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Abstract

A new technique for design centering, and for polytope approximation of the feasible region

for a design are presented. In the �rst phase, the feasible region is approximated by a convex polytope,

using a method based on a theorem on convex sets. As a natural consequence of this approach, a good

approximation to the design center is obtained. In the next phase, the exact design center is estimated using

one of two techniques that we present in this paper. The �rst inscribes the largest Hessian ellipsoid, which

is known to be a good approximation to the shape of the polytope, within the polytope. This represents

an improvement over previous methods, such as simplicial approximation, where a hypersphere or a crudely

estimated ellipsoid is inscribed within the approximating polytope. However, when the pdf's of the design

parameters are known, the design center does not necessarily correspond to the center of the largest inscribed

ellipsoid. Hence, a second technique is developed, which incorporates the probability distributions of the

parameters, under the assumption that their variation is modeled by Gaussian probability distributions. The

problem is formulated as a convex programming problem and an e�cient algorithm is used to calculate the

design center, using fast and e�cient Monte Carlo methods to estimate the yield gradient. An example is

provided to illustrate how ellipsoid-based methods fail to incorporate the probability density functions, and

is solved using the convex programming-based algorithm.
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I. INTRODUCTION

While manufacturing a circuit, it is inevitable that process variations will cause design parame-

ters, such as component values, to waver from their nominal values. As a result, the manufactured circuit

may no longer meet some behavioral speci�cations, such as requirements on the delay, gain and bandwidth,

that it has been designed to satisfy. The procedure of design centering attempts to select the nominal values

of design parameters so as to ensure that the behavior of the circuit remains within speci�cations, with the

greatest probability. In other words, the aim of design centering is to ensure that the manufacturing yield is

maximized. Previous approaches to solving this problem have traditionally taken two routes :

(i) The statistical approach

These are primarily Monte Carlo techniques which utilize information gathered from simulating the circuit

behavior for various sets of design parameters. Monte Carlo-based methods have the disadvantage of being

computationally expensive when the targeted yield is high [1]; however, in the limiting case where every

point in the space is sampled, they give perfect accuracy.

(ii) The geometrical approach

The feasible region in the space of design parameters, i.e., the region where the behavioral speci�cations are

satis�ed, is approximated by a known geometrical body, such as a polytope or an ellipsoid. The center of this

body is then approximated, and is taken to be the design center. Such approaches frequently assume that

the feasible region is convex and bounded. These methods commonly su�er from the following drawbacks:

(a) Limitations associated with the types of geometric bodies that are typically used to approximate the

feasible region:

{ In the case of ellipsoidal approximation as in [2], certain convex bodies cannot be approximated

accurately. This is because an ellipsoid is symmetric about any hyperplane passing through its
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center, and is inherently incapable of producing a good approximation to a body that has a less

symmetric structure.

{ A polytope can provide a better approximation to a convex body than an ellipsoid, regardless of

how symmetric the convex body is, since any convex body can be thought of as a polytope with an

in�nite number of faces. However, �nding the center of a polytope is computationally complex [3]

and cannot be carried out in a reasonable time.

The simplicial approximation algorithm [4] attempts to inscribe the largest hypersphere in the

polytope, and takes its center as the design center; however, as pointed out in [4] itself, in the

case of elongated bodies, such as a rectangle with a highly skewed aspect ratio, it would be more

appropriate to inscribe a ellipsoid rather than a hypersphere. A crude and approximate method

for this purpose is outlined in [4]. In any case, the simplicial approximation procedure essentially

amounts to approximating the feasible region by a polytope, and then approximating the polytope

by a hypersphere or ellipsoid. Hence, it su�ers from the drawbacks of ellipsoidal approximation

listed above.

(b) As pointed out above, the methods in [2, 4] essentially approximate the feasible region by means of

an ellipsoid, and take the center of that ellipsoid to be the design center, regardless of the probability

distributions that de�ne variations in the design parameters. However, as illustrated in the example

in Section IV B, the design center could be highly dependent on the exact probability distributions of

the variables, and would change according to these distributions.

(c) Real feasible regions are seldom convex. While in many cases, they are \nearly convex," there are

documented cases where the feasible region is not very well-behaved. In a large number of cases of

good designs, since the joint probability density function of the statistical variables decays quite rapidly

from the design center, a convex approximation does not adversely a�ect the result. However, if the

nominal design has a very poor yield, a convex approximation will prove to be inadequate.

Recently, a third class of approaches has been proposed which hybridizes the statistical and

geometric approaches [5, 6]; this class is less mature than the statistical and geometrical approaches. These

approaches build up statistical models to approximate the behavioral functions of the circuit, and to use

these models to �nd the optimal values of the nominal parameters. These methods trade o� the accuracy of
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statistical modeling with the cost of modeling and the ease with which one may work with the approximating

functions in �nding the optimum.

However, when all is said and done, each class of approaches has its own advantages and disad-

vantages, and it is not possible to predict which one of the above classes would provide a better result than

another. In a real-life situation, it would be advisable for a designer to �nd solutions provided by all the

available CAD tools, and to then select the best solution.

In this work, we explore the route of geometrical approaches to solving the design centering

problem and introduce a new convexity-based design centering approach. In this approach, the feasible

region is �rst approximated by a convex polytope. As a natural consequence of this procedure, we can

obtain a reasonably good approximation to the actual design center. In the next phase, the design center is

found using one of two new geometrical approaches.

(I) The �rst approach, called the largest Hessian ellipsoid (L.H.E.) method, inscribes the largest Hessian

ellipsoid, de�ned in Section III B, inside the polytope. The shape of the Hessian ellipsoid is well-known

to be representative of the shape of the polytope [3]. This method presents an improvement over [4], in

which the center of either a hypersphere, or a crudely chosen ellipsoid, is taken to be the design center.

