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I. INTRODUCTION

Circuit delays in MOS integrated circuits often need to be reduced to obtain faster

response times, with a minimal area penalty. A typical MOS digital integrated circuit consists

of multiple stages of combinational logic blocks that lie between latches, clocked by system

clock signals. Delay reduction must ensure that the worst-case delay of the combinational

blocks is such that valid signals reach a latch before any transition in the signal clocking the

latch, with allowances for set-up time requirements. In other words, the worst-case delay

of each combinational stage must be restricted to be below a certain speci�cation. The

requirements for hold times are di�erent in nature, and are not addressed in this paper.

Given the MOS circuit topology, the delay can be controlled by varying the sizes

of transistors in the circuit. Here, the size of a transistor is measured in terms of its channel

width, since the channel lengths in a digital circuit are generally uniform. Roughly speaking,

the sizes of certain transistors can be increased to reduce the circuit delay at the expense of

additional chip area.

For a combinational circuit, the transistor sizing problem is formulated as

minimize Area (1)

subject to Delay � Tspec

and Each transistor size �Minsize

1



Several other formulations have also been suggested, such as minimizing the area-

delay product, and minimizing the delay subject to a constraint on the maximumpermissible

circuit area.

It has widely been recognized that the area, measured as the sum of transistor

sizes, and the delay along a path of the circuit can be represented by posynomial functions

of the sizes of transistors in the circuit. A posynomial is a function g of a positive variable

x = [x1; x2 � � �xn] 2 Rn that has the form

g(x) =
X
j


j
nY
i=1

x
�ij
i (2)

where the exponents �ij 2 R and the coe�cients 
j > 0. Such a function has the useful

property that it can be mapped onto a convex function through an elementary variable

transformation, (xi) = (ezi) [1].

In this paper, the delay of a circuit is de�ned to be the maximumof the delays of all

paths in the circuit. Hence, it can be formulated as the maximum of posynomial functions.

This is mapped by the above transformation on to a maximum of convex functions, which

is also a convex function. The area function is also a posynomial, and is transformed into a

convex function by the same mapping. Therefore, the optimization problem de�ned in (1) is

mapped to a convex programming problem, i.e., a problem of minimizing a convex function

over a convex constraint set. Due to the unimodal property of convex functions over convex

sets, any local minimum of (1) is also a global minimum.

Most approaches model the delay of a CMOS gate as the Elmore time constant [2]

of an equivalent RC network representing the circuit under the simplifying assumption that

the input signals at the gate nodes of transistors are step functions. Such an assumption

ensures that the delay function is posynomial [3], but is not realistic, since actual signals have

nonzero rise or fall times. Hedenstierna and Jeppson [4] have developed a delay model for
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CMOS inverters that creates an equivalent RC network for the inverter when the signals at

the gate nodes of transistors have nonzero rise or fall times. This model is also posynomial,

and has been adapted in the transistor sizing tool, MOGLO [5].

The most commonly used measure of the circuit area is given by an a�ne function

of transistor sizes [3,5{12]. While this measure is not very accurate, it has the advantage of

being a posynomial function of the sizes of transistors in the circuit.

Various methods have been used for optimization. TILOS [3, 6], performs the task

by iteratively identifying a critical delay path, and using a heuristic method to reduce the

delay along this path. The iterative process stops when the critical path (i.e., the largest

delay path among all paths between a primary input and a primary output) meets the

delay constraint. All transistors are initially set to the minimum size, and the sizes of only

those transistors that lie on the critical path are increased, in an attempt to meet the delay

constraint by increasing the sizes of as few transistors as possible. A subsequent algorithm

proposed by Shyu et al. [7] works in two phases. It uses TILOS to generate a rough initial

solution in the �rst phase. In the second phase, it converts the problem to a mathematical

optimization problem in a smaller parameter space (corresponding to sizes of transistors on

the paths of worst delay), and uses a method of feasible directions to �nd the optimal solution.

