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1 Introduction

With the emergence of portable products as major players in the electronics market, controlling the

power dissipation of integrated circuits is gaining increased importance. While progress is being

made in improved battery technology to supply a larger amount of power per unit weight of the

battery, it must also be coupled with an accompanying reduction in the power dissipation of IC's.

Even for nonportable applications, as the system complexity increases, it is becoming more and

more important to limit the power dissipation so as to avoid additional costs for cooling down

electronic systems. In this context, it has become increasingly important to design CMOS digital

circuits to ensure a low power dissipation. At the same time, however, it is also necessary to ensure

that the speed of the circuit is not unduly sacri�ced. An additional consideration is the need for

fast system turnaround times, which necessitates the use of semicustom design styles. In this work,

we address a design style using 
exible macrocells [1], where a library of basic functional elements,

or macrocells, is constructed.

In this work, we present an accurate way of assessing the power dissipation and delay of

a macrocell as a function of its transistor sizes, and use an interface with SPICE to ensure that

the delay and power calculations are precise. The use of SPICE ensures that power and delay

measurements can be made highly accurate using high order models. Moreover, e�ects such as

the variations in parasitic capacitances with voltage, channel length modulation and the body

e�ect, to name just a few are measured accurately; these e�ects are completely ignored by coarser

models. This is very important since a macrocell is designed once and only once. At the end of

this procedure, an accurate measure of the worst-case delay and worst-case power dissipation of

the macrocell is available.

Any optimization algorithm entails a tradeo� between tractability, in terms of the accuracy

of the model used, and accuracy. In the optimization segment, we sacri�ce some accuracy in
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the interests of tractability. However, our optimization technique utilizes more accurate modeling

functions than the conventional constant-resistor-constant-capacitor models that are often used.

The novel modeling approach here uses posynomials [2] of arbitrary degree, thereby allowing for

high accuracy. This is particularly so since low degree posynomials are already commonly used to

estimate power and delay with an error of less than 20%, and therefore, our technique will do no

worse than any such method.

The optimization problem is formulated as a convex programming problem and an e�cient

algorithm [3] is used to solve the problem. The optimization technique devised here is power-

ful and has potential applications in other areas where the objective and constraints are \nearly

posynomial."

The chief contributions of this work are as follows. Firstly, we present a new method for

characterizing the power contribution of a single cell to a circuit. This is very useful in getting

good and fast estimates of the power dissipation of a circuit built from a library of characterized

cells. Secondly, we show that the optimization problem presented here can be solved using pre-

cise delay and power modeling using SPICE, unlike other approaches that are restricted to more

approximate models, such as Elmore delays or models that do not consider the variations of MOS

capacitances with voltage. It is well-known that accuracy is very important during the one-time

e�ort of designing cells for a library, since such cells will be used repeatedly. Thirdly, although the

optimization approach presented herein is applied to the problem at hand, it is a technique that

is being demonstrated. This technique may be used in problems where great modeling accuracy is

important, and the objective and constraint functions can be represented as \nearly posynomial"

functions.

The paper is organized as follows. Section 2 describes the idea of a 
exible macrocell, on

which our methods are applied. Section 3 presents the mathematical background required to

understand the method. In Section 4, we explain how the area, delay and power are measured, the

last two using circuit simulation for the greatest accuracy. The optimization problem is formally

formulated in Section 5, and the e�cient convex programming algorithm is brie
y described therein.

Experimental results are provided in Section 6, followed by concluding remarks in the last section.

2 Flexible Macrocells

Unlike conventional standard cell design systems, where the height of each cell is constrained to

be constant, the 
exible macrocell [1] idea imposes no such limitation, and provides an alternative

approach to layout synthesis that can potentially make better utilization of the layout area. A
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schematic of a 
exible cell is shown in Figure 1(a), and the arrangement of such macrocells in

a layout is shown in Figure 1(b). Note that the placement of power/ground lines in the center

of the cell ensures that they can be run as straight lines through a row; the approach where

power/ground lines run at the top and bottom of a cell cannot ensure that these lines will be

straight if the cells are of variable height. The 
exible macrocell approach has been exercised in [1],

where a layout synthesis system for 
exible cells is described. Further CAD research for this design

style is presented in [4], which describes an over-the-cell channel router for triple metal routing of

systems using the 
exible cell approach.