This approach is primarily directed towards problems where one has no knowledge of the statistical

variation of the design parameters, and would like to �nd a design center that is \deep within" the

feasible region, but as shown by experimental results, also gives satisfactory results in general.

(II) The second approach, the convex programming (C.P.) approach, proceeds by formulating the design

centering problem as a convex programming problem, assuming that the variations in the design

parameters are modeled by Gaussian probability distributions. A convex programming algorithm [3],

whose e�cacy has been illustrated in [7, 8], is used to �nd the solution to this problem. This method

di�ers from other geometrical methods, such as [2,4], in one important respect: information about the

probability distribution is explicitly utilized, so that, in general, a di�erent design center is found when

the covariance matrix for the random variables is changed.

The suggested approaches are applicable not only to circuit design, but to other manufacturing

processes wherein the feasible region can be approximated by a convex body, and in the case of the second

approach, the variation of the nominal design variables can be described by a Gaussian distribution.
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The remainder of this paper is organized as follows. Section II describes our algorithm for

approximating the feasible region by a convex polytope. The two approaches for �nding the design center

are described in detail in Section III. Experimental results are provided in Section IV, followed by concluding

remarks in Section V.

II. APPROXIMATION OF THE FEASIBLE REGION

A. Introduction

The feasible region F � Rn, where n is the number of design parameters, is de�ned as the set

of points in the design parameter space for which the circuit satis�es all speci�cations on its behavior. A

common assumption made by design centering algorithms is that F is a convex body. In this work, we

preserve that assumption, and use properties of convex sets to create an approximation to F .

Previously, to �nd a polytope approximation to the feasible region, the simplicial approximation

method [4] was used. This method proceeds as follows:

(a) Determine a set of m � n+ 1 points on the boundary of F .

(b) Find the convex hull of these points and use this polyhedron as the initial approximation to F . Set

k = 0.

(c) Inscribe the largest n-dimensional hypersphere in this approximating polyhedron and take its center

as the �rst estimate of the design center. This process involves the solution of a linear program.

(d) Find the midpoint of the largest face of the polyhedron, i.e., the face in which the largest (n � 1)-

dimensional hypersphere can be inscribed.

(e) Find a new boundary point on F by searching along the outward normal of the largest face found in

Step (d) extending from the midpoint of this face. This is carried out by performing a line search.

(f) Inate the polyhedron by forming the convex hull of all previous points, plus the new point generated

in Step (e).

(g) Find the center of the largest hypersphere inscribed in the new polyhedron found in Step (f). This

involves the solution of a linear program. Set k = k + 1, and go to Step (d).
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Thus, each iteration involves the solution of about n + 1 linear programs [9] a line search, and

updating a convex hull. The number of linear programs to be solved in the entire procedure is large (specif-

ically, k(n + 1), where k is the number of iterations). Moreover, the procedure of updating the convex hull

is computationally expensive since updating a convex hull consists of identifying hyperplanes to be removed

and �nding the equations of the new hyperplanes. Obtaining the equation of a hyperplane, given the vertices,

is an O(n3) operation; this needs to be carried out for each new hyperplane of the polytope while updating

the convex hull. At the end of this procedure, the approximation to the design center is available.

We compare the complexity of simplicial approximation with that of Algorithm I, outlined in

Section III B, whose strategy, like simplicial approximation, is to approximate the feasible region by a

polytope and inscribe the largest ellipsoid in the polytope. Generation of each new hyperplane of the

polytope involves a line search. After up to 2n line searches, a new polytope center has to be computed,

which is an O(n2:5) operation. Finally, after the polytope has been approximated, a small number of linear

programs have to be solved to �nd the design center. Thus, the algorithm that we present is computationally

less complex than simplicial approximation, and is more accurate for convex feasible regions, since a more

representative ellipsoid is used for inscription in the polytope.

In practise, however, the simulations take times that are at least an order of magnitude greater

than that taken for the solution of linear programs and other updates, and hence, the improvement in

computational e�ciency here may not be very noticeable.

Algorithm II, presented in Section III C, is an improvement over both simplicial approximation

and Algorithm I for convex feasible regions, since it takes into account the dependence of the design center on

the probability distributions of the design parameters. Moreover, for convex feasible regions, this approach

are an improvement over that presented in [2], where a symmetric body, an ellipsoid, is used to approximate

the feasible region. This is because a polytope approximation method would show no loss in the quality of

the solution, even when the feasible region has diminished symmetry properties in relation to ellipsoids.

B. Construction of the Approximating Polytope

The Supporting Hyperplane Theorem

Our algorithm is based on the following well-known theorem on convex sets [10] that is stated

below.
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Theorem : Let C be a convex set and let y be a boundary point of C. Then there exists a hyperplane

containing y and containing C in one of its closed half-spaces.

De�nition : A tangent plane at a point z0 on the boundary of a region is given by

[rg(z0)]T z = [rg(z0)]T z0 (1)

where g(z) � 0 is an active constraint at point z0, and rg(.) is the gradient of the function g(.).

For a point z0 on the boundary of a convex set, C, a tangent plane at z0 satis�es the supporting

hyperplane property. In particular, for the constraint

g(z) � 0; (2)

C is contained in the half-space

[rg(z0)]T z � [rg(z0)]T z0: (3)

Outline of the Algorithm

The aim of the algorithm is to approximate the feasible region, F � Rn by a polytope

P = fx j Az � bg; A 2 Rm�n;b 2 Rm; (4)

formed by the intersection of m half-spaces in Rn.

