�Delay(wire i size = wi)

(F � 1) � wi

(12)

where Delay is the delay from the root node to the current leaf node, and F is a number just larger

than 1. (Although the exact sensitivity of the delay function could have been computed here, since

we will be taking steps of discrete sizes, it is more bene�cial to compute the sensitivity as a �nite

di�erence.) By Theorem 2, the delay of the current leafnode can only be decreased by increasing

the sizes of wires that lie on the path between the root node and that leafnode, i.e., the sensitivities

of all other wires is positive. The sensitivity of each such wire is identi�ed, and the size of the

single wire with the minimum negative sensitivity (i.e., the negative sensitivity that has the largest

magnitude) is bumped up by multiplying it by the same constant factor, F > 1, as in Equation

(12) (typical values of F are 1.2 or 1.5). This ensures that the delay to the current leafnode is

reduced in every iteration.

Note that when the monotonicity property holds, it is unnecessary to compute the sensitivity

for any wire for which the bumping operation violates monotonicity.

The process continues until no wire has a negative sensitivity, which gives the solution to

the unconstrained Problem P1, or until the delay speci�cations at all leaf nodes are met, which

provides the solution to the constrained Problem P2. This is the stopping criterion alluded to in

the pseudo-code.
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4.2 A Formal Convex Optimization Algorithm for Wire Sizing

As mentioned in Section 3.2, the transformation in Equation 7 maps the continuous wire sizing

problem onto an equivalent convex optimization problem. Here, we employ a rigorous mathematical

programming algorithm for convex optimization that was proposed in [9]; implementational details

are provided in [10]. The algorithm works in an n-dimensional space, where n is the number of

variables. In this paper, we use this approach primarily as a form of validating our sizing heuristic;

as mentioned earlier, the solution to the continuous problem provides a lower bound on the optimal

discrete solution.

Initially, a polytope P 2 Rn that contains the optimal solution, xopt, is chosen. The objective

of the algorithm is to start with a large polytope, and in each iteration, to shrink its volume while

keeping the optimal solution, xopt, within the polytope, until the polytope becomes su�ciently

small. The initial polytope P may, for example, be selected to be an n-dimensional box described

by the set

fx j loge(wi;min) � xi � loge(wi;max)g (13)

where wi;min and wi;max are the minimum and maximum wire sizes, respectively, of the ith wire.

The algorithm proceeds iteratively as follows.

Step 1 A center xc deep in the interior of the current polytope P is found.

Step 2 An oracle is invoked to determine whether or not the center xc lies within the feasible

region F . This may be done by verifying that all of the constraints of the optimization problem

are met at the point xc.

The oracle, i.e., the feasibility check, may be performed by �rst applying Theorem 1 to check

for monotonicity (when it holds); a nonmonotonic wire assignment is automatically infeasible. If

the wire assignment is monotonic, then a full delay calculation must be carried out to check whether

the wire assignment satis�es the delay constraints. Note that for the unconstrained problem, any

assignment of wire sizes lies in the feasible region.

If the point xc lies outside F , it is possible to �nd a separating hyperplane passing through
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xc that divides P into two parts, such that F lies entirely in the part satisfying the constraint

cTx � � (14)

where c = �[rgp(x)]
T (15)

is the negative of the gradient of a violated constraint, gp, and

� = cTxc: (16)

The separating hyperplane above corresponds to the tangent plane to the violated constraint.

If the point xc lies within the feasible region F , then there exists a hyperplane (14) that

divides the polytope into two parts such that xopt is contained in one of them, with

c = �[rf(x)]T (17)

being the negative of the gradient of the objective function, and � being de�ned by (16) once again.

Step 3 In either case, the constraint (14) is added to the current polytope to give a new polytope

that has roughly half the original volume.

Step 4 The process is repeated until the polytope is su�ciently small.

Further implementational details of the algorithm are provided in [10]. The computational com-

plexity of this algorithm is O(n2:5) where n is the number of design variables.