Apart from the potential for better area utilization and better performance obtainable by

utilizing larger cells only where necessary, another signi�cant advantage of using variable height

macrocells lies in the fact that if the power dissipation of the cell is to be controlled, the n- and p-

type transistors should not be made too large. Large transistors may succeed in delay reduction, but

would lead to larger capacitance values to be charged and discharged, thereby leading to increased

power dissipation.

The 
exible macrocells are used as building blocks to construct large circuits, and therefore,

it is critical that each individual macrocell must be well optimized for power and timing. The

problem is, however, a di�cult one since the performance of a 
exible macrocell is dependent on

the context in which it is placed in the circuit, i.e., on the fanout gates that it must drive. A library

of 
exible macrocells should contain several versions of the same gate, with varying driving powers,

and each macrocell fully optimized. Once a library has been designed, one of several techniques

such as [5, 6] may be used to select the appropriate cell optimally in a given circuit.

To date, there have been few methods that address the problem of designing 
exible macro-

cells for a library. The most signi�cant related work is that in [7], where a methodology for

minimizing the area-delay product for designing standard cells of constant height was described.

No power considerations were incorporated in that work, and the procedure used simple �rst-order

models to calculate gate delays.

3 Mathematical Background

De�nition 1 Convex set: A set C 2 Rn is said to be convex if for every x1;x2 2 C and every real

number � 2 (0; 1), the point �x1+ (1��)x2 2 C . Geometrically, convexity implies that given any

two points x1;x2 2 C all points on the line joining them lie within C.

De�nition 2 Convex function: A function f(x) : Rn!R is said to be convex if for any pair of
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points x1;x2 2 Rn and for every real number �; 0 � � � 1,

f [�x1+ (1� �)x2] � �f (x1) + (1� �)f (x2): (1)

Geometrically, this implies that the segment joining the points lies entirely above or on the graph

of f(x).

De�nition 3 Posynomials: A posynomial is a function g of a positive variable x 2 Rn that has

the form

g(x) =
X

j


j

nY

i=1

x
�ij

i (2)

where the exponents �ij 2 R and the coe�cients 
j > 0. Roughly speaking, a posynomial is a

function that is similar to a polynomial, except that

- The coe�cients 
j must be positive.

- An exponent �ij could be any real number, and not necessarily a positive integer, unlike the

case of polynomials.

A posynomial has the useful property that it can be mapped onto a convex function through an

elementary variable transformation, (xi) = (ezi) [2].

De�nition 4 Convex Programming Problem: A convex programming problem is stated as follows:

minimize f(x) subject to x 2 C

where f(x) is a convex function over a convex set, C. This problem has the property that any local

minimum of f over S is a global minimum.

De�nition 5 Polytope: A (convex) polytope P in an n-dimensional space is an intersection of m

half-spaces, and is de�ned as

P = fx 2 Rn j Ax � bg (3)

where A 2 Rm�n and b 2 Rm.

4 Performance Modeling of Macrocells

4.1 Delay and Power Modeling

Since a macrocell in a library is designed only once, it is essential that the solution obtained by the

design algorithm be optimal. As a consequence, it is imperative that accurate models be used for
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the delay and power dissipation of the cell. Notice that e�ects such as the variations in parasitic

capacitances with voltage, channel length modulation and the body e�ect, etc. are accurately

measured in this approach.