The algorithm begins with an initial feasible point, z0 2 F � Rn. An n-dimensional box,

namely, fz 2 Rn j zmin � zi � zmaxg, containing F is chosen as the initial polytope P0. In each iteration,

n orthogonal search directions, d1;d2 � � �dn are chosen. In our experiments, these were taken to be the n

coordinate directions. A binary search is conducted from z0 to identify a boundary point zbi of F , for each

direction di. If zbi is relatively deep in the interior of P, then the tangent plane to F at zbi is added to

the set of constraining hyperplanes in Equation (4). A similar procedure is carried out along the direction

�di. Once all of the hyperplanes have been generated, the center of the new polytope is calculated, using

a method described in the next subsection. Then z0 is reset to be this center, and the above process is

repeated.
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The algorithm is described by the following piece of pseudo-code.

k = 0
Initialize P0 and z0
While (Number of planes added in the last iteration 6= 0) {

Pk+1 = Pk

Choose orthogonal directions d1;d2 � � �dn
For i = 1 to n {

Perform a binary search along direction di from z0
to �nd a boundary point zbi of F

If zbi exists, zbi 2 Pk+1, and distance(zbi, boundary of Pk+1) > � {
Add a hyperplane to the polytope
Pk+1 = Pk+1[ new hyperplane

}

Perform a binary search along direction �di from z0
to �nd a boundary point zbi of F

If zbi exists, zbi 2 Pk+1, and distance(zbi, boundary of Pk+1) > � {
Add a hyperplane to the polytope
Pk+1 = Pk+1[ new hyperplane

}

}

Set z0 = center of the updated polytope, Pk+1

k = k + 1;
}

For the algorithm to provide a good approximation, the thickness of the polytope in each dimen-

sion should be of similar orders of magnitude; if not, the algorithm is liable to terminate too early. This

may be achieved by getting the designers input on the approximate order of magnitude tolerances for each

parameter, and appropriately scaling the axes so that all tolerances are of a similar order of magnitude.

The procedure requires a technique for calculating the gradient of an active constraint at a

boundary point. As in [2], one of several methods may be employed for this purpose. If the exact functional

form of the constraint is known, an expression for the gradient may be derived. If not, methods such as the

adjoint network technique [11] or �nite di�erences may be used to calculate the gradient.

An example of the polytope approximation procedure is illustrated in Section IV A.

C. Computation of the Center of the Polytope

Since �nding the exact volumetric center of a polytope is computationally di�cult [3] and is not

essential to our algorithm, we settle for �nding an approximation to the center, i.e., a point that is deep

within the interior of the polytope, and can be found through relatively inexpensive computation.

Consider a polytope P de�ned by (4), and let ai
T be the ith row of matrix A 2 Rm�n, and bi be

the ith element of b 2 Rm. The center zc, is taken to be the point that minimizes the following log-barrier
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function

F (z) = �
mX
i=1

loge(ai
Tz � bi): (5)

Note that near the boundary of the polytope, F (z) tends to in�nity and its value decreases as one moves

deeper into the interior of the polytope. Also, the value of F (z) is unde�ned outside the boundary of the

polytope. Moreover, F is a convex function of z 2 P , with a 1� n gradient vector

rF (z) = �
mX
i=1

ai
T

(ai
T z� bi)

(6)

and an n � n Hessian matrix

H(z) = r2F (z) =
mX
i=1

aiai
T

(ai
Tz � bi)2

: (7)

Since the initial polytope is a box, its center is easy to �nd. At each subsequent iteration,

hyperplanes are added to the polytope. The new center is found iteratively using a modi�ed Newton's

method [10]. The initial point z0 for the modi�ed Newton's method is found by moving halfway to the closest

boundary in the direction normal to the newly added plane. The point z0 thus obtained is guaranteed to be

in the interior of the new polytope.

The modi�ed Newton method for �nding the center zc then generates iterates of the form

zk+1 = zk + t��k (8)

for k = 0; 1; 2; � � �, until convergence, where �k is the Newton direction at zk given by

�k = �H�1(zk)[rF (zk)]T = �[r2F (zk)]
�1[rF (zk)]T (9)

and t� is the point that minimizes the one-dimensional function

�(t) = F (zk + t�k): (10)

t� may be obtained by performing a simple one-dimensional line-search.

Note that the process of computing a Newton direction by (9) involves the inversion of an

n � n Hessian matrix which takes O(n3) time and can prove to be rather expensive. This expense can be

cut down by maintaining the inverse of an approximate Hessian Ĥ via rank-one updates [10], and using an
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approximate Newton direction �̂k instead of �k in the line search. We note that using an approximate Newton

direction instead of the exact one essentially does not a�ect the convergence properties of the center-�nding

algorithm [3]. Details of computation of the approximate inverse Hessian are provided in [7].

III. FINDING THE DESIGN CENTER

A. De�nition of the Design Center

The random variations in the values of the design parameters are modeled by a probability density

function, �(z) : Rn ! [0; 1], with a mean corresponding to the nominal value of the design parameters. �(z)

is typically taken to be a multivariate Gaussian density function. The yield of the circuit, Y, as a function

of the mean, x, is given by

Y(x) =

Z
F

�x(z)dz (11)

where F represents the feasible region, where the design parameters are such that the circuit satis�es its

behavioral requirements.

The design center is the point x at which the yield, Y(x), is maximized.

In the particular case of an ellipsoidal feasible region and a multivariateGaussian density function,

it can be shown that the design center corresponds to the center of the ellipsoid.

Based on this fact, the simplicial approximation method [4] attempts to inscribe the largest

hypersphere within the approximating polytope. This procedure involves the solution of a linear program.

Note that the procedure, in essence, approximates the polytope by a sphere; hence, the solution to the design

centering problem is the center of the approximating sphere. A disadvantage of this method is that it would

not give the best results for elongated regions of acceptability, such as rectangles. A more realistic center

would be obtained by inscribing the largest ellipsoid inside the polytope. In [4], a simple estimate of the

spread in each design parameter is used to de�ne the shape of the largest ellipsoid that can be inscribed

within the polytope. The largest ellipsoid of that shape is then inscribed into the polytope (it may be

pointed out that this ellipsoid is not necessarily the largest of all ellipsoids that can be inscribed within the

polytope). This method is clearly very approximate since only a limited set of ellipsoids, whose major axes

are along the coordinate directions, is considered. Hence, an ellipsoidal shape de�ned by parameter spreads

does not necessarily correspond to the largest ellipsoid that can be inscribed within the polytope. A better
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method of determining the shape of the largest inscribed ellipsoid is required; in this paper, we present an

approach for doing so.