The use of the reduced space serves to reduce the complexity of the optimization problem.

iDEAS [8], like TILOS, iteratively reduces the delay along the critical path; it di�ers from

TILOS in that it changes the size of more than one transistor in each iteration. The methods

used by Cirit [9], Hedlund [10] and Marple [11, 12] formulate non-linear programs, and solve

them by the method of Lagrangian multipliers. Another approach, as practised in MOSIZ

[13], CATS [14] and iCOACH [15], is to perform the transistor size optimization as a two-step

iterative process. The �rst step is an outer loop in which a timing `budget', Ti, is assigned

to each gate i, using a coarse simpli�cation based on the overall delay speci�cation. In the
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inner loop, the transistors in gate i are sized optimally so as to satisfy the timing budget, Ti,

for that gate. The partitioning of the task into two steps serves to reduce the computational

complexity of the algorithm.

There are several problems associated with the above optimization methods. Es-

sentially, they perform a sequence of local optimizations over a reduced parameter space,

hoping, but not guaranteeing, that such optimizations would lead to a global optimum.

Moreover, apart from using the unimodality property, none of these algorithms takes ad-

vantage of the fact that the optimization problem can be posed as a convex programming

problem.

With regard to delay modeling, each of the algorithms described in this section,

except for [5], assumes waveforms with step transitions at the input and output of each

gate. This is not realistic, since actual waveforms have non-zero rise and fall times. In [5],

although delay models accommodate the e�ects of non-zero transition times, the accuracy of

the optimization is compromised by choosing uniform widthsWn and Wp for all n-transistors

and p-transistors, respectively, in a gate.

In this paper, we tackle the transistor sizing problem as de�ned in (1), which is

the most common form of the problem faced by practising circuit designers. The other

formulations mentioned earlier in this section can also be handled using the same approach.

We use a new and more accurate delay estimator that permits waveforms with

non-zero rise and fall times, and computes rise and fall delays separately. The details of

the delay estimation algorithm are furnished in Section II. An e�cient convex programming

method [16] is used for global optimization over the parameter space of all transistor sizes

in a combinational subcircuit. This algorithm is capable of handling large problem sizes

without having to prune any variables; moreover, its complexity is independent of the num-

ber of constraints. Hence, the optimization procedure is guaranteed to solve the problem
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exactly by �nding the global minimum of the optimization problem, unlike many other prob-

lems which make simplifying assumptions for tractability, but cannot guarantee optimality

and reasonable runtimes. The algorithm starts by bounding the convex domain by an initial

polytope. By using special cutting plane techniques, the volume of this polytope is shrunk in

each iteration, while ensuring the optimal solution lies within the boundary of the polytope.

The iterative procedure stops when the volume of the polytope becomes su�ciently small.

A more complete description is given in Section III. Since this is the �rst practical imple-

mentation of the convex programming algorithm [16] on problems of the size that we have

handled, a considerable portion of this paper is devoted to practical aspects of the imple-

mentation. The extension of the algorithm from combinational circuits to general sequential

circuits is outlined in Section IV. Finally, experimental results to illustrate the e�cacy of

this technique are presented in Section V.

II. THE DELAY ESTIMATION ALGORITHM

In this section, an algorithm for estimating the worst-case delay through the circuit,

over all possible input combinations, is described.

Consider a combinational CMOS circuit with a set of primary input nodes and

primary output nodes. The circuit is �rst divided into channel-connected components (hence-

forth referred to simply as components); each component corresponds to a set of transistors

that are connected by drain and source nodes.

More formally, the de�nition of a component can be given by the following con-

struction. Create an undirected graph with a vertex for each circuit node and an edge

between the drain and source node of each transistor. Next, split the vertices corresponding

to the ground node, the supply (VDD) node, and the primary input nodes such that each

of these vertices is incident on only one edge after splitting. A component is then a set of
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transistors corresponding to the edges within a connected component of the graph. This

process is illustrated in Fig. 1.

The input nodes of a component consist of all the gate nodes of transistors in the

component, and any drain or source node of a transistor in the component that is also a

primary input. A component's output nodes include any drain or source node of a transistor

in the component that is either a primary output, or a gate node of some transistor in the

circuit.

A technique known as PERT (Program Evaluation and Review Technique) [17]

is used to compute the maximum overall rise and fall delays between primary inputs and

primary outputs of the circuit. A trace-back method is then used to obtain the critical path,

which consists of the set of gates that lie on the largest delay path from a primary input

to a primary output of the combinational network. Two numbers th and tl are assigned

to each output node of each component in the circuit, which correspond to the total rise

and fall delay from the primary inputs, respectively. In addition, for each component, we

compute �h and �l, the Elmore delays of an RC network that corresponds to the worst-case

rise and fall scenarios, respectively. Additionally, the output transition waveform is modeled

as a function that varies linearly with time. The transition times of the rising and falling

waveforms at the output of the component are taken to be 2�h and 2�l respectively.