5 Mapping the Continuous Solution to Discrete Sizes

The mapping algorithm is shown below:

BEGIN ALGORITHM MAP()

Mark all wires as unprocessed;

Mark all leafnodes as unprocessed;

while (all leafnodes not processed)

current leaf node = unprocessed leaf node

with the largest delay;

for each unprocessed wire segment i that is an

14



ancestor of current leaf node

if (width(i) is an integer) continue;

wi+ = dwidth(i)e

wi� = bwidth(i)c

if (j delay(wi+)� delay(width(i)) j

<j delay(wi�)� delay(width(i)) j)

width(i) = wi+;

else

width(i) = wi�;

END ALGORITHM MAP()

It starts from the leafnode, L, with the largest delay, and processes each wire on the path

between node L and the root node. If the size of the current wire is an integer, its size remains

unchanged. If not, the change in the delay to L caused by changing the wire size to the closest

higher (lower) integer, wi+ (wi�) is computed, and one that creates a smaller delay 
uctuation

is selected. L is now marked as \processed" and the algorithm proceeds iteratively with the

unprocessed leafnode that has the largest delay. Note that in the mapping phase, once a wire has

been processed, its size remains unchanged, and that each wire is considered only once.

6 Experimental Results

6.1 Results on Several Examples

The heuristic algorithm and the convex programming algorithm are implemented as C programs

named WIMIN (WIre-size MINimizer) and COSI (Convex Optimization for Sizing Interconnect),

respectively, on a DECstation 5000/133. Both WIMIN and COSI were run on twelve test networks,

which are described in Table 1. The technology parameters used are those used in advanced MCM

designs [1, 2], and are described in Table 2.

The results of COSI are not separately shown, since there was virtually no noticeable di�er-

ence between the quality of the results of the two algorithms. The CPU times for COSI were of

the order of 15s for problems Intct1-Intct5, 1 minute for problems Intct6-Intct9, and 3 minutes for

problems Intct10-Intct12. Hence, unless otherwise speci�ed, the results presented here correspond
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Table 1: Description of the circuit examples.

Circuit Unit Grid Number Number of
Size of Wires Leaf Nodes

Intct1 1000 100 17
Intct2 1000 100 13
Intct3 1000 100 16
Intct4 1000 100 20
Intct5 1000 100 4
Intct6 200 500 16
Intct7 200 500 16
Intct8 200 500 16
Intct9 100 1000 9
Intct10 100 1000 16
Intct11 100 1000 16
Intct12 100 1000 16

Table 2: Technology parameters based on advanced MCM designs.

Technology: Multichip Modules

Driver Resistance: 25 

Unit Wire Resistance: 0.008 
/�m
Loading capacitance: 1000 fF

Unit Wire Capacitance: 0.060 fF/�m
Total area: 100 mm � 100 mm

to the results from WIMIN. It was seen that unlike WIMIN, the runtimes of COSI do not scale

very well with large problem sizes.

Experimental results for Problem P1, in which the wire sizes that correspond to the minimum

interconnect delay are presented for each of the test circuits, are shown in Table 3. For WIMIN,

the value of the multiplicative factor, F , is set to 1.2. In our implementation, an additive factor

was tried instead of a multiplicative factor; however, this was found to give poorer results. This

may be attributed to the fact that wires near the source need to be sized more than those near the

leaf nodes, and the general pro�le of the correctly sized wires resembles a geometric progression,

rather than an arithmetic progression.
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Table 3: Results of Minimizing Interconnect Delay.