B. Algorithm I : Inscribing the Largest Hessian ellipsoid

Let E(x,B,r) denote the ellipsoid

�
y j (y � x)TB(y � x) � r2

	
: (12)

The Hessian ellipsoid at a point x in the polytope P, namely the ellipsoid E(x,H(x),1), where H(xc) is the

Hessian of the log-barrier function (Equation (5)) is a good approximation to the polytope locally around

x [3]. Hence, the goal is to �nd the largest ellipsoid in the class E(x, H(x),r) that can be inscribed in the

polytope, and its center xc. The point xc will be taken to be the computed design center.

The minimum of the log-barrier function gives a good approximation to xc. Therefore, it may

be used as an initial guess for the iterative process, described below, that is carried out to �nd xc.

distance = 1
xc = Minimizer of the log barrier function (Equation (5))
while (distance > �) {

xold = xc
H = Hessian at xc
Inscribe the largest ellipsoid of the type E(x, H(xc), r)

(Note that the ellipsoid shape, determined by H(xc),
is �xed, and that x and r are allowed to vary)

Set xc = center of this ellipsoid
distance = kxc � xoldk

}

In each iteration, the shape of the ellipsoid is �xed by the Hessian, H, computed at the current

value of xc; x and r are allowed to vary. It must be pointed out here that the Hessian matrix H, is positive

de�nite.

The process of inscribing the largest hypersphere is described in [4]. For the case of a hyperellip-

soid, E(x,H,r), where H is positive de�nite, a linear transformation is �rst performed. Since H is positive

de�nite, it can be written in terms of its Cholesky factors, i.e., H = HT
c Hc. Hence, the ellipsoid E(x,H,r)

can be written as

(y � x)THT
c Hc(y � x) � r2: (13)

The transformation, w = Hc(y � x), maps the above equation into

wTw � r2; (14)
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which is the equation of a hypersphere. The solution of this new problem of inscribing the largest hypersphere

in a transformed polytope involves the solution of a linear program, as described in [4].

C. Algorithm II : The Convex Programming Approach

Formulation of the convex program

When the probability density functions that represent variations in the design parameters are

Gaussian in nature, the design centering problem can be posed as a convex programming problem.

The joint Gaussian probability density function of n independent random variables

z = (z1; � � � ; zn), where zi has mean xi and variance �i, is given by

�x(z) =
1

(2�)n=2�1�2 � � ��n exp

"
i=nX
i=0

� (zi � xi)
2

2�2i

#
(15)

where x = (x1; � � � ; xn).

This is known to be a log-concave function of x and z. Also, note that arbitrary covariance

matrices can be handled, since a symmetric matrix may be converted into a diagonal form by a simple linear

(orthogonal) transformation.

The design centering problem is now formulated as

maximize Y(x) =
R
P
�x(z)dz

such that x 2 P: (16)

where P is the polytope approximation to the feasible region F , found in Section II. It is a known fact that

the integral of a log-concave function over a convex region is also a log-concave function [12]. Thus, the

yield function Y(x) is log-concave, and the above problem reduces to a problem of maximizing a log-concave

function over a convex set. Hence, this can be transformed into a convex programming problem, with the

corresponding property that any local minimumof the problem is a global minimum. It is worth noting here

that the yield function remains convex as long as �x(z) is any log-concave function of x and z. For example,

this approach would also be valid for an exponential probability density function.
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Applying the Convex Programming Algorithm

The convex programming algorithm proposed in [3] provides an e�cient technique for solving a

convex programming problem, such as (16). We de�ne the feasible set

S = fx 2 Rn j x 2 Pg (17)

and let xc be the solution to (16). Initially, a polytope Q = P that contains xc is chosen. The polytope Q

is given by

Q = fx j Âz � b̂g; Â 2 Rp�n; b̂ 2 Rn: (18)

The algorithm proceeds iteratively as follows. First, a center zc, deep in the interior of the

current polytope Q is found, by minimizing the log-barrier function

F (z) = �
pX

i=1

loge(â
T
i z� b̂i) (19)

where âT
i
is the ith row of matrix Â and b̂i be the i

th element of b̂. The minimization procedure is as given

in Section II C.

There exists a hyperplane that divides the polytope into two parts, such that xc is contained in

one of them, satisfying the constraint

cTz � cTzc (20)

with c = �[rY(x)]T (21)

being the negative of the gradient of the yield (objective) function,

Since the yield function is not available in an explicit form, the gradient is estimated using the

yield gradient approximationmethod presented in Section III D. This yield estimator works with the polytope

approximation of the feasible region and requires no simulations. A point is considered to be feasible if it

lies within the approximating polytope; this leads to a substantial savings in computation, since it is much

cheaper to �nd out whether a point lies within a polytope than to simulate the circuit with a new set of

parameter values.

In practice, the yield gradient is approximate, and possibly erroneous, as it is based on Monte

Carlo simulation. To o�set this problem, the new hyperplane is taken as

cTz � cTzc � � j cTzc j (22)
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where � is a small positive number (typically 0.1 or 0.2), representing the fact that the plane is moved away

by a certain fraction towards the boundary of the current polytope. Qualitatively speaking, the hyperplane

given by Equation (22) shaves o� less from the polytope given by Equation (20), thereby reducing the

possibility of errors due to incorrect gradient estimations.

The constraint in Equation (22) is added to the current polytope to give a new polytope, Q, that

has roughly half the original volume. The process is repeated until the polytope is su�ciently small, and

the �nal center zc is taken to be the computed design center.