Of all the techniques currently used to simulate a circuit, circuit-level simulation provides

the highest degree of accuracy. For large circuits it entails high computational costs and extensive

memory requirements, but since our technique involves sizing transistors for 
exible macrocells,

each of which typically has less than 20 transistors, the use of circuit level simulation is justi�ed.

This statement is borne out by the CPU times of our algorithm.

We now describe a method for calculation of the power dissipation of a cell using the voltages

and currents obtained from SPICE. Next, we explain how SPICE is employed to estimate the rise

and fall delays for a cell in order to evaluate the propagation delay of the cell. In the modeling

phase, we assume that the contributions of source/drain capacitances of transistors to the fanout

capacitance of a gate can be neglected in comparison with wiring and fanout gate capacitances.

4.1.1 Power Measurement

The power dissipation of a cell is dependent on the context within which it is placed in a circuit.

In this work, we present a systematic method of individually determining the contribution of each

cell to the power dissipation of a circuit. To our knowledge, no work on estimating individual cell

contributions to the circuit power dissipation has been published before; the approach in [8], for

example, only calculates the power dissipation for an entire circuit, rather than the split-up of the

power dissipation components, as calculated here.

The power dissipation of a 
exible macrocell as a function of the sizes of transistors in the

cell is composed of two components: the dynamic power and the short-circuit power. The power

associated with the leakage current is negligible and is not considered. For an accurate estimate

of these two components of power we use SPICE to monitor the voltage at nodes of interest and

current in the branches of interest.

We explain the procedure for calculating the driving power for a cell by means of an example

of an inverter that is being driven by another inverter, Instage and has a fanout of a certain number

minimum size inverters (corresponding to the driving power that the cell is being designed for) that

together form Outstage, as shown in Figure 2. INV is the gate that is being sized.

In case of multiinput cells, the gate terminals of all the transistors are driven by the same

inverter in Instage. As a result, during a transition, all of the pMOS or all of the nMOS transistors

in the cell switch and hence, the maximum power is drawn by the cell, since all of the gate terminal
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capacitances of the cell must be charged. Moreover, the capacitance driven by Instage is the

maximum, which ensures the most pessimistic estimate of the transition time at each input, and

correspondingly, pessimistic calculations of the short circuit dissipation. This ensures that the

power dissipation estimated in our approach is in fact the worst case power dissipation for the cell.

Note that in the succeeding discussion, we use the term \power" to describe the power dissipated

by the cell in each transition, W .

If the period of the clock is T , then assume that voltage waveform at node 4 is high for the

interval [0; T=2] and low for the interval [T=2; T ]. As a consequence the voltage waveform at node

6 will be low for [0; T=2] and high for [T=2; T ].

To �nd out the current through a branch, we insert 0V independent voltage source in that

branch and then compute (via circuit simulation) the current through the voltage source. Four

such sources, Vs1 � � �Vs4 are inserted in the circuit. We now explain the procedure for calculation of

dynamic and short circuit power by means of the inverter example shown in Figure 2; as mentioned

earlier, INV is the gate being sized.

(1)Calculating the dynamic power: Notice �rst that the components of the dynamic power (or

CV 2 power) that depend on transistor sizes in INV are caused by the current required to drive the

following (all other components of the dynamic power dissipation are independent of the transistor

sizes of interest):

(a) the gate terminal capacitances of transistors in INV.

This component of the dynamic power is measured by monitoring voltage at node 3 and the current

through voltage source Vs1.

For the interval [0; T=2], there is a path from VDD to node 3, and hence the dynamic power is

given by the product [(VDD�V (3)) � i(Vs1)] numerically integrated over time using the trapezoidal

formula [9]. For the interval [T=2; T ], there is a path from node 3 to ground and hence the dynamic

power is the product of V (3) and i(Vs1) integrated over time.

(b) the source/drain terminal capacitances of transistors in INV.

This component of the dynamic power is measured by monitoring voltage at node 6 and the current

through the lumped capacitor C, given by i(Vs3)�i(Vs2)�i(Vs4). The power computation is similar

to that in (a) above. Note that C corresponds to the source/drain capacitances of transistors in

the cell, and that the gate capacitance of the fanout gates are at node 8.

