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Abstract

A standard cell library typically contains several versions of any given gate type, each of which

has a di�erent gate size. We consider the problem of choosing optimal gate sizes from the library to

minimize a cost function (such as total circuit area) while meeting the timing constraints imposed

on the circuit.

After presenting an e�cient algorithm for combinational circuits, we examine the problem of

minimizing the area of a synchronous sequential circuit for a given clock period speci�cation. This

is done by appropriately selecting a size for each gate in the circuit from a standard-cell library,

and by adjusting the delays between the central clock distribution node and individual 
ip-
ops.

Experimental results show that by formulating gate size selection together with the clock skew

optimization as a single optimization problem, it is not only possible to reduce the optimized

circuit area, but also to achieve faster clocking frequencies. Finally, we address the problem of

making this work applicable to very large synchronous sequential circuits by partitioning these

circuits to reduce the computational complexity.

1This work was supported by Joint Services Electronics Program, grant number N00014-90-J-1270.
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1 Introduction

1.1 Gate Sizing Problem

The delay of a MOS integrated circuit can be tuned by appropriately choosing the sizes of transistors

in the circuit. While a combinational MOS circuit in which all transistors have the minimum size

has the smallest possible area, its circuit delay may not be acceptable. It is often possible to reduce

the delay of such a circuit, at the expense of increased area, by increasing the sizes of certain

transistors in the circuit. The optimization problem that deals with this area-delay trade-o� is

known as the sizing problem.

The rationale for dealing with only combinational circuits in a world which is rampant with

sequential circuits is as follows. A typical MOS digital integrated circuit consists of multiple stages

of combinational logic blocks that lie between latches, clocked by system clock signals. Delay

reduction must ensure that the worst-case delays of the combinational blocks are such that valid

signals reach a latch in time for a transition in the signal clocking the latch. In other words, the

worst-case delay of each combinational stage must be restricted to be below a certain speci�cation.

For a combinational circuit, the sizing problem is formulated as

minimize Area

subject to Delay � Tspec: (1)

The problem of continuous sizing, in which transistor sizes are allowed to vary continuously

between a minimum size and a maximum size, has been tackled by several researchers [1{4]. The

problem is most often posed as a nonlinear optimization problem, with nonlinear programming

techniques used to arrive at the solution.

A related problem that has received less attention is that of discrete or library-speci�c sizing.

In this problem, only a limited number of size choices are available for each gate. This corresponds
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to the scenario where a circuit designer is permitted to choose gate con�gurations for each gate

type from within a standard cell library. This problem is essentially a combinatorial optimization

problem, and has been shown to be NP-complete [5].

Chan [5] proposed a solution to the problem that was based on a branch-and-bound strategy.

The algorithm is exact for tree networks. For general networks that are not tree-structured, a

backtracking-based algorithm is proposed for �nding a feasible solution. For general DAGs (directed

acyclic graph), a cloning procedure is used to convert the DAG into an equivalent tree, whereby a

vertex of fan-out m is implicitly duplicated m times, followed by a reconciliation step in which a

single size that satis�es the requirements on all of the cloned vertices is selected.

The approach of Lin et al. [6] uses a heuristic algorithm that is an adaptation of the TILOS

algorithm [1] for continuous transistor sizing, with further re�nements. The approach is based on

a greedy algorithm that uses two measures known as sensitivity and criticality to determine which

cell sizes are to be changed. The sensitivity of a cell indicates how much local delay per unit area

can be decreased if we pick another template for this speci�c cell, while criticality tells us whether a

cell has to be replaced by a larger template to ful�ll the delay constraints of the circuit. A weighted

sum of a cell's sensitivity and criticality is used to guide the algorithm to select a certain number

of gates to be replaced with a di�erent template.

Another algorithm proposed by Li et al. [7] is exact for series-parallel circuits. (See [7] for

a formal de�nition of series-parallel circuits.) For a chain circuit (serial circuit), a dynamic pro-

gramming technique is used to obtain optimal solution. For a simple parallel circuit, a number

of transformations are repeated to obtain the optimal implementation. The optimal implemen-

tation of any series-parallel circuit is obtained by repeatedly using the chain and simple parallel

circuit transformation on subcircuits of the given series-parallel circuit. This work is extended to

nonseries-parallel circuits, whose structures are represented by general DAGs, and several heuristic

techniques are used in conjunction with the algorithm, but no guarantees on optimality are made
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for such circuits.

Both of the above two approaches [6, 7] are heuristics (Chan's approach [5] is also heuristic

for general circuits), and hence no concrete statements can be made on how close their solutions

are to the optimal solution. Moreover, neither work shows comparisons with a technique such as

simulated annealing [8] that is known to give optimal or near-optimal solutions.

In the �rst part of this paper, we present a new algorithm for solving the gate sizing problem

for combinational circuits that takes into consideration the variations of gate output capacitance

with gate resizing. In the �rst stage, the gate sizing problem is formulated as a linear program. The

solution of this linear program provides us with a set of gate sizes that does not necessarily belong

to the set of allowable sizes. Therefore, in the second phase, we move from the linear program

solution to a set of allowable gate sizes, using heuristic techniques. In the third phase, we further

�ne-tune the solution to guarantee that the delay constraints are satis�ed. Finally, to illustrate the

e�cacy of our algorithm, we present a comparison of the results of this technique with the solutions

obtained by simulated annealing as well as by our implementation of the algorithm in [6].

1.2 Optimization for Synchronous Sequential Circuits

Optimization of synchronous sequential circuits, on the other hand, is di�erent. An additional

degree of freedom is available to the designer in that one can set the time at which clock signals

arrive at various 
ip-
ops (FFs) in the circuit by controlling interconnect delays in the clock signal

distribution network. With such adjustments, it is possible to change the delay speci�cations for

the combinational stages of a synchronous sequential circuit to allow for better sizing. However,

consideration of clock skew in conjunction with sizing increases the complexity of the problem

tremendously, since it is no longer possible to decouple the problem and solve it on one subcircuit

at a time.

In general, given a combinational circuit segment that lies between two 
ip-
ops i and j, if si
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and sj are the clock arrival times at the two 
ip-
ops, we have the following relations:

si +Maxdelay(i; j)+ Tsetup � sj + CP (2)

si +Mindelay(i; j) � sj + Thold (3)

where Maxdelay(i; j) and Mindelay(i; j) are, respectively, the maximum and the minimum com-

binational delays between the two 
ip-
ops, and CP is the clock period. Fishburn [9] studied the

clock skew problem, under the assumption that the delays of the combinational segments are con-

stant, and formulated the problem of �nding the optimal clock period and the optimal skews as a

linear program. The objective was to minimize CP , with the constraints given by the inequalities

in (2) and (3) above. In real design situations, however, CP is dictated by system requirements,

and the real problem is to reduce the circuit area.

In the second part of the paper, we examine the following problem: Given a clock period

speci�cation, how can the area of a synchronous sequential circuit be minimized by appropriately

selecting gate size for each gate in the circuit from a standard-cell library, and by adjusting the

delays between the central clock and individual 
ip-
ops? For simplicity, the analysis will use

positive-edge-triggered D-
ip-
ops. In the following, the terminologies 
ip-
op (FF) and latch will

be used interchangably. We assume that all primary inputs (PI) and primary-outputs (PO) are

connected to FFs outside the system, and are clocked with zero (or constant) skew.

We �rst present an optimization algorithm for small synchronous sequential circuits. Then

we consider arbitrarily large synchronous sequential circuits for which the size of the formulated

problems is prohibitively large, and present a partitioning algorithm to handle such circuits. The

partitioning algorithm is used to control the computational cost of the linear programs. After the

partitioning procedure, we can apply the optimization algorithm to each partitioned subcircuit.

This paper is organized as follows. We describe the linear programming approach in Section 2,

followed by the two post-processing phases in Sections 3 and 4. In Section 5, we formulate the
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synchronous sequential circuit area optimization problem and present the algorithms to tackle the

problem. The partitioning algorithm that allows us to handle large circuits is presented in Section 6.

Experimental results are given in Section 7. Finally, Section 8 concludes this paper.

2 Problem Formulation

2.1 Formulation of Delay Constraints

The delay of a gate in a standard-cell library can be characterized by

delay = Rout � Cout + � =
Ru

w
� Cout + �1 � w + �2 (4)

where Rout is the equivalent resistance of the gate, Cout is the load capacitance of the gate, � is

the intrinsic delay of the gate, Ru represents the on-resistance of a unit transistor, and wi is called

the nominal gate size of gi. Therefore, the size of each gate can be parameterized by a number, w,

referred to as the (nominal) gate size.

The output load capacitance of a gate can be calculated by summing the gate terminal capac-

itances of its fan-out gates and interconnect wiring capacitance, assuming that layout information

is given. In general, the gate terminal capacitances of a certain transistor in di�erent versions of

a logic gate may not be exactly linearly proportional to the nominal size of that logic gate. In

spite of this, we can approximate the data points by an a�ne function using linear least-squares

approximation. In other words, the output load capacitance of logic gate i that drives logic gate j

is

cap(i; j) = �ij � zj + �ij (5)

where zj is the size of logic gate j.

Therefore, the output load capacitance of gate i can be found to be

Cout = cap(i; 1)+ cap(i; 2)+ � � �+ cap(i; f)
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= �i1 � z1 + �i1 + �i2 � z2 + �i2 + � � �+ �if � zf + �if (6)

where z1; z2; : : : ; zf are the sizes of the cells which logic gate i fans out to.

Thus, the delay function D(w) of gate i with nominal size w can be represented as

D(w) =
Ru

w
� Cout + �1 �w + �2

= Ru �
�i1 � z1 + �i1 � � �+ �if � zf + �if

w
+ �1 � w + �2 (7)

Therefore the delay of a cell is a sum of functions of g(w; z) = z=w and h(w) = 1=w as well

as w. Since the function g(w; z) = z=w is relatively smooth, it can be approximated by a convex

piecewise linear function with q regions of the form

PWL(w; z) =

8>>>><
>>>>:

a1 �w + b1 � z + c1 (w; z) 2 Region R1

a2 �w + b2 � z + c2 (w; z) 2 Region R2
...
aq � w+ bq � z + cq (w; z) 2 Region Rq

(8)

= max
1�i�q

(ai � w + bi � z + ci) 8 (x; y) 2
[

1�i�q

Ri (9)

The second equality follows from the �rst since PWL(w; z) is convex.

Similarly, we can approximate the function h(w) = 1=w with a convex piecewise linear function

of the form

pwl(w) =

8>>>><
>>>>:

d1 � w + e1 w 2 Region R1

d2 � w + e2 w 2 Region R2
...
dq � w + eq w 2 Region Rq

(10)

= max
1�j�q

(dj � w+ ej) 8 w 2
[
i

Ri (11)
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Therefore, the gate delay D(w; z1; : : : ; zf) of a gate with size w, and fan-out gate sizes z1 � � �zf

can be represented using a convex piecewise linear function with q regions, as follows:

D̂(w; z1; � � � ; zf)

=

8>>>><
>>>>:

â1 � w + b̂1;1 � z1 + � � �+ b̂1;fzf + ĉ1 + �1 �w + �2 (w; z1 � � �zf ) 2 Region R1

â2 � w + b̂2;1 � z1 + � � �+ b̂2;fzf + ĉ2 + �1 �w + �2 (w; z1 � � �zf ) 2 Region R2
...

âq �w + b̂q;1 � z1 + � � �+ b̂q;fzf + ĉq + �1 � w+ �2 (w; z1 � � �zf ) 2 Region Rq

(12)

= max
1�i�q

(âi � w + b̂i;1 � z1 + � � � b̂i;fzf + ĉi) + �1 � w + �2 8 (w; z1 � � �zf) 2
[

1�i�q

Ri

2.2 Formulation of the Linear Program

The formal de�nition of the gate-sizing problem for a combinational circuit is as given in (1). Since

the objective function, namely, the area of the circuit, is di�cult to estimate, we approximate it as

the sum of the gate sizes, as has been done in almost all work on sizing [1{7,10{13].

Therefore, the cell area of a gate i can be expressed as

area(i) = 
i � wi + "i (13)

where wi is the nominal size of gate i.

The delay speci�cation states that all path delays must be bounded by Tspec. Since the number

of PI-PO paths could be exponential, the set of constraining delay equations could potentially be

exponential in the number of gates; unless certain additional variables, mi, i = 1 � � � N (where N

is the number of gates), are introduced to reduce the number of constraints [11]. The worst-case

signal arrival time mi corresponds to the worst-case delay from the primary inputs to gate i. Using

these variables, for each gate i with delay di, we have

mi = maxfmj + di j 8 j 2 Fanin(i)g (14)
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where Fanin(i) is the set of fan-in gates of gate i. Equivalently, we have

mj + di � mi; 8 j 2 Fanin(i): (15)

This reduces the number of constraining equations to
PN

i=1 Fanin(i), which, for most practical

circuits, is of the order O(N ).

We now formulate the linear program as

minimize

NX
i=1


i � wi

subject to For all gates i = 1 � � �N
mj + di � mi 8 j 2 Fanin(i)

mi � Tspec 8 gate i at POs

di � D̂(wi; wi;1; : : :wi;fo(i))
wi �Minsize(i)
wi �Maxsize(i)

(16)

where wi;1; : : :wi;fo(i) are the sizes of the gates to which gate i fans out, and Minsize(i) and

Maxsize(i) are the minimum and maximum sizes of gate i in the library, respectively. Notice that

in the objective function, the constant term in (13) is omitted since it does not a�ect the result.

Eq. (16) is a linear program in the variables wi; di; mi. It is worth noting that the entries in

the constraint matrix are very sparse, which makes the problem amenable to fast solution by sparse

linear program approaches. Notice that the equalities of (12) are replaced here by inequalities so

as to satisfy (13).

3 Phase II : The Mapping Algorithm

The set of permissible sizes for gate i is Si = fwi;1 � � �wi;pig, where pi is the cardinality of Si. The

solution of the linear program would, in general, provide a gate size, wi, that does not belong to
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Si. If so, we consider the two permissible gate sizes that are closest to wi; we denote the nearest

larger (smaller) size by wi+ (wi�). Since it is reasonable to assume that the LP solution is close to

the solution of the combinatorial problem, we formulate the following smaller problem:

For all i = 1 � � �N : Select wi = wi+ or wi�,

such that Delay � Tspec

Although the complexity has been reduced from O(
QN

i=1 pi) for the original problem to O(2N ),

this is still an NP-complete problem. In this section we present an implicit enumeration algorithm

for mapping the gate sizes obtained using linear programming onto permissible gate sizes. The

algorithm is based on a breadth-�rst branch-and-bound approach.

It is worth pointing out that the solution to this problem is not necessarily the optimal solution;

however, it is very likely that the �nal objective function value at a solution arrived using good

heuristics will be close to the linear program solution, and hence close to the optimal solution. This

supposition is borne out by the results presented in Section 7.1.

3.1 Implicit Enumeration Approach

The rationale behind our global enumeration algorithm is based on the following observation. Given

the solution of the linear programming, the majority of the gates remain at their smallest sizes.

Only a small portion of the gates in the circuit are moved to a larger size because, for a typical

circuit, although there may be a huge number of long paths, the number of gates on these long

paths is, in general, relatively small.

Based on this observation, during the implicit enumeration procedure we may ignore those

gates which are assigned to have their smallest size by the solution of the linear programming, and

concentrate on those gates that have been assigned larger sizes and are probably on long paths.

De�nition 1 A critical gate is a gate whose size is larger than its smallest possible size.
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We modify the circuit topology by adding a source node so and a sink node si. A dummy edge

is added from node so to each of the input nodes and from each of the output nodes to the node

si. Next, for each gate i we de�ne max-delay-to-sink, denoted by mds(i), to be the maximum of

the delays of all possible paths starting from gate i to the sink node si [14]. That is,

mds(i) = max
j2FO(i)

fmds(j) + djg (17)

The method for �nding max-delay-to-sink is a topological sort. That is, mds(i) of a gate i can

be calculated only after all of the mds's of its fan-out gates have been computed. Therefore, the

computation of mds's starts from sink node si and proceeds backwards until we reach the source

node so.

A breadth-�rst search is applied to levelize the circuit from the sink node backwards.2 The

level of a gate i in this levelization is called its backward circuit level, c level(i). By de�nition,

the backward circuit level of the sink node si is 0, while the source node so has the largest back-

ward circuit level. Starting from si, we form a state-space tree by implicitly enumerating critical

gates. During the enumeration, noncritical gates remain at their minimum size and need not be

enumerated. Each level in the state-space tree corresponds to a critical gate. The corresponding

critical gate of level i is gate k. We also de�ne a function F(i), which is used to indicate the

corresponding critical gate of level i. That is, the corresponding critical gate of level i is indicated

by F(i). Therefore, if gate k is the corresponding critical gate of level i, then k = F(i). Similarly,

the corresponding level of a critical gate k in the state-space tree is called the gate's tree level,

t level(k). Therefore t level(F(i)) = i. Each node at level i in the state-space tree is a cell con-

�guration, which represents a possible realization of its corresponding gate. Let C(i; j) denote the

jth node at level i, and anc(i; j) be its ancestor node.

2This is di�erent from a traditional levelizing scheme which is done starting from the source node and proceeds

forwards.
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De�nition 2 A cell con�guration, C(i; j) is a triple (Wij ; Aij; Dij),

Wij = WC(i;j) 2 fwF(i)+; wF(i)�g,

Aij = AC(i;j) = 
F(i) �Wij + Aanc(i;j),

Dij = DC(i;j) = max fmds(k)g, where k is a gate in the circuit (not necessarily a

critical gate), which satis�es c level(k) = c level(F(i))+ 2.

where Aij is the accumulated area from the root to C(i; j). (Notice that 
F(i) �Wij is the cell area

of gate F(i), given that its size is Wij .)

In the state-space tree, each node has no more than two successors since there are at most two

choices for the gate size. The root of the tree is, by de�nition, assigned a null cell con�guration

(0; 0; 0). We begin with the critical gate that has the smallest backward circuit level and implicitly

enumerate the two possible realizations of each gate F(i), wF(i)+ and wF(i)�.
3 The delay of each

gate is dependent on its own size and on the size of the gates that it fans out to. Therefore, once

gF(i) has been enumerated, the delay associated with the predecessor of gF(i) can be calculated,

and the remaining critical gates can be enumerated. During the enumeration process, it is possible

to eliminate several of the possibilities to prune the search space. A node C(i ; j) with a cell

con�guration (Wij ; Aij ; Dij) is bounded if there exists a cell con�guration (Wik; Aik; Dik), at the

same level of the tree such that

(1) Aik � Aij and Dik < Dij , or

(2) Aik < Aij and Dik � Dij .

After all of the critical gates have been implicitly enumerated, we keep calculating max-delay-

to-sink for each remaining gate. However, since noncritical gates have �xed sizes, no enumeration is

necessary. Rather, we simply propagate the values toward the source node. For each leaf node of the

state-space tree, the max-delay-to-sink of the source node corresponding to that node is calculated

3If there is more than one critical gate which has the same backward circuit level, one of them is randomly chosen.
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and denoted by D0
ij . The cell con�guration which has the largest D0

ij and satis�es D0
ij � Tspec is

selected. By performing a trace-back from the selected leaf node to the root of the tree, the size of

each critical gate is determined from the cell con�gurations at each traversed node.

4 Phase III : The Adjusting Algorithm

After the mapping phase, if the delay constraints cannot be satis�ed, some of the gates in the circuit

must be �ne-tuned. For each PO which violates the timing constraints, we identify the longest path

to that PO. For example, if gate p at the PO has a worst case signal arrival time mp > Tspec, we

�rst �nd the longest path, Pl, to gate p. The path slack of Pl is de�ned as

Pslack(Pl) = Tspec �mp (18)

For each gate along that longest path, we calculate the local delay di�erence for each of the

gates along path Pl. Assume that Gi�1; Gi; Gi+1 are consecutive gates, in order of precedence, on

path Pl. The local delay and local delay di�erence associated with Gi are de�ned as

delay(Gi) = Ri+1
out �C

i+1
out + Ri

out �C
i
out (19)

�delay(Gi) = Ri+1
out ��C

i+1
out + �Ri

out �C
i
out (20)

where Ri
out and C

i
out are, respectively, the equivalent driving resistance of gate i, and the capacitive

load driven by gate i. Therefore, �delay(Gi) is the di�erence between the original local delay of

Gi and the new local delay of Gi after we replace it with a di�erent gate size that has a di�erent

value of Ri
out and Ci+1

out .

After calculating the local delay di�erence associated with each of the gates along path Pl, we

select the largest one, �delay(Gn), which satis�es

�delay(Gn) < Pslack(Pl) (21)
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and change the size of Gn accordingly. If none of the local delay di�erences satisfy (21), we select

the most negative one and replace the gate with a new realization. This process continues until

the delay constraints are all satis�ed. Also, notice that unlike in the mapping algorithm, we do not

restrict our choices to wi+ and wi� at this phase.

5 Optimization for Sequential Circuits

The techniques described so far are valid for the sizing problem for combinational circuits. We now

consider the optimization problem for synchronous sequential circuits.

5.1 Formulation of Constraints

In a synchronous sequential circuit, a data race due to clock skew can cause the system to fail [15].

Consider a synchronous sequential digital system with 
ip-
ops (FFs). Let si denote the individual

delay between the central clock source and 
ip-
op FFi, and let CP be the clock period. Assume

there is a data path, with delay dij, from the output of FFi to the input of FFj for a certain input

combination to the system. There are two constraints on si; sj and dij that must be satis�ed:

Double Clocking : If sj > si + dij , then when FFi is clocked, the data races ahead through the

path and destroys the data at the input to FFj before the clock arrives there.

Zero Clocking : This occurs when si + dij > sj + CP , i.e., the data reaches FFj too late.

It is, therefore, desirable to keep the maximum (longest-path) delay small to maximize the clock

speed, while keeping the minimum (shortest-path) delay large enough to avoid clock hazards.

In [9], Fishburn developed a set of inequalities which indicates whether either of the above

hazards is present. In his model, each FFi receives central clock signal delayed by si by the delay

element imposed between it and central clock. Further, in order for a FF to operate correctly when
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the clock edge arrives at time t, it is assumed that the correct input data must be present and

stable during the time interval (t�Tsetup; t+Thold), where Tsetup and Thold are the set-up time and

hold time of the FF, respectively. For all of the FFs, the lower and upper bounds MIN(i; j) and

MAX(i; j) (1 � i; j � L; L being the total number of FFs in the circuit) are computed, which are

the times required for a signal edge to propagate from FFi to FFj .

To avoid double-clocking between FFi and FFj , the data edge generated at FFi by a clock

edge may not arrive at FFj earlier than Thold after the latest arrival of the same clock edge arrives

at FFj . The clock edge arrives at FFi at si, the fastest propagation from FFi to FFj is MIN(i; j).

The arrival time of the clock edge at FFj is sj . Thus, we have

si +MIN(i; j)� sj + Thold: (22)

Similarly, to avoid zero-clocking, the data generated at FFi by the clock edge must arrive at

FFj no later than Tsetup amount of time before the next clock edge arrives. The slowest propagation

time from FFi to FFj is MAX(i; j). The clock period is CP , so the next clock edge arrives at

FFj at sj + CP . Therefore,

si + Tsetup +MAX(i; j)� sj + CP: (23)

Inequalities (22) and (23) dictate the correct operation of a synchronous sequential system.

Our problem requires us to represent path delay constraints between every pair of FFs. This

may be achieved by performing PERT [16] on the circuit and setting all FFs except the FF of

interest (say FFi) to �1 (1) for the longest (shortest) delay path to from FFi to all FFs, and

the arrival time at the FF of interest is set to 0 [9]. Therefore in addition to longest-path delay

variable, mk , for the shortest-path delay, we introduce new variables, pk, k = 1 � � � N , correspond

to the shortest delay from PIs (the outputs of FFs are considered as pseudo PIs) up to the output

of Gk.

pj + dk � pk; 8 j 2 Fanin(k): (24)
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To represent path delays between every pair of FFs, we need intermediate variables mi
k (pik) to

represent the longest (shortest) delay from FFi to the kth gate. The number of constraints so

introduced may be prohibitively large. An e�cient procedure for intelligent selection of intermediate

mi
k and pik variables to control the number of additional variables and constraints without making

approximations has been developed. Deferring a discussion on these procedures to Section 5.2, we

now formulate the linear program for a general synchronous sequential circuit as

minimize

NX
k=1


k � wk

subject to dk � D(wk; wk;1; : : :wk;fo(k)); 1 � k � N

wk �Minsize(k); 1 � k � N

wk �Maxsize(k); 1 � k � N

For all FF i; 1 � i � L

si + pik � sj + Thold 1 � j � L; k = Fanin(FFj)

si + Tsetup +mi
k � sj + CP 1 � j � L; k = Fanin(FFj)

For all gates k = 1; � � � ;N

mi
l + dk � mi

k ; 8 l 2 Fanin(k)

pil + dk � pik ; 8 l 2 Fanin(k)

(25)

The above is a linear program in the variables wi; di; mi; pi and si. Again, the entries in the

constraint matrix are very sparse, which makes the problem amenable to fast solution by sparse

linear program approaches.

5.2 Symbolic Propagation of Constraints

We begin by counting the number of LP constraints in (25). We ignore the constraints on the

maximum and minimum sizes of each gate since these are handled separately by the simplex

method. The dk inequalities impose q constraints for each of the gates in the circuit to the LP
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formulation (see Eq.(10)). Let F =
PN

i=1 Fanin(i), where N is the total number of gates in the

circuit. Then for each FF i, there are O(F +L) constraints, where L is the total number of FFs in

the circuit. Therefore the total number of constraints could be as large as O(N � q + L � (F + L)).

Assume that the average number of fanins to a gate is 2:5 and q = 4. Then F = 2:5N , and L � F

is the dominant term in the expression above. For real circuits, L is large, and hence the number

of constraints could be tremendous. In this section, we propose a symbolic propagation method

to prune the number of constraints by a judicious choice of the intermediate variables m and p,

without sacri�cing accuracy. Basically, for any PI, we introduce m and p variables for those gates

that are in that PIs fanout cone. Also, we collapse constraints on chains of gates wherever possible

(line 6 in Figure 1).

The synchronous sequential circuit is �rst levelized. For this purpose, the inputs of FFs are

considered as pseudo POs the outputs of FFs are considered as pseudo PIs. Two string variables,

mstring(i) and pstring(i), are used to store the long-path delay and short-path delay constraints

associated with gate i, respectively. For each gate and each FF, an integer variable ui 2 f0; 1g

is introduced to indicate its status. ui has the value 1 whenever mstring(i) and pstring(i) are

non-empty, i.e., when the constraints stored in mstring(i) and pstring(i) must be propagated;

otherwise, ui = 0.

The algorithm for propagating delay constraints symbolically is given in Figure 1. In the

following discussion of the algorithm, we elaborate on the formation of mstring; the formation

of pstring proceeds analogously. At line 2, for each gate j, uj and mstring(j) are initialized by

setting uj = 0, and mstring(j) to the null string. The status variable of primary input i, ui, is

set to 1, however, since we are to process delay constraints with respect to that particular PI (line

3). At line 6, we check if ul = 0 for all l 2 fanin(k), i.e., if all of gate k's input gates have a

null mstring. If so, no constraints need to be propagated, and no operations are needed. Hence

we continue to process the next gate. Next, at line 7, we check whether exactly one of all of gate
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ALGORITHM Symbolic propagation()

1. for i = 1 to L

2. uj  0; mstring(j) ""; ptring(j) "" for all gates and PIs;

3. ui  1;

4. for j = 1 to max level

5. for each gate k at level j

6. if ( ul = 0 for all l 2 fanin(k) ) continue; /* do nothing */

7. if ( among all l 2 fanin(k), exactly one ul = 1, others equal 0 )

8. mstring(k) mstring(l0)+"dk"; pstring(k) pstring(l0)+"dk"; uk  1;

/* ul0 = 1; l0 2 fanin(k) */

9. else

10. uk  1; mstring(k) "mi
k"; pstring(k) "pik";

11. for all ul = 1; l 2 fanin(k)

12. write down the two constraints,

13. mstring(l) + dk � mi
k; pstring(l) + dk � pik,

Figure 1: The symbolic constraints propagation algorithm.

k's input gates, say gate l0, has a non-empty mstring, others all have null mstring's. If so, we

simply continue to propagate the constraint. This is implemented by concatenating mstring(l0)

and \dk", and storing the resulting string in mstring(k). Also uk is set to 1 to indicate that further

propagation is required at this gate (line 8). Finally, if more than one of gate k's input gates have

non-empty mstring, we add a new intermediate variable, mi
k, and the string "mi

k" is stored at

mstring(k) (line 10). For each input gate whose mstring is non-empty (ul = 1), we need a delay

constraint (line 13).

Example 1 Figure 2 gives an example that illustrates the symbolic delay constraints propagation

algorithm. Assume that mstring(11) = \m1
11", mstring(12) = mstring(13) = \" (null string).

Therefore, from lines 6 and 7 of the pseudo-code, mstring(14) = \m1
11 + d14" and u14 = 1.

Propagating this further, we �nd that similarly, mstring(15) = \m1
11 + d14 + d15", and u15 = 1.

Finally, for gate 16, we apply lines 9 through 12, and �nd that we must introduce a variable m1
16,
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Figure 2: An example illustrating symbolic delay propagation algorithm.

and set u16 = 1. We also write down the two constraints shown in the �gure and add these to the

set of LP constraints. 2

Using the symbolic constraints propagation algorithm, although the actual reduction is depen-

dent on the structure of the circuit, experimental results show that this algorithm can reduce the

number of constraints to less than 7% of the original number on the average for the tested circuits.

5.3 Inserting Delay Bu�ers to Satisfy Short Path Constraints

The solution of the LP would, in general, provide a gate size, wk that does not belong to the

permissible set, Sk = fwk;1 � � �wk;qkg. If so, we consider the two permissible gate sizes that are

closest to wk; we denote the nearest larger (smaller) size by wk+ (wk�). As in Section 3, we

formulate the following smaller problem:

For all k = 1 � � �N : Select wk = wk+ or wk�, such th at

for all FFs 1 � i ; j � L

si +Maxdelay(i; j)+ Tsetup � sj + CP

si +Mindelay(i; j)� sj + Thold
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The mapping algorithm described in Section 3 can be used to obtain a solution for this problem.

After the mapping phase, if some of the delay constraints cannot be satis�ed, we have to �ne-

tune some gate sizes in the circuit. In Section 4, we have discussed the approach to resolve violation

of long path delay constraints. The same strategy can be applied for synchronous sequential circuit

optimization, except the de�nition of path slack must be modi�ed.

For each PO j (including pseudo POs at the inputs of FFs), the required maximum (minimum)

signal arrival times, reql(j) (reqs(j)), can be expressed as

reql(j) = sj + CP � Tsetup

reqs(j) = sj + Thold (26)

The path slack then can be de�ned as

Pslack(Pl(n)) = reql(n)�mn (27)

Violations of short path delay constraints, on the other hand, can be resolved by inserting delay

bu�ers. However, bu�er insertion cannot be carried out arbitrarily, since one must simultaneously

ensure that the changes in the circuit do not violate any long path constraints.

For every gate i in the circuit, we de�ne the gate slack, Gslack(i), as

Gslack(i) =

8>>><
>>>:

min
j2FO(i)

fmj + Gslack(j)� (dj +mi)g; if gate i is not at a PO.

minf min
j2FO(i)

[mj + Gslack(j)� (dj +mi)]; (reql(i)�mi)g; if gate i is at a PO:
(28)

Note that if gate i is at a PO, it could still fan out to other gates in the circuit; this is re
ected

in the de�nition of the gate slack. Physically, a gate slack corresponds to the amount by which the

delay of gate i can be increased before its e�ect will be propagated to any POs or FFs, in terms of

long path delay. Therefore, it also tells us the maximum delay that a delay bu�er can have if we

are to insert a delay bu�er at the output of gate i.
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ALGORITHM Insert buffer(n1)

1. Let Ps(n1) be the shortest path to gate n1, and Gn1; Gn2; � � � ; Gnk be on path

Ps(n1) (Gni fans out to Gn(i�1); 2 � i � k, k = # of gates along Ps(n1).);

2. i 1;

3. while ( pn1 < reqs(n1) )

4. if ( 9 a (smallest) buffer, bf, in the library such that:

delay(Gni) < delay0(Gni) + delay(bf) � delay(Gni) + slack(Gni) )

5. insert bf at the output of Gni;

6. incrementally update slack(j); mj ; pj for each gate j in the circuit;

7. if ( pn1 � reqs(n1) ) stop;

8. else goto 1.

9. i i+ 1;

Figure 3: The bu�er insertion algorithm.

If output gateGn1 violates the hold time constraint, its shortest path, Ps(n1), to some PI is �rst

identi�ed. If pn1 is the worst-case shortest path signal arrival time of gate n1, and reqs(n1) is the

required shortest path delay, then the delay of Ps(n1) must be increased by at least reqs(n1)� pn1.

At the beginning of this phase, we �rst back-propagate gate slacks from POs and all FFs. The

gate slack of each gate is determined recursively using (28).

The algorithm for inserting bu�ers is shown in Figure 3. In line (4) of the algorithm, beginning

from the smallest bu�er in the library, we try to insert a bu�er at the output of gate Gni. The

delay of the bu�er is denoted by delay(bf). Since the output capacitance of Gni is changed during

this process, we have to recalculate its delay, which is denoted by delay0(Gni).

6 Partitioning Large Synchronous Circuits

As indicated above, the number of constraints in our formulation of the LP is in the worst pro-

portional to the product of the number of gates and the number of FFs in the circuit. Ideally for

a given synchronous sequential circuit, all variables and constraints should be considered together
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to obtain an optimal solution. However, for large synchronous sequential circuits, the size of the

LP could be prohibitively large even with our symbolic constraint propagation algorithm. There-

fore, it is desirable to partition large synchronous sequential circuits into smaller, more tractable

subcircuits, so that we can apply the algorithm described in Section 5 to each subcircuit. While

this would entail some loss of optimality, an e�cient partitioning scheme would minimize that loss;

moreover the reduction of execution time would be very rewarding.

It is well-known that multiple-way network partitioning problems are NP-hard. Therefore,

typical approaches to solving such problems �nd heuristics that will yield approximate solutions

in polynomial time [17{24]. Traditional partitioning problems usually have explicit objective func-

tions; for example, in physical layout it is desirable to have minimal interface signals resulting from

partitioning the circuit, and hence the objective function to be minimized there is the number of

nets connecting more than two blocks. Our synchronous sequential circuit partitioning problem,

however, is made harder by the absence of a well-de�ned objective function; since our ultimate goal

is to minimize the total area of the circuit, there is no direct physical measure that could serve

as an objective function for partitioning. In the remainder of this section, we develop a heuristic

measure that will be shown to be an e�ective objective function for our partitioning problem.

To help us describe our partitioning algorithm, we introduce the following terminology. For a

synchronous sequential circuit, such as the one shown in Figure 4:

An internal latch is a latch whose fanin and fanout gates belong to the same combinational block.

A sequential block consists of a combinational subcircuit and its associated internal latches.

Boundary latches are latches that act as either a pseudo PI or a pseudo PO (but not both) to

a combinational block, i.e. latches whose fanin and fanout gates belong to di�erent combina-

tional blocks.

A partition of a synchronous sequential circuit N is a partition of the sequential blocks of N
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Figure 4: An example illustrating the de�nition of a synchronous block.

into disjoint groups. A b-way partitioning of the network is described by the b-tuple (G1;G2; : : :Gb)

where the G0
is are disjoint sets of sequential blocks whose union is the entire set of blocks in the

network. Each Gi is said to be a group of the partition.

For a given sequential block B, let LB denote the set of boundary latches incident on B, and

for a given boundary latch L, BL denotes the set of sequential blocks that L is connected to. For

each boundary latch L, we de�ne input tightness �in, output tightness �out, and the tightness ratio

� as

�in(L) = maximum combinational delay from any boundary latch to L in the unsized circuit;

�out(L) = maximum combinational delay from L to any boundary latch in the unsized circuit;

�(L) =

(
�in=�out if �in � �out
�out=�in if �in < �out

(29)

where the adjective \unsized" implies that all gates in the subcircuit are at the minimum size. The

tightness ratio �(L) provides a measure of how advantageous it would be to provide a skew at L.
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For each pair of blocks (Bi;Bj), de�ne merit �ij as

�ij =
X

Bi

Lk
$Bj

�(Lk) (30)

where Bi
Lk$ Bj means latch Lk lies between Bi and Bj . �ij is de�ned to be 0 if Bi and Bj are

disjoint. Physically, �ij is used to measure the �gure of merit if Bi and Bj are in the same group.

A high �ij means that the tightness ratio is high and hence Bi and Bj should be in the same group.

The cost associated with each block, Bi , is ci, the number of linear programming constraints

required for solving Bi . This number can be calculated very e�ciently. Assume that group Gk

consists of blocks Bki ; i = 1; : : : jGk j. Then we de�ne the cost of Gk , C(Gk ) =
PjGk j

i=1 cki, and the

merit of Gk , M(Gk ) =
PjGk j

i=1

PjGk j
j=i+1 �ij . We now formulate the following optimization problem:

max

NX
k=1

M(Gk )

subject to C(Gk ) < � �MaxConstraints: (31)

where N is the number of groups, MaxConstraints is the maximum number of constraints that

one wishes to feed to the LP, and � � 1 is introduced so that the partitioning procedure becomes

more 
exible since the cost of a group is allowed to exceed MaxConstraints temporarily. Now

that the partitioning problem has been explicitly de�ned, we develop a multiple-way synchronous

sequential circuit partitioning algorithm based on the algorithm proposed by Sanchis [20].

For each group Gk , and each boundary latch L, de�ne the connection number, �, as:

�Gk
(L) = jfBjB 2 Gk and B 2 BLgj: (32)

Since each boundary latch connects exactly two blocks, �Gk
(L) 2 f0; 1; 2g. In other words, if

Bi
L
$ Bj , then (a) if Bi 62 Gk and Bj 62 Gk ;�Gk

(L) = 0, (b) if Bi 62 Gk and Bj 2 Gk , or vice

versa, �Gk
(L) = 1, and (c) if Bi 2 Gk and Bj 2 Gk ;�Gk

(L) = 2.
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The gain associated with moving B from Gi to Gj is de�ned as

�ij(B) =
X
l

(�(Ll)jLl 2 LB and �Gj
(Ll) = 1)�

X
n

(�(Ln)jLn 2 LB and �Gi
(Ln) = 2) (33)

The �rst term of (33) measures the bene�t of moving B to Gj , while the second measures the

penalty of moving B out of Gi .

Before beginning the partitioning procedure, the number of linear programming constraints, ci,

required for each block i is calculated using modi�ed symbolic constraints propagation algorithm.

If ci � MaxConstraints for some block Bi , then it is placed in a group alone, and will not be

processed later. Let TotalConstraints =
X
j

(cj jcj < MaxConstraints). Each remaining block is

put into one of the N 0 groups,

N 0 =

�
TotalConstraints

MaxConstraints

�
; (34)

such that for each group k, C(Gk ) < MaxConstraints: This is an integer knapsack problem,

and many heuristic algorithms can be used to obtain an initial partition (see, for example, [25],

Chapter 2). In some cases, it may be impossible to put all blocks into N groups without violating

the restriction on C(Gk ) above; if so, the number of groups may be larger than that given in (34).

Given the initial partition, the algorithm improves it by iteratively moving one block of parti-

tion from one group to another in a series of passes. A block is labeled free if it has not been moved

during that pass. Each pass in turn consists of a series of iterations during each of which the free

block with the largest gain is moved. During each move, we ensure that the number of constraints

in a group does not violate the limit given by (31). The gain number, �ij(B), is updated constantly

as blocks are moved from one group to another. At the end of each pass, the partitions generated

during that pass are examined and the one with the maximum objective value, as given by (31), is

chosen as the starting partition for the next pass. Passes are performed until no improvement of

the objective value can be obtained.
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After the partitioning, we apply the optimization algorithm described in Section 5 to each

group.

7 Experimental Results

The algorithms above were implemented in a program GALANT (GAte sizing using Linear pro-

gramming ANd heuricTics) on a Sun Sparc10 station. The test circuits include many of the

ISCAS85 combinational benchmark circuits [26] and ISCAS89 synchronous sequential circuits [27].

Each cell in the standard-cell library has four di�erent sizes of realization with di�erent driving

capabilities. The number of regions of piecewise linear approximation of delay, q, is set to be 4

empirically. Ideally, the larger q is, the more accurately we can approximate the delay function.

However, increasing the value of q will directly increase the number of constraints in the LP for-

mulation, which will result in larger run times. Therefore it is desirable to keep q small while

maintaining acceptable approximation errors. Section 7.1 provides experimental results for the

combination circuit optimization problem. The experimental results for synchronous sequential

circuits with clock skew optimization are given in Section 7.2.

7.1 Experimental Results for Combinational Circuits

To prove the e�cacy of the approach, a simulated annealing algorithm and Lin's algorithm [6] were

implemented for comparison. The parameters used in Lin's algorithm have been tuned to give the

best overall results. The simulated annealing algorithm that we have implemented is similar to

that described in [28]. However, unlike in [28], all gate sizes were allowed to change during the

simulated annealing procedure; while the run-times for this procedure were extremely high, the

solution obtained can safely be said to be close to optimal.

The results of our approach, in comparison with Lin's algorithm and simulated annealing, are

shown in Table 1. The test circuits include most of the ISCAS85 benchmarks, and vary in size from
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Table 1: Performance comparison of GALANT with Lin's algorithm and simulated annealing.

Circuit Tspec Simulated Annealing GALANT Lin's Algorithm

Area Run time Area Run time AG
ASA

Area Run time AL
ASA

(ASA) (AG) (AL)

c432 16.0 2372 19min 53s 2376 4.82s 1.002 2376 0.10s 1.002
14.0 2515 21min 17s 2515 5.38s 1.000 2749 0.15s 1.092
12.0 2950 24min 27s 2983 7.72s 1.011 - - -

c1355 14.0 8276 3h 32min 8276 1min 13s 1.000 8536 0.69s 1.031
13.0 9258 3h 45min 9412 2min 14s 1.017 10319 1.28s 1.115
12.5 10224 4h 12min 10417 3min 32s 1.019 - - -

c2670 17.0 17623 5h 22min 17623 4min 12s 1.000 18020 11.21s 1.023
16.0 17772 5h 42min 17790 4min 30s 1.001 20150 19.7s 1.134
14.0 18929 8h 12min 19079 7min 8s 1.008 - - -

c5315 20.0 36906 13h 46min 36954 11min 52s 1.001 37344 2.20s 1.012
18.5 37438 14h 2min 37457 17min 28s 1.001 41248 4.32s 1.102
17.0 38618 14h 43min 38863 19min 2s 1.006 - - -

c7552 18.0 50557 22h 5min 50604 35min 49s 1.001 51100 9.54s 1.011
17.0 50740 23h 20min 51254 52min 27s 1.010 53772 34.57s 1.060
16.0 52069 24h 5min 52563 1h 11min 1.009 - - -

Average Area Ratio 1.0057 -

160 gates to 3512 gates. It can be seen the accuracy of the results of our approach ranges from being

as good as simulated annealing in some cases to an discrepancy of less than 2% in comparison with

simulated annealing; the run times are considerably smaller than those for simulated annealing.

It is observed that for all circuits, the chief component (over 95%) of the run-time was the linear

programming algorithm; the heuristic was extremely fast in comparison.

Although Lin's algorithm runs much faster than GALANT, it does not always provide good re-

sults. For loose timing constraints, its solution is comparable to the result obtained using GALANT.
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Figure 5: Comparison of Galant and Lin's algorithm against simulated annealing for c432.

For somewhat tight speci�cations, however, its solution becomes pessimistic. For even tighter delay

constraints, it cannot obtain a solution at all. As mentioned previously, Lin's algorithm essentially

is an adaptation of the TILOS algorithm [1] for continuous transistor sizing, with a few enhance-

ments. While the TILOS algorithm is known to work reasonably well for the continuous sizing

case, the primary reason for its success is that the change in the circuit in each iteration is very

small. However, in the discrete sizing case, any change must necessarily be a large jump, and a

TILOS-like algorithm is likely to give very suboptimal results.

A comparison of GALANT, Lin's algorithm, and simulated annealing on the circuit c432, for

various timing speci�cations, is shown in Figure 5. In all cases, the solution obtained by GALANT

is very close to the solution obtained by simulated annealing. In comparison with the results of Lin's

algorithm, we �nd that GALANT provides results of substantially better quality, with reasonable

run-times.

Table 2 shows the areas given by linear programming, Galant, and simulated annealing for C432
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Table 2: Experimental results of areas given by linear programming, GALANT and simulated

annealing for circuit c432.

Circuit Tspec Linear Programming GALANT Simulated Annealing
Area Area Area

c432 17.0 2335 2337 2337
16.5 2339 2350 2350
16.0 2347 2376 2372
15.5 2367 2402 2394
15.0 2396 2424 2420
14.5 2432 2467 2467
14.0 2468 2515 2515
13.5 2507 2563 2563
13.0 2567 2658 2645
12.5 2654 2801 2801
12.0 2783 2983 2970
11.5 2918 3139 3096
11.0 3127 3315 3300
10.5 3448 3597 3560

circuit under various delay constraints. The area given by LP could be considered as approximately

the minimal area if we have a \continuous" library. A continuous library means we have in�nite

number of selections of the size of a gate, provided that the size w satis�es wmin � w � wmax for

each gate, where wmin and wmax are the minimal and maximal sizes in the original discrete library.

Finally, we compare the areas given by GALANT for two di�erent sets of libraries. The results

are shown in Figure 6. The �rst library, Library A has six di�erent sizes for each logic gate in

the library, while Library B has only two templates for each logic gate. The minimal and maximal

sizes (wmin and wmax respectively) are the same for each logic gate in both libraries. That is, we

only increase the number of available intermediate sizes in Library A compared to Library B. As

we can see, using Library A consistently gives better results compared to using Library B. The

improvement is about 10% for all timing constraints.
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Figure 6: Experimental results of Galant using two di�erent libraries. Library A has six di�erent

sizes for each logic gate, Library B has only two sizes for each gate.

7.2 Experimental Results for Synchronous Sequential Circuits

For all the experiments on sequential circuits, the clock skews are restricted to be less than half of

the clock cycle to avoid excessively large di�erence between clock signal arrival times at di�erent

latches. In Table 3, the experimental results of �fteen ISCAS89 circuits are listed. For information

on the number of PIs, POs, FFs, and logic gates in the circuits, see [27]. For each circuit, the

number of longest-path delay constraints without using symbolic constraint propagation algorithm

and the number of constraints pruned by the algorithm are given. It is clear that our pruning

algorithm is very e�cient. The number of delay constraints is reduced by more than 93% on the

average. For a given desired clock period, the optimized results for both with and without clock

skew optimization are shown. Depending on the structure of the circuits, the improvement over

total area of the circuit ranges from 1.2% to almost 20%. As for the execution time, the runtime
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Table 3: Performance comparison with and without clock skew optimization for ISCAS89 bench-

mark circuits.

Circuit longest-path constraints CP with clock skew opt. w/o clock skew opt. A1
A2

original pruned % Area (A1) Runtime Area (A2) Runtime

s27 133 27 20.3% 3.75 151.12 0.32s 179.29 0.30s 0.842

s208 3276 214 6.5% 6.8 1404.00 3.32s 1745.25 3.06s 0.805

s298 4556 280 6.1% 6.5 2125.50 4.20s 2295.58 4.12s 0.926

s344 6720 401 6.0% 8.0 2093.00 7.10s 2400.67 6.91s 0.872

s349 6816 417 6.1% 8.0 2128.75 6.18s 2498.17 6.01s 0.852

s400 7824 656 8.4% 8.4 2314.00 8.19s 2515.50 7.13s 0.920

s420 11830 544 4.6% 12.0 2522.00 9.06s 2952.63 8.94s 0.854

s444 8592 830 9.7% 8.5 2463.50 11.55s 2724.04 7.22s 0.904

s526 11688 541 4.6% 6.5 3914.08 10.21s 4311.67 9.35s 0.908

s641 30402 1331 4.4% 22.0 4598.75 51.59s 4747.17 26.49s 0.969

s838 55948 2670 4.8% 10.5 6162.00 100.67s 7324.42 43.77s 0.841

s953 34470 1788 5.2% 10.5 5516.87 243.93s 5898.75 67.69s 0.935

s1196 32736 2241 6.8% 12.0 8550.21 288.15s 8752.42 97.43s 0.977

s1423 106379 7953 7.5% 35.0 9871.87 1069.75s 10151.38 80.71s 0.972

s5378 911854 6593 0.7% 10.0 29219.12 2633.78s 29717.53 1414.49s 0.983

ranges from about the same for some circuits, to less than double or triple for most circuits.

Table 4 provides some more in-depth experiments of two circuits, s838 and s1423. In this

experiment, we try to minimize the area using di�erent speci�ed clock periods. As one can see,

for s1423, the minimum clock period without clock skew optimization is about 32.5. On the other

hand, using clock skew optimization, the minimum period can be as small as 22, which gives an

almost 33% improvement in terms of clock speed. For s838, using clock skew optimization also

gives an 30% improvement. Hence, using clock skew optimization can not only reduce the circuit

area, but also allows a faster clock speed.

Table 5 gives the experimental results for the partitioning procedure. Since most of the

ISCAS89 circuits consist of only one combinational block, we generated some synchronous se-

quential random logic circuits. The number of gates and FFs in those circuits are shown in Table
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Table 4: Improving possible clocking speeds using clock skew optimization.

Circuit # of # of # of # of CP with clock skew opt. w/o clock skew opt. A1
A2

PI's PO's FF's gates Area (A1) Runtime Area (A2) runtime

s838 35 2 32 390 10.5 6162.00 100.67s 7324.42 43.77s 0.841
10.25 6165.25 102.18s 7365.58 45.30s 0.837
10.0 6182.04 103.25s - - -
7.5 6637.58 130.20s - - -
6.75 7417.58 172.31s - - -
6.5 - - - - -

s1423 17 5 74 657 35.0 9871.87 1069.75s 10151.38 80.71s 0.972
32.5 9998.63 1130.89s 10545.71 84.05s 0.948
30.0 10154.08 1450.03s - - -
22.0 12178.83 1605.43s - - -
20.0 - - - - -

3. For each circuit, we conduct three experiments.

1. First, we minimize the area using clock skew optimization, but without partitioning.

2. Secondly, we minimize the circuit area using both clock skew optimization and partitioning.

3. For comparison, we minimize the circuit with neither clock skew optimization nor partitioning.

From the table, it can be seen that the �rst approach is able to obtain the best result as

expected. Since it considers all variables at the same time, it provides the best solution. However,

the runtime is large. Compared to the �rst approach, the second approach runs much faster, at a

very slight area penalty. Not surprisingly, the third approach gets the worst solution. We also note

that the introduction of clock skew provides a signi�cantly faster clock speed for circuit m1337.

Although it has not been shown here, the same result also holds for m1783. For m1783, we also

specify several di�erent MaxConstraints. The result shows that as the speci�ed MaxConstraints

increases, the number of groups after partitioning decreases. As the number of groups decreases, the

optimized solution using partitioning procedure improves, while the runtime only increases slightly.

When N = 6, the solution is comparable to that without using partitioning, and the runtime is

still far less than that without using partitioning.
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Table 5: Performance comparison of the partitioning procedure.

Circuit # of # of # of # of # of
PI's PO's FF's gates blocks

m51 8 8 12 51 5

m144 16 2 18 144 9

m1337 51 53 97 1337 42

m1783 90 54 124 1783 43

Circuit CP with clock skew opt. w/o clock skew opt.
w/o partitioning wth partitioning
Area Runtime MaxCnstry Nz Area Runtime Area Runtime

m51 5.0 731 1.74s 300 2 813 1.50s 849 1.29s

m144 6.2 1872 6.11s 300 5 1953 3.32s 2410 2.87s

m1337 9.5 12364 135.35s 1500 6 12370 58.96s 13055 47.54s
9.25 12353 151.34s 1500 6 12356 57.91s - -
7.5 12685 171.92s 1500 6 12689 60.74s - -
6.75 13049 186.61s 1500 6 13112 60.94s - -
6.5 - - 1500 6 - - - -

m1783 9.5 18564 427.14s 300 16 18743 155.07s 21074 140.23s
1000 8 18708 156.55s
2000 6 18572 159.93s

y MaxCnstr = MaxConstraints, the maximum number of contraints.
z N , number of groups after partitioning.

8 Conclusion

In this paper, an e�cient algorithm is presented to minimize the area taken by cells in standard-cell

designed combinational circuits under timing constraints. We present a comparison of the results

of our algorithm with the solutions obtained by our implementation of Lin's algorithm [6] and

by simulated annealing. In [6], it was shown that Lin's algorithm is able to obtain better results

than the technology mapping of MIS2 [29]. Although Lin's algorithm is fast, its solution becomes

excessively pessimistic for tight delay constraints. For very tight timing constraints, it fails to

obtain a solution at all. Experimental results show that our approach can obtain near-optimal
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solution (compared to simulated annealing) in a reasonable amount of time, even for very tight

delay constraints. By adding additional linear programming constraints to account for short path

delay [30], and slightly modifying the mapping and adjusting algorithm, the same approach can be

used to tackle the double-sided delay constraints problem.

A uni�ed approach to minimizing synchronous sequential circuit area and optimizing clock

skews has also been presented. The skews at various latches in a circuit may be set using the

algorithm in [31]. Traditionally, the circuit area of a synchronous sequential circuit is minimized

one combinational subcircuit at a time. Our experiments have shown that this may lead to very

suboptimal solution in some cases.

We formulate the discrete gate sizing optimization as a linear program, which enables us to

integrate the equations with clock skew optimization constraints, taking a more global view of the

problem. Experimental results show that this approach can not only reduce total circuit area,

but also give much faster operational clock speed. For large synchronous sequential circuits, we

also present a partitioning procedure. Our experiments show that our partitioning procedure is

very e�ective in making our optimization algorithm run at a much faster speed, with no signi�cant

degradation in the quality of the solution.

Finally, the clock skew scheme may appear similar to maximum-rate pipelining technique used

in pipelined computer systems [32]. However, the clock in a maximum-rate pipeline cannot be

single-stepped or even slowed down signi�cantly. This makes maximum-rate designs extremely

hard to debug. In the clock skew scheme, by constrast, single-stepping is always possible [9].

Therefore circuits implemented using clock skew technique can be debugged without di�culties.
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Table and Figure Captions

Table. 1 Performance comparison of GALANT with Lin's algorithm and simulated annealing for

ISCAS85 benchmark circuits.

Table. 2 Experimental results of areas given by linear programming, GALANT and simulated anneal-

ing for circuit c432.

Table. 3 Performance comparison with and without clock skew optimization for ISCAS89 benchmark

circuits.

Table. 4 Improving possible clocking speeds using clock skew optimization.

Table. 5 Performance comparison of the partitioning procedure.

Fig. 1 The symbolic constraints propagation algorithm.

Fig. 2 An example illustrating symbolic delay propagation algorithm.

Fig. 3 The bu�er insertion algorithm.

Fig. 4 An example illustrating the de�nition of a synchronous block.

Fig. 5 Comparison of Galant and Lin's algorithm against simulated annealing for c432.

Fig. 6 Experimental results of Galant using two di�erent libraries.
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