D. Yield Gradient Estimation

The yield function, de�ned in Equation (11), can also be written as

Y(x) =

Z
� � �
Z
F

h(z)�x(z)dz (23)

where h(z) = 0 if z 62 F , and h(z) = 1 if z 2 F .

In our method, since we have a polytope approximation, P, to the feasible region, F , we can

take an approximation to the yield as

Yapprox(x) =

Z
� � �
Z
P

g(z)�x(z)dz (24)

where g(z) = 0 if z 62 P, and g(z) = 1 if z 2 P. Thus, the computation of g(zk) is simply a matter of

checking whether the point lies within the polytope or not, which is a computationally cheap operation and

does not require an actual circuit simulation.

Hence, we can write

@Yapprox
@xi

=

Z
� � �

Z
P

g(z)
@�x(z)

@xi
dz

=

Z
� � �

Z
P

�
g(z)

�x(z)

@�x(z)

@xi

�
�x(z)dz: (25)

Therefore, the corresponding yield estimator, based on a sample of N points, is taken as

d@Y
@xi

=
1

N

NX
k=0

g(zk)

�x(zk)

@�x(zk)

@xi
: (26)
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E. E�ect of Monte Carlo Noise

If the yield of the circuit is small, then Monte Carlo noise is liable to a�ect the quality of the

results of the convex programming algorithm. However, this may be o�set by increasing the number of

Monte Carlo points. Since the yield is evaluated by �nding out the number of Monte Carlo points that lie

within the approximating polytope, the additional computational expense in evaluating the yield and the

yield gradient is relatively insigni�cant even though the number of Monte Carlo points is increased. This is

in contrast with the case where one would have to perform a larger number of circuit simulations to obtain

a more accurate estimation of the yield.

IV. EXPERIMENTAL RESULTS

In this section, the following examples are presented :

- An ellipsoidal feasible region, to show the correctness of our algorithms.

- A triangular feasible region, to show the sensitivity of the design center to probability distributions.

- A low-pass �lter [13].

- A high-pass �lter, used as a circuit example in [2]; yield comparisons of the design centers obtained

using our methods and that in [2] are provided.

- A tunable active �lter, used as a circuit example in [2]. As before, yield comparisons of the design

centers are presented.

- A band-stop �lter [14].

- A CMOS operational ampli�er [15]

Many of these examples have been presented in earlier papers on design centering and related topics. In

particular, we have provided results on all of the circuit examples in Abdel-Malek et al.'s paper on design

centering [2].

The variances in each of the circuit examples are in terms of percentages of a nominal value that

corresponds to the design center found by the L.H.E. algorithm.
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A. A Numerical Example

A numerical example in two dimensions is presented here to illustrate our technique. The feasible

region is represented by the ellipse

F =

�
z j (z� t)T

�
2 1
1 2

�
(z� t) � 1

�
(27)

with the ellipse center, t at [4; 4]T . The approximating polytope, P, shown in Fig. 1, can be seen to be a

good approximation of the ellipse.

The largest Hessian ellipsoid algorithm (L.H.E.) in Section III B for �nding the exact design

center converged in two iterations to the point [3:992; 4:008]T.

The convex programming-based algorithm (C.P.) in Section III C was used, with the variances

of the two random variables being set to 1.0. As pointed out in Section III A, the speci�c values of the

variances are immaterial to the solution of this problem, since the random variables are Gaussian and the

feasible region is an ellipsoid. The algorithm required three iterations to converge to the point [4:007; 4:019]T.

In both cases, a very good approximation to the design center, [4; 4]T was obtained.

B. The Importance of Using Probability Information

The following example illustrates the de�ciencies of ellipsoidal-based approaches, such as simpli-

cial approximation [4], the ellipsoidal approach of Abdel-Malek et al. [2], and our largest Hessian ellipsoid

approach. This example provides an exposition of the need for using information on the probability distri-

butions of the design variables.

The feasible region, F , illustrated in Fig. 2, is a triangle in R2, described by the planes

x1 + x2 � 1 (28)

x1 � x2 � �1

x2 � 0:

Any approach that attempts to inscribe the largest circle or ellipsoid in this region would compute

the centroid, i.e. the center of the incircle of the triangle, [0;
p
2� 1]T as the design center.

For a simple case in which the variances of the Gaussian random variables, x1 and x2, are the

same, it is easily seen that the center of area,
�
0; 1

3

�T
, is the design center. Thus, the solution found by

�tting the largest circle or ellipsoid is not necessarily the true design center.
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More precisely, it can be seen from the de�nition (Equation (11)) that the design center is a

function of the probability distributions. Table 1 shows how our convex programming approach �nds the

design center of the triangle in this example, for various sets of parameter variances for the Gaussian random

variables x1 and x2.

We observe from the table above that the x1 coordinate of the design center is virtually at 0, and

is insensitive to the variance. This is not unexpected, since the triangle is symmetric about the line x1 = 0;

hence, the x1 coordinate of the design center would be 0, regardless of the variances.

Table 1 : Yield Maximization using the Convex Programming Approach
Results for Various Sets of Parameter Variances

[�x1 ; �x2 ] �x1=�x2 Computed Design Center
(x1;x2)

[0:1; 0:5] 0.20 (�0:01;+0:47)
[0:2; 0:5] 0.40 (�0:03;+0:45)
[0:3; 0:5] 0.60 (+0:02;+0:41)
[1:0; 1:0] 1.00 (+0:05;+0:35)
[1:0; 0:8] 1.25 (+0:03;+0:34)
[1:0; 0:5] 2.00 (�0:01;+0:34)
[1:5; 0:5] 3.00 (�0:01;+0:34)
[3:0; 0:5] 6.00 (�0:01;+0:32)
[5:0; 0:5] 10.0 (�0:06;+0:31)
[4:0; 0:2] 20.0 (�0:04;+0:29)

However, changes in the variance of the random variables do a�ect the x2 coordinate of the design

center. When �x1
=�x2

is low, the ellipsoidal approximation is a good one. In the limit as �x1
=�x2

! 0,

the design center tends to the center of the largest ellipsoid that can be inscribed in the triangle. When

�x1
=�x2

= 1, the design center is the centroid of the triangle. As �x1
=�x2

increases, the design center starts

moving downward along the x2 axis. When �x1
=�x2

!1, the design center tends to the origin.