Fig. 2 shows the input waveform that triggers an output fall transition of an

inverting gate in response to an input with an arrival time of th;max and transition time � .

The de�nitions of tl and �l for the output response are illustrated in the �gure; th and �h

are de�ned in a similar manner.

Finding the Worst-case Elmore Delay

A MOS transistor is modeled as a voltage-controlled switch with an on-resistance

Ron between drain and source and three grounded capacitances Cd, Cs, and Cg at the drain,
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source, and gate terminals, respectively. The resistance and capacitances associated with a

MOS transistor of channel width x are taken to have the following dependence [7] on x :

Ron / 1=x

Cd; Cs; Cg / x

The PERT technique schedules components in order for evaluation. The waveform

at an input node of a transistor in a scheduled component could be a steady logic 0, a steady

logic 1, a logic 0 to logic 1 transition, or a logic 1 to logic 0 transition, corresponding to a

switch that is either ON, OFF, or in transition. The worst-case Elmore delay at an output

node of the component must be found over all possible input combinations. Let o denote an

output node of the component. The algorithm for �nding the worst-case fall delay at o is

described below; the worst-case rise delay at o can be found in an analogous manner.

The component is represented by an undirected weighted graph, G, with an edge

between the drain and source nodes of each transistor in the component. Edge weights are

given by the resistance Ron of the corresponding transistor. The VDD node and all of its

incident edges are then removed from the graph. Let th;max denote the maximum value of

th among all input nodes of the component and suppose this occurs at the gate node of an

n-type transistor corresponding to an edge emax in G. It is assumed that the worst-case

path is the largest resistive path (LRP) (i.e. the path of largest weight) between o and

ground that passes through emax. This assumption is valid when the load capacitance at the

output node is much greater than the internal capacitance at any node that lies on any path

between the output node and the ground node through emax, as is often the case for CMOS

circuits. As one pushes a component to its speed limit, internal node capacitances will no

longer be small. However, since the capacitances that need to be driven by the component

would probably increase, it is hoped that this assumption will hold. For the circuit delay
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speci�cations reported in this paper, it is seen in Section V that the approximation is valid.

Since �nding the LRP is equivalent to the longest path problem in a graph which

is NP-hard [18], we have developed a heuristic to perform this task. This heuristic is exact

for series-parallel graphs, such as CMOS complex gates, and can be outlined as follows.

T = maximum weighted spanning tree in G containing emax such
that the path P between o and ground in T contains emax

maxW = sum of weights of edges in P
LINK = edges in G � T
for each edge e 2 LINK {

T1 = T [ e
P1 = max weight o-to-ground path in T1 through emax

W = sum of weights of edges in P1
if ( W > maxW ) {

e0 = any edge in P � (P \ P1)
T = T1 � e0, P = P1, maxW = W

}

}

The heuristic begins by �nding a maximum weighted spanning tree T of G that

contains the edge emax, using a variant of Prim's algorithm [18]. Let P 0 denote the unique

path in T between o and ground. If P 0 contains emax, set P to P 0; otherwise an edge, e 62 T ,

is added to T such that T + e has a path P between o and ground through emax, and the e

is the edge of greatest weight among all edges that satisfy this condition. The introduction

of e creates a unique cycle; an edge e0, such that e0 2 P 0 and e0 62 P , is removed from T + e,

to give a new initial tree T .

The edges which are not in T constitute the set of links. A link is then added to

the present tree T to produce a subgraph T1 that contains a unique cycle. Therefore, there

can be at most two paths from o to ground in T1. The path of larger weight is called P1. If

the weight of P1 is larger than that of P , then the present tree T is updated by removing

any edge from T1 that belonged to P but not to P1. Also, P is reset to P1 and the heuristic

proceeds to process the next link, and so on, until all links of the original tree have been
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processed. The path between o and ground in the �nal tree produced by the heuristic is

referred to as the largest resistive path (LRP). In case of series-parallel graphs, the heuristic

does indeed generate the path of largest resistance from output to ground; in other cases

(such as graphs with bridges), it gives a good approximation.