(2) Calculating the short-circuit power: The only component of the short-circuit power that

depends on transistor sizes in INV is the power due to the VDD-to-GND current through INV.

To calculate the short-circuit power, we monitor the transistor that is o� during that half

cycle. The current through this transistor is the short circuit current, since the other transistor

6



carries not only the short circuit current, but also the dynamic current required to charge the

capacitances at the output. For the interval [0; T=2], the pMOS transistor in the cell is o� (since

the output of the cell at node 6 is low), and hence the short circuit power for this half cycle is the

product of VDD and the current, i(Vs2) integrated over time. Similarly, for the interval [T=2; T ],

the nMOS transistor in the cell is o�, and hence the short circuit power is the product of VDD and

the current, i(Vs3) integrated over time. The total power required to drive the inverter cell is the

sum of the dynamic and the short-circuit power.

Note that the total power dissipation of the circuit in Figure 2, Ptot, is related to the power

dissipation of the 
exible macrocell, Pcell, by the relation Ptot = (Pcell + constant), where the

constant term consists of power dissipation components that are independent of transistor sizes in

the cell. Hence if the objective were to minimize the power dissipation of the cell, one could simply

minimize Ptot. However, if one wants to perform a constrained optimization with speci�cations on

Pcell, as we are doing here, it is important to estimate Pcell accurately.

4.1.2 Delay Measurements

We de�ne the transition delay of a gate as the amount of time required by its output waveform to

cross the 50% threshold, after its input waveform has crossed its 50% threshold. For the purposes

of delay calculation, for each gate, we assume that only one input is switching (note that this di�ers

from the assumption for power calculation).

Assuming that the capacitance at the output node is much larger than those at any nodes

within the cell, the worst-case rise (fall) delay occurs under the condition when the largest resistance

path between the output and VDD (GND) is activated. The rise delay calculation procedure hence

consists of the following steps; the fall delay calculation is analogous. The delay of the cell is taken

to be the maximum of the rise and fall delays.

(1) Identifying the maximum resistance path: Coarsely speaking, the on-resistance of a

transistor is given by the relationship Ron / 1=x, where x is the width of the transistor [10]. Hence

the path of maximum resistance, Qp (Qn) in the p-transistor (n-transistor) network is the one for

which the sum of 1=x's for the transistors lying on that path is maximum. A path enumeration

using a depth �rst search is carried out to determine the maximum resistance path; since the

number of paths is small, this can be performed very fast. Note that this algorithm for �nding

the worst case delay paths for the rise and fall transitions is a heuristic but is accurate enough for

purposes of identifying the worst-case path. A similar approach has also been used in [10].

(2) Calculating the worst-case delay: Having identi�ed Qp and Qn, the next step is to evaluate

the delays associated with these paths using SPICE. To calculate the rise (fall) delay, we set the
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voltages at the gate terminals of all transistors lying on Qp (Qn) to 0V (VDD), except for the

transistor that is closest to the power supply, identi�ed as M . All other transistors in the p(n)

transistor network are forced o�. The input toM is switched from VDD to 0V (0V to VDD), so that

the transistor switches on. Since all other transistors along Qp (Qn) are already on, the output of

the cell, undergoes a transition. Using this set of inputs, SPICE is used to calculate the transition

delay by subtracting the 50% thresholds of the output and input waveforms.

For example, in the circuit in Figure 3, where the number alongside each transistor denotes its

width, the path A-B-C is the maximum resistance path. The transistor with input C corresponds

to M . For worst-case timing purposes, therefore, a circuit simulation is carried out with these

transistors being turned on and all other transistors being turned o�.