C. Design Centering for a Low Pass Filter

This is an example of a low-pass �lter [13], whose circuit diagram and speci�cations are shown

in Fig. 3. The frequencies of interest are f0:45; 0:50;0:55;0:60; 1:0;2:5g rad/sec, which correspond to six

constraints.

The parameter �Iloss is de�ned as follows:

Iloss(j!)
�
= 20 log10

����V1V2 (j!)
���� dB (29)
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�Iloss(j!)
�
= Iloss(j!) � Iloss(j!0) dB: (30)

For this example, the reference frequency, !0, is 0 rad/sec. The design parameters are [C;L1; L2].

The initial feasible point was taken as [1:05F; 1:6H; 1:6H].

A comparison of the results obtained using the largest Hessian ellipsoid (L.H.E.) approach of

Section III B and the convex programming (C.P.) approach of Section III C is shown is Table 2. The L.H.E.

method found the point [0:96039F; 1:84915H; 1:83961H] to be the design center. The tabulated results show

the yield about this design center for various sets of parameter tolerances, and the design center and yield

for the C.P. approach. The yield �gures are based on a Monte Carlo simulation of 500 points, with the mean

value at the calculated design center.

In this example, a noticeably better solution to the design centering problem is given by the

convex programming approach as compared to the ellipsoidal approximation-based method, for most of the

cases listed above. This serves to bring out the fact that the center of an ellipsoid is not necessarily the

design center for a circuit, and that a better solution can be obtained by incorporating information about

the probability density functions that describe the design parameters.

Table 2 : Yield Maximization for a Low Pass Filter

Parameter Variations C.P. Design Center Yield (500 max)
[�C; �L1 ; �L2 ] in [F;H;H]

C. P. L. H. E.

[5:0;5:0; 5:0] [0:8983; 2:1371; 1:8153] 495 488
[8:0;8:0; 8:0] [0:9359; 2:0464; 1:7779] 457 452

[10:0; 10:0; 10:0] [0:9441; 2:0369; 1:7331] 394 395
[13:0; 13:0; 13:0] [0:9485; 2:0427; 1:7079] 324 319
[8:0; 10:0; 15:0] [0:9339; 2:1263; 1:6883] 389 393
[10:0; 13:0; 8:0] [0:9506; 1:9630; 1:7872] 395 385
[5:0; 10:0; 8:0] [0:9001; 2:1214; 1:7642] 476 458

D. Design Centering for a High Pass Filter

This is an example of a high-pass �lter [2], whose circuit diagram and speci�cations are shown

in Fig. 4. The frequencies of interest are f170; 350; 440;630;680; 990; 1800g Hz, which correspond to seven

constraints. The de�nition of the parameter �Iloss is analogous to that for the previous example.
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For this example, the reference frequency, !0, is 990 Hz. The design parameters are [C1; C3; C4; C5].

The initial feasible point was taken as [11:1nF; 12:9nF; 34:3nF; 97:3nF], as in Abdel-Malek et al.'s ellipsoidal

method (A.-M.E.) [2], where the solution was found to be [10:37nF; 13:28nF; 34:63nF; 87:84nF]. The solu-

tion found by the L.H.E. method is the point [9:614nF; 14:148nF; 33:642nF; 99:301nF]. The C.P. method

was applied and, as before, the design center was found to change, depending on the variances associated

with the p.d.f.'s.

Table 3 : Yield Maximization for a High Pass Filter (Four Parameters)

Parameter Variations Yield (500 max)
[�C1 ; �C3 ; �C4 ; �C5 ]

L.H.E. A.-M.E. C.P.

[9:0; 9:0; 9:0; 9:0] 439 432 434
[10:0; 10:0; 10:0; 10:0] 412 407 415
[10:0; 15:0; 20:0; 5:0] 262 258 252
[15:0; 20:0; 5:0; 10:0] 432 403 422
[5:0; 8:0; 10:0; 12:0] 423 409 417
[5:0; 8:0; 10:0; 15:0] 411 400 404
[5:0; 10:0; 10:0; 15:0] 403 392 402
[5:0; 10:0; 12:0; 15:0] 365 365 364
[8:0; 12:0; 10:0; 12:0] 409 390 403
[8:0; 12:0; 10:0; 10:0] 411 399 416
[15:0; 12:0; 10:0; 10:0] 398 387 395
[8:0; 12:0; 12:0; 10:0] 373 360 369

Table 4 : Yield Maximization for a High Pass Filter (Seven Parameters)

Parameter Variations Yield (500 max)
[�C1 ; �C2 ; �C3 ; �C4 ; �C5 ; �L1 ; �L2 ]

L.H.E. A.-M.E. C.P.

[10; 10; 10; 10; 5; 5; 5] 243 244 251
[10; 10; 10; 10; 10; 10; 10] 159 149 155

[8; 8; 8; 8; 8; 8; 8] 237 220 231
[5; 5; 5; 5; 5; 5; 5] 420 363 410
[8; 8; 8; 8; 5; 5; 5] 307 303 306

[5;10; 5; 10; 5; 10; 5] 243 205 230
[8;12; 10; 12; 5; 8; 8] 175 162 164
[4; 4; 8; 8; 8; 4; 4] 361 359 363

[5;5; 5; 5; 10; 10; 10] 257 228 246
[9; 10; 8; 10; 5; 4; 6] 256 253 260
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The yield �gures for the design centers found by the A.-M.E. method, the L.H.E. method and the C.P.

method are displayed in Table 3. As before, the �gures are based on a Monte Carlo simulation of 500

points, with the mean at the calculated center. It can be seen from this table that both the L.H.E. and

the C.P. methods frequently performed better than the A.-M.E. method, and none of these three methods

is consistently better than another. However, the overall performance of L.H.E. is the best of the three for

this example.