Maxsize =2 Maxsize = 6
Circuit Unsized Minimum delay Minimum delay Dspec = 1:15�Dmin

Cost Delay (ns) Cost Delay CPU Cost Delay CPU Cost CPU

Intct1 1.622 118 1.161 1.1s 161 0.931 2.3s 128 (26%) 0.9s
Intct2 2.526 128 1.652 0.8s 189 1.182 1.3s 143 (32%) 0.6s
Intct3 99 2.710 120 1.787 0.8s 182 1.186 1.7s 144 (26%) 0.5s
Intct4 1.759 120 1.288 1.2s 180 1.087 2.4s 123 (46%) 0.9s
Intct5 2.231 115 1.650 0.4s 223 1.214 0.6s 163 (37%) 0.4s

Intct6 0.872 551 0.715 5.0s 672 0.633 13.1s 527 (28%) 1.4s
Intct7 499 1.002 565 0.774 5.2s 739 0.664 12.0s 552 (34%) 2.1s
Intct8 1.297 609 0.935 6.0s 864 0.740 13.1s 643 (35%) 3.1s
Intct9 1.236 700 0.865 4.0s 1072 0.689 4.8s 732 (46%) 3.1s

Intct10 1.540 1108 1.132 11.1s 1376 0.903 29.2s 1168 (18%) 5.8s
Intct11 999 2.387 1226 1.601 15.9s 1712 1.123 34.1s 1385 (24%) 7.4s
Intct12 3.102 1178 2.012 14.7s 2033 1.369 27.4s 1529 (33%) 7.4s

For each circuit, we show the cost and delay of the unsized circuit, i.e., the circuit in which

all wires have unit width. As mentioned earlier, the cost is taken as the sum of wire sizes. The next

two three-column sets show the cost, RC delay, and the execution time for the optimization, when

the maximum allowable wire size is 2 and 6, respectively. Note that the computation time of the

algorithm is very reasonable. With some increase in wire sizes, it can be seen that the interconnect

delay can be improved signi�cantly.

The bulk of the CPU time is incurred by the continuous optimization problem, and only a

small fraction (under 10%) is attributable to the mapping phase. The run times are reasonable

even for large circuits.

In the last two columns of Table 3, for the case when the maximum allowable wire size is 6,

the delay constraint is relaxed to 15% over the minimum delay, and problem P2 is solved. We apply

a uniform timing constraint on each leaf node of the tree. Note that the nature of the algorithm

is such that there may be di�erent delay speci�cations at each of the leaf nodes for Problem P2,

and not a uniform speci�cation. For no reason in particular, however, we restrict ourselves to a
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uniform timing constraint for all leaf nodes in this section. It must be stressed, however, that the

algorithm is general enough to handle nonuniform timing constraints too. The corresponding cost

and run times are shown. The �gures in brackets under the \Cost" column represent the % cost

reduction compared to the minimum delay case. Improvements of as much as 46% are seen. Due

to the paucity of routing resources on a chip, this area improvement is very signi�cant.

Next, we present results on Problem P2, i.e., on minimizing interconnect delay under timing

constraints, graphically on three speci�c circuits in Figure 6. This picture serves to illustrate the

area-delay tradeo� made during wire sizing. As before, the value of the factor F is set to 1.2.

The results plotted in Figure 6 show the true utility of using the problem formulation P2.

It is observed that the interconnect area overhead required to achieve the minimum possible delay

is extremely high, for the last fraction of delay reduction. While some of this is attributable to

suboptimality of the sensitivity-based algorithm, the same characteristics were found to hold when

the factor F was very close to 1, when the solution is close to optimal. This explains why, in Table

3, substantial improvements in the cost functions are achieved when the constraints are relaxed by

a small amount.

The graphs in Figure 6 show a comparison between the discrete solution provided by WIMIN

and the continuous solution provided by COSI. Note that COSI's continuous solution is the exact

solution to the continuous optimization problem, and is a lower bound for the optimal discrete

solution (the slight discrepancies where the COSI solution is apparently more costly than the

WIMIN solution in some cases are insigni�cant and are caused by the convergence criterion for

COSI). As can be seen from the Figure, the solution provided by WIMIN is nearly optimal. In

fact, it is worth noting here that the continuous solution may not be achievable if one is restricted

to discrete sizes, and hence the solution from WIMIN may well be the optimal solution.