4.2 Area Modeling

The area model that we use in this work is presented in this section. Note that although the area

is not one of the parameters in the constraint or the objective here, the height of the cell is a

constraint; the cell height is intimately linked with the area model. The layout of the cell for this

model has vertical polysilicon wires running over horizontal di�usion strips, as shown in Figure 1.

Hence, the height of a cell is a function of the maximum transistor width in the cell, while the

width is a function of only the number of transistors in the cell. The approach here assumes that

the 
exible macrocells are fully complementary CMOS gates.

The following design rules have been assumed for the design of cells.

minimum line width = 2�; minimum transistor width = 2�; L = 2�;

poly-to-contact spacing = 2�; ndi�-to-pdi� spacing = 10�; contact size = 4�� 4�.

Based on these design rules and the �xed layout style, area models for various cells may be devel-

oped. For example, for an N -input NAND gate, it can easily be shown that

Cell Width = (N � 10 + 10) � � (4)

Cell Height = ( max
1�i�N

[Wp(i) +Wn(i)] + 10) � (5)

where Wp(i) and Wn(i), are, respectively, the width of the pMOS and nMOS transistors connected

to the ith input. The area of the cell is given by Area = (Cell Width) � (Cell Height).

Notice that the area of a cell is the maximum of posynomial functions of transistor widths in

the cell, and hence maps on to a maximum of convex functions, a convex function. The approach is

not restricted to the assumed layout style; rather, any regular layout style where the area function

can be presented as a maximum of posynomials can be supported. This method can also be used

for area minimization under delay and/or power constraints.
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In addition to the above constraints, one may wish to ensure that the height of no cell exceeds

a given number (such a number can be arrived at, for example, using the technique in [7].) When

the performance constraints are too tight, and can be achieved only by overshooting the height

constraint, we resort to folding transistor gates to satisfy the cell height constraints, and repeat the

optimization under a new area model.

5 The Optimization Algorithm

5.1 The Convex Program Formulation

The optimization problem is stated as follows:

minimize Power(x)

subject to Delay(x) � Dspec (6)

Height � Hspec

where x is the vector of transistor sizes within the cell.

The rationale for formulating the optimization problem as a convex program is explained

in this section. It is apparent from De�nition 3 that under the transformation, xi = ezi , the

posynomial height function becomes convex.

The delay of a cell is well-approximated (to about 10-20%) by the Elmore delay [11], which is a

posynomial function of the transistor sizes. This is a low-degree posynomial in which the exponents

of the terms are either -1, 0 or 1. Both the short circuit and the dynamic power dissipation of a

circuit can also be expressed as low-degree posynomial functions of the transistor sizes [12]. This

power model assumes the parasitic capacitances to be constant, which is not true in practice since

gate capacitance vary with biasing; however, it does not give grossly inaccurate power estimates.

Therefore, since low degree posynomials are capable of providing good approximations to the

delay and power functions, and posynomials are a versatile class of functions, it is very likely that

the use of higher degree posynomial functional approximations will provide much more accurate

models of the delay and power dissipation of a 
exible macrocell. We now connive to formulate

the problem in such a way that posynomials of arbitrarily high degree are used to model these two

quantities, using the following strategy. The process is illustrated in Figure 4. Note that since the

real power(delay) function is \almost" a posynomial function, the real feasible region is \almost"

convex. Allowances for slight nonconvexities can be made as in [13].

Assuming that the delay and the power, which determine the feasible region of the optimiza-

tion problem, can be approximated by posynomial functions (of arbitrary degree), the transfor-
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mation xi = ezi will map the feasible region onto a convex set in the z space. The optimization

problem is then one of minimizing a convex function, the power, over this convex set in the z space.

An important characteristic of the optimization algorithm that we employ is that it does not

require the constraints describing the feasible set to be enumerated, but merely requires feasibility

checks for a given point, and gradient evaluations. Thus, the beauty of this optimization strategy is

that we may use implicitly posynomials of arbitrarily high degree, without ever having to explicitly

enumerate the approximating functions.