Now, consider any spanning tree Tw of the graph G. If Pp and Pq are the paths

to ground from nodes p and q, respectively, in Tw, let Rpq denote the resistance of the path

Pp \ Pq. The Elmore delay [2] between o and the ground node in the RC-tree represented

by Tw is given by

X
j2Tw

RojCj (3)

where Cj is the capacitance to ground at node j in Tw. Note that while �nding the Elmore

delay, the capacitances which lie between the switching transistor and the supply rail are

assumed to be at the voltage level of the supply rail at the time of the switching transition,

and do not contribute to the Elmore delay.

In order to �nd a tree that contains the LRP and which maximizes the Elmore

delay, certain edges must be added to the LRP in such a way that Roj is maximized for every

node j in the graph. The algorithm to construct the worst-case tree Tw from the LRP is as

follows. Initially Tw is taken to be the LRP itself. For a node n1 62 Tw the algorithm �nds a

node n2 2 Tw that is farthest from the ground node and is connected to n1 by a path that

does not intersect Tw. This path is then added to Tw and the procedure is repeated until

all nodes of G are included in the tree Tw. The worst-case fall delay at o is then computed

using (3).

Example 1: Consider the graph G shown in Fig. 3. Assume that the LRP between the

output node o and ground has been found to be d,e . Initially, Tw is taken to be the LRP

d,e . Consider node n1 which is connected to node o through several paths, one of which is
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j,k . This path is added to Tw which now becomes d,e,j,k . Note that both nodes n1 and n2

are now part of the tree Tw. The nodes n4 and n5 are then added to the tree by adding the

edges a and b respectively. Finally, the node n6 is added to the tree by adding the edge f to

it. This completes the formation of the worst-case tree which is d,e,j,k,a,b,f indicated by

the bold edges in Fig. 3. If branch d corresponds to the switching transistor, the worst-case

Elmore delay is given by

(Rd +Re)(Co + Cn4 + Cn5 + Cn2 + Cn1) (4)

Finally, the value of tl for output node o is computed by adding th;max, the Elmore

delay of the worst-case RC network, �l, and a term [4] related to the transition time of the

rising input at the input node corresponding to the worst-case Elmore fall delay.

A more detailed description of how the e�ect of input transition time is incorpo-

rated is provided later in this section. This procedure is repeated for all output nodes of the

component.

The value of th, the worst-case rise delay at each output node of the component, can

be found in a similar manner. The weighted graph representing the component is constructed

as before except that the ground node is removed instead of the VDD node. The rest of the

procedure to �nd the worst-case Elmore rise delay is identical to that of the fall delay except

that the role of the ground node is replaced by the VDD node, and the roles of th and �h are

exchanged with those of tl and �l in the fall delay case.

In other delay estimators that we have come across, the Elmore rise and fall delays

are computed directly from the LRP without appending additional edges to extend it to the

worst-case RC-tree as described above.

Delay Model for Components under Nonstep Transitions

In [4], it has been shown that a good approximation to the delay, �, of a CMOS
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inverter under excitation from a nonstep input with rise time � , i.e.,

vin =

8><
>:

0 t < 0
t

�
� VDD; 0 < t < �

VDD; t > �
(5)

is given by

� = �step +
�

6

h
1 + 2VTn

VDD

i
(6)

where

VTn = Threshold voltage of nMOS transistor
VDD = Supply voltage
�step = Transition delay of the inverter under a step input excitation

� is de�ned as the di�erence between the time when the output signal crosses the VDD=2

level, and the time at which input signal reaches VDD=2. We model the falling output signal

using a form similar to the input waveform vin in (5). The relationship between the input

and output signals in our model, for the falling output transition, is shown in Fig. 2.

A general complex gate such as the AOI gate, when excited by a step excitation,

may be represented by an equivalent inverter I whose size is determined by the Elmore delay

of the worst-case RC tree described earlier. For an excitation of the type in (5), we may

consider the general complex gate as being equivalent to the inverter I being excited by the

same excitation. Hence, (6) also holds for complex gates.

The form of the path delay under step excitations is described in [3]. We examine

the change required in this form to include the e�ect of waveforms with nonstep transitions

as described in (5), under the assumption that the signal at the output of a component is

modeled by a ramp function, as described earlier in this section