A comment about the accuracy of this optimization is in order. The continuous sizing so-

lution is, by the construction of the algorithm, less than the speci�cation. However, the discrete

solution delay is not always so, and may provide a solution that has slightly larger delay than the

speci�cation. This is not critical, since the Elmore delay model is known to be accurate only up
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to 10 or 20 %, whereas the discrepancy between the discrete solution delay and the speci�cation is

less, and some is attributable to discretization noise.

6.2 Comparison with the Results of the Approach in [2]

A comparison of this approach with the method in [2] is shown in Figure 7. The algorithm is

applied here to a line of length 100 mm, divided into twenty segments. An dynamic programming

procedure was carried out on the sizes of the twenty segments for maximum wire segment widths

of 1,2,3,4,5 and 6 �m, respectively1 , to �nd the wire assignment that gives the minimum delay.

These points are plotted on the dotted line in Figure 7(a). The lower darkened line corresponds to

the area delay tradeo� generated by our approach using a maximum wire segment width of 6 �m.

Although the curves seem to be close to each other in Figure 7(a), the true story is told in

Figure 7(b). Several observations can be made about the comparison:

1. The approach in [2] gives one point for every maximum width. This number of points is

substantially less than the number achievable using our approach, and our approach gives

a much smoother area-delay tradeo� curve with many allowable selections on the curve.

Notably, the number of points in the 
atter area of the curve (where the solutions make

good engineering sense unlike those in the steep part) is signi�cantly smaller for [2]. This is

signi�cant since the points for [2] are distant from each other in this region.

2. The area savings using our approach, shown in Figure 7(b), is signi�cantly large in all cases

in the region of interest.

3. The cost/bene�t ratio increases rapidly as one moves towards lower delays, and hence it is

the part of the curve to the right of Delay = 2.3ns that corresponds to viable and sensible

solutions that a designer would use. Note that the solutions to the left are probably even

more expensive than the cost function re
ects. Our cost function takes the area as the sum of

1Note that the method in [2] performs an enumeration guided by monotonicity, separability, and the use of upper

and lower bounds, for computational e�ciency.
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the wire segment areas; however, large disparities in wire segment sizes makes routing more

di�cult, and this is not re
ected in the cost.

To verify the accuracy of our approach, we tried to achieve the minimum delay using our

approach, for di�erent values of the maximum wire width. Since our method continues to reduce

the delay as long as possible, and discontinues its e�orts when no further delay reduction is possible,

this may be achieved by setting the delay target to zero. It was seen that in every case, varying

the maximum width from 1�m to 6�m, the solution given by our approach was either exactly the

same, or insigni�cantly di�erent from the enumerated solution.

7 Concluding Remarks

A new algorithm for interconnect sizing has been described in this paper. The contributions of this

work are as follows:

� Wire sizing is performed under a delay model that does not require the user to specify the

critical leaf nodes, and that will work even in the general case when the monotonicity property

does not hold.

� The problem of obtaining the optimal wire sizes under delay constraints is addressed for

the �rst time. Previous work in the literature has only addressed the problem of wire delay

minimization. A smooth area-delay tradeo� in the sizing operation is shown.

� It is shown experimentally that achieving the absolute minimum delay for a net involves a

wasteful use of resources; instead, a delay target of even 15% over the minimum delay provides

a good engineering solution with a substantial reduction in the net delay with only a small

area overhead.

Although we have presented our results on the single level interconnect case, the sizing algorithm

is trivially extendable to the multilevel case; the proportionality constants for the resistances and
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capacitances will change in the multilevel interconnect case, but the posynomial nature of the

functions will be maintained.

The algorithm is also easily extendable to sizing buses, where the problem can be stated as

minimizing the wire area, subject to bidirectional constraints between the leafnodes of a routing

net. The convex programming properties continue to hold, and the same solution method can be

extended.
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