The second experiment took [C1; C2; C3; C4; C5; L1; L2] as the design parameters. The initial

feasible point was taken, as in [2], as [11.65 nF,10.47 nF,13.99 nF,39.93 nF,99.4 nF,3.988 H,2.685 H], where

the solution was found to be [12.76 nF,10.37 nF,11.88 nF,40.26 nF,117.37 nF,3.609 H,2.504 H]. The solution

obtained by the L.H.E. method was [12.68 nF,8.775 nF,12.68 nF,30.93 nF,93.17 nF,4.623 H,2.748 H]. A

comparison of results for this experiment from the L.H.E., C.P. and A.M.-E. methods, for variance values of

component variances, is shown in Table 4. Both the C.P. and L.H.E. methods provide better solutions than

A.-M.E. for almost all cases here.

E. Design Centering for a Tunable Active Filter

The techniques described in the paper were used to design the tunable active �lter shown in Fig.

5 [16]. The transfer function is given by

F =

����v2vg
���� : (31)

Table 5 : Yield Maximization for a Tunable Active Filter

Parameter variances C.P. Design Center Yield (500 max)
[�G1

; �G4
; �C1 ; �C2 ] in [�0;m0; �F; �F]

C.P. L.H.E. A.-M.E.

[1:00; 1:00; 1:00; 1:00] [83.1537,5.5237,0.7051,0.7652] 334 340 334
[1:50; 1:50; 1:50; 1:50] [82.4903,5.6678,0.7277,0.7619] 226 233 229
[1:50; 1:50; 1:50; 0:50] [82.9126,5.6594,0.7200,0.7677] 268 268 264
[1:50; 1:50; 2:00; 0:50] [83.1716,5.6420,0.7165,0.7694] 229 236 228
[0:50; 0:80; 1:00; 0:80] [83.9927,5.5682,0.7003,0.7745] 380 375 380
[0:50; 0:80; 0:70; 0:60] [79.5042,5.4012,0.7219,0.7323] 431 432 432
[1:00; 0:40; 1:00; 0:60] [79.5042,5.4012,0.7219,0.7323] 415 421 413
[1:00; 1:20; 1:00; 0:60] [81.5437,5.4771,0.7134,0.7509] 357 360 362

The one pole role-o� model used for the operational ampli�er presumes a dc gain of 2 � 105,

and a 3-dB bandwidth of 12� rad. The designable parameters are considered to be [G1; G4; C1; C4]. The
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speci�cations for the �lter are as follows:

F � 0:5 at 90 Hz
F � 0:5 at 92 Hz

1:0 � F � 1:21 at 100 Hz
F � 0:5 at 108 Hz
F � 0:5 at 110 Hz

(32)

An initial feasible point [80.2 �0, 5.42 m0, 0.72856 �F, 0.72856 �F] is provided, as in [2]. Table

5 shows a comparison of the results from the two approaches in this paper, namely the largest Hessian

Ellipsoid (L.H.E.) approach and the convex programming (C.P.) approach in comparison with the result

from the A.-M.E. approach, where the design center was calculated to be [83.13 �0, 5.423 m0, 0.716047 �F,

0.769181 �F] [2]. The L.H.E. method computed the point [84.29 �0, 5.636 m0, 0.71798 �F, 0.78037 �F] as

the design center. The table compares the yield for a design centered about the two points above, and with

the design center obtained by using the C.P. approach for each set of variances. The variances are given as

percentages of the initial feasible point. The yield �gures represent the number of feasible points in a Monte

Carlo simulation using 500 sample points, with the mean �xed to be the computed design center.

All three methods provide approximately the same quality of result.

F. Design of a Band Stop Filter

This example of a band-stop �lter is taken from [14]. A description of the circuit and the band di-

agram for the �lter is provided in Fig. 6. The designable parameters are chosen to be [C1; C2; C3; L1; L2; L3],

with the initial values of [22:14pF; 66:31pF; 22:14pF; 11:94�H; 3:986�H;11:94�H].

Table 6 : Yield Maximization for a Band Stop Filter

Parameter variances C.P. Design Center Yield (500 max)
[�C1 ; �C2 ; �C3 ; �L1 ; �L2 ; �L3 ] in [pF;pF;pF; �H; �H; �H]

C.P. L.H.E.

[2:0; 2:0; 2:0; 2:0; 2:0; 2:0] [22:4190; 68:3267; 22:1863; 11:3284; 4:0638; 11:5871] 240 244
[3:0; 3:0; 3:0; 3:0; 3:0; 3:0] [22:1870; 68:0586; 21:8802; 11:5312; 4:0638; 11:6887] 130 126
[3:0; 2:0; 1:0; 3:0; 2:0; 1:0] [22:2503; 68:1142; 22:1536; 11:5677; 4:0718; 11:3770] 257 240
[1:0; 2:0; 3:0; 1:0; 2:0; 3:0] [22:6960; 68:2509; 21:7533; 11:1709; 4:0657; 11:8229] 261 238
[3:0; 1:0; 2:0; 3:0; 1:0; 2:0] [22:4751; 67:6409; 20:9736; 11:4665; 4:0995; 12:0349] 322 306
[1:5; 1:0; 2:0; 3:0; 1:0; 1:5] [22:2868; 68:3106; 21:5708; 11:4559; 4:0764; 11:8039] 330 337
[2:5; 2:0; 1:0; 2:0; 1:5; 1:5] [22:3061; 67:8269; 22:4988; 11:4126; 4:0864; 11:4105] 270 273
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The solution to the problem given by the L.H.E. method is [23:030pF; 66:542pF; 23:030pF;

11:085�H; 4:174�H; 11:085�H]. Table 6 shows the yield for the circuit, for di�erent set of parameter variances,

based on a Monte Carlo simulation using 500 sample points, with the mean �xed to be the design center

computed by the L.H.E. and the C.P. methods, respectively. It is seen that each method performs better

than the other an equal number of times in this table.