Example: To see how a feasible region speci�ed by posynomial constraints maps on to a convex

set, consider the two posynomial constraints below:

x2 + y2 � 1 and xy � 0:2

Note that we only consider the region where x; y > 0.

The plot in Figure 5(a) shows that the feasible region is nonconvex in the x-space; however,

upon performing the transformation described above, the feasible region becomes convex in the

new space. This may be seen in Figure 5(b), where both axes are plotted on a logarithmic scale.

5.2 The Convex Programming Algorithm

The optimization algorithm used here is an e�cient convex programming algorithm [3]. Details

of the implementation are provided in [14], and only a super�cial explanation is provided here to

avoid redundancy. Here, we presuppose the reader's familiarity with the algorithm in [14]. The

algorithm works in an n-dimensional space, where n is the number of variables. It encloses the

solution in an initial polytope (recall that a polytope was de�ned in Section 3), which is taken to

be a box, described by

P = fz j log(xi;min) � zi � log(xi;max)g (7)

where xi;min and xi;max are, respectively, the minimum and maximum size for each transistor.

In each iteration, another constraining half-space is added to the set of equations describing

the polytope. By adding this extra half-space appropriately, the volume of the polytope is shrunk

by approximately half in each iteration, until the polytope becomes su�ciently small.

The procedure for determining a hyperplane and its corresponding half-space that shrinks the

polytope volume by about half is now described. In every iteration, the center of this polytope is

determined by minimizing a log-barrier function, as explained in [14]. Next, we determine whether

or not this center lies within the feasible region of the optimization problem. A hyperplane

cT z = b; where c; z 2 Rn; b 2 R (8)
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is then passed through the center of the polytope such that the solution to the problem lies in its

negative half-space. The value of c is given by the following rule:

� If the center is feasible, c = rPower(z), the gradient of the objective (power) function

� If the center is not feasible, c = rg(z), the gradient of a violated (delay or height) constraint.

This hyperplane roughly halves the volume of the original polytope. The center of this polytope is

then found, and the procedure is iterated until the polytope volume is su�ciently small.

5.3 Summary of the Algorithm

The overall 
ow of the algorithm is described in Figure 6. After reading in the circuit and the

parameters, an initial polytope is created as described earlier. In each iteration, the transistor sizes

are set to be the exponent of the corresponding coordinate of the polytope center. Next, the circuit

is simulated, with transistor sizes set to correspond to the current polytope center, using SPICE

to calculate the delay and power as described in Section 4.1. Depending on whether the delay

constraint is met or not, the gradient of either the delay or the power is used to generate the new

half-space that halves the polytope volume. The procedure continues until the polytope is small

enough; termination criteria are described in [14].

The total number of SPICE simulations required in each iteration is n + 2, where n is the

number of variables. Two simulations are required to evaluate the delay and power, respectively,

and n more simulations are required to compute the delay or power gradient using �nite di�erences.

The number of variables for this problem is extremely small (typically less than 20). Since

each oracle invocation involves n+2 circuit simulations, the dominant component of the CPU time

is due to simulations. In spite of this, the CPU times were seen to be reasonable since the circuit

to be simulated is very small.

6 Experimental Results

The algorithm for designing 
exible macrocells was implemented in a C program. The input to the

program is a SPICE deck that gives a transistor-level netlist of the circuit, the delay speci�cation,

Dspec, and the optimal power dissipation, Popt, resulting from the solution of the convex program.

Both of these parameters are normalized with respect to the parameter values when all transistors

in the macrocells are at minimum size. The notation used here is that the factor under the Dspec

(Popt) column in Table 1 divides (multiplies) the delay (power dissipation) of a minimum sized
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Table 1: Designing standard cells for various sets of power and delay constraints

Circuit Dspec Popt Cell Cell Number of Number of CPU Time
Height Width Iterations Simulations

INV 5.3x 13.3x 60 13 40 79s
4.0x 3.2x 24 20 15 44 87s
1.2x 1.1x 15 10 13 28s

NOR2 4.4x 9.6x 51 19 96 192s
3.1x 2.7x 21 30 19 40 90s
2.5x 2.1x 18 21 42 96s

NAND2 2.2x 9.6x 48 20 101 209s
1.8x 4.4x 30 30 17 38 89s
1.4x 1.4x 16 17 74 158s

NOR3 3.8x 9.3x 60 34 239 470s
2.6x 2.4x 20 40 27 70 184s
2.0x 1.7x 17 28 71 187s

NAND3 1.7x 7.4x 45 20 57 158s
1.5x 2.2x 22 40 26 21 76s
1.3x 1.3x 16 21 46 127s

2,2-AOI 2.2x 2.4x 21 34 115 296s
1.9x 1.7x 17 50 35 84 230s
1.5x 1.4x 16 34 51 168s

2,2-OAI 2.2x 3.5x 26 30 63 177s
1.9x 1.8x 17 50 37 94 230s
1.5x 1.4x 16 31 48 154s

inverter. For example, a 4x factor for delay implies a delay that is a quarter of that for the

minimum-sized cell, and a 10x factor for power implies that the power dissipation is 10 times that

for the minimum-sized cell.

The transistor sizes were constrained to be no less than 2� in width while the transistor

lengths were kept constant at the allowable minimum of 2�. It is important to note that these pa-

rameters were chosen just to demonstrate the application of the 
exible macrocell design algorithm

and that any other reasonable assignment of values to the parameters is possible.

The algorithm was tested on seven di�erent gates: INV, NAND2, NOR2, NAND3, NOR3,

2,2-AOI, and 2,2-OAI for di�erent sets of values of Dspec.

Table 1 shows the height and width of each cell, the number of SPICE simulations, the

number of iterations of the convex programming algorithm, and the CPU time required on an

HP9000/700 workstation.

Since our method solves the underlying convex programming problem exactly, the power
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dissipation shown in Table 1 correspond to the globally optimum solution to the problem for that

layout style, with an accuracy dictated by the user-speci�ed termination criterion described in [14].

It was observed from our experiments that, as expected, as Dspec is made more stringent, the

area and the power dissipation of the 
exible macrocell increase. This is because as the width of

a transistor increases, the current required to drive the transistor increases, which in turn means

that more power is required by the source to drive it. On the other hand, increasing the width of a

transistor reduces the resistance of the transistor and hence may contribute to reducing the delay.

The execution time depends largely on the number of SPICE simulation required. This is

not surprising since SPICE simulations constitute the most computationally intensive step in the

entire design process.

Our claim of optimality is supported by the fact that we found that in each case, the same re-

sult was obtained, regardless of the initial polytope used. The property of the convex programming

algorithm is that it will always give the optimal solution when applied to a convex programming

problem; if the problem is not a convex program, then di�erent initial polytopes will lead to dif-

ferent results [15]. In this work, we are not guaranteed that the problem is a convex program;

we merely approximate the functions by a convex region in a di�erent space. Therefore, if the

approximations did not lead to convex programs in practice, the result would di�er for di�erent

initial polytopes, which was not seen to happen on any of our test cases.

7 Conclusion

A new technique for designing 
exible macrocells for a library has been developed. The problem

uses accurate models for estimating the power dissipation and delay of a cell, and formulates the

optimization problem as a convex program. An e�cient technique is then used to perform the

optimization.

The contributions of this work lie primarily in the methodology that is used for power estima-

tion and in the new optimization algorithm that uses arbitrary order posynomials for modeling the

delay and power of the macrocell. For the modules that are described in our section on experimental

results, the run times are seen to be small.

Although we have tried to keep our modeling e�orts as accurate as possible, there are a few

sources of inaccuracy, primarily associated with approximating the delay and power by posynomial

functions. These are not seen to be signi�cant in practice.
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