G. Design of a CMOS Operational Ampli�er

The design centering techniques were applied to a CMOS Operational Ampli�er circuit shown

in Fig. 7 [15]. The transistor pairs M1-M2 and M3-M4 are matched. The designable parameters are the

widths of transistors M1, M5, and M6. The constraints that de�ne the feasible region for this problem are

as follows:

� Gain � 98 dB

� Area = sum of widths of M1, M5 and M6 � 308

� Bandwidth � 17 �106 rad/sec

� Power dissipation � 0.65 mW

Table 7 : Yield Maximization for a CMOS Operational Amplifier

Parameter variances C.P. Design Center Yield (500 max)
[�wM1

; �wM5
; �wM6

] in [�m;�m; �m]
C.P. L.H.E.

[3:0; 3:0; 3:0] [106.7,87.8,108.8] 452 446
[4:0; 4:0; 4:0] [108.4,94.7,94.7] 392 377
[5:0; 5:0; 5:0] [108.4,94.7,94.7] 334 312
[7:0; 7:0; 7:0] [105.5,93.9,98.7] 252 219
[5:0; 8:0; 1:0] [108.4,94.7,94.7] 302 281
[5:0; 7:0; 4:0] [103.5 93.7 101.3] 300 288
[3:0; 4:0; 9:0] [108.4,94.7,94.7] 288 289
[3:0; 6:0; 3:0] [108.4,94.7,94.7] 370 375
[4:0; 1:0; 4:0] [106.6,84.9,107.2] 425 411
[3:0; 2:0; 4:0] [106.5,88.6,102.9] 440 437
[4:0; 2:0; 3:0] [108.1,88.2,102.0] 445 421
[4:0; 4:0; 2:0] [108.4,94.7,94.7] 433 413
[3:0; 5:0; 3:0] [108.4,94.7,94.7] 411 401
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We have assumed in this example, that the sizes of the three transistors vary independently of

each other. In practise, however, this is not necessarily true as the size variations in an integrated circuit

are correlated. However, the example is adequate to illustrate the design centering techniqes.

The nominal values of all transistors, corresponding to an initial feasible solution, are shown in

the �gure. We perform the L.H.E. and the C.P. design centering procedures in the transformed domain, to

obtain the results shown in Table 7. As before, the yield estimates are based on a Monte Carlo simulation

of 500 points with the design center corresponding to the mean value. It can be seen that for this example,

the C.P. method is almost always better than the L.H.E. method.

V. CONCLUSION

In this paper, a new approach to design centering has been presented. The algorithm �rst

approximates the feasible region by a polytope, using a procedure that is computationally less expensive

than the existing method. Next, one of two approaches may be used to �nd the design center. The �rst

approach inscribes the largest Hessian ellipsoid within the approximating polytope. This method is an

improvement over simplicial approximation [4], where a hypersphere, or a crude ellipsoid are inscribed within

the polytope, since the Hessian ellipsoid provides a good measure of the shape of the polytope. The second

approach improves upon other geometrical design centering techniques, such as simplicial approximation,

the ellipsoidal algorithm of Abdel-Malek et al. [2], and our �rst approach, by explicitly including information

about the probability distributions of the random variables that represent the design parameters. The

de�ciencies of ellipsoid-based methods and the consequent need for a probability distribution-based approach

have been illustrated by the example of the triangular feasible region in Section IV B. The low-pass �lter

in Section IV C is a practical example where an improvement in the solution has been obtained using this

technique.

Circuit examples on a low-pass �lter, a high-pass �lter, a tunable active �lter, a band-stop �lter,

and a CMOS op amp are presented. For each of these examples, the feasible region is nonconvex in reality.

Many of these examples have been presented in earlier papers on design centering.

Comparisons with the results of the ellipsoidal method of Abdel-Malek et al. were made for

all of the circuit examples published in [2], i.e., for a high-pass �lter example and a tunable active �lter

example. For the high-pass �lter, the L.H.E. (largest Hessian ellipsoid) and the C.P. (convex programming)
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approaches provide solutions with better yields than the result of [2] in both the four-variable and seven-

variable experiments. In the case of the tunable active �lter, all three methods gave solutions of roughly the

same quality, and our results were not noticeably worse than the results from A.-M.E.

In the case of the low-pass �lter, the results of the C.P. method were better than those of the

L.H.E. method for almost all cases, whereas for the band-stop �lter, each method performed better than the

other an equal number of times. For the example of the CMOS op amp, the C.P. method is almost always

consistently better than the L.H.E. method.

The reason for the inconsistency in the results is that the quality of the results is a�ected by

the convexity of the region. For convex feasible regions, the polytope approximation of the feasible region is

more general than an ellipsoidal approximation, since it does not assume any symmetry in the structure of

the feasible region. Hence, it would be expected that the C.P. method provides the best solution, followed

by the L.H.E., A.-M.E. and simplicial approximation methods.

For nonconvex feasible regions, the quality of the geometrical methods deteriorates. The accu-

racy of these methods su�ers since the polytope approximation to a nonconvex feasible region is poor. In

particular, the basis of the convex programming approach lies in the correct approximation of the feasible

region by a polytope, and in the absence of this correctness, the accuracy of the method su�ers. Hence,

in some cases in the examples above, this approach was found to be inferior to the other approaches. In

practical examples, however, from experimental evidence, it is seen that both the L.H.E. and C.P. approaches

are successful, regardless of whether the feasible region is convex or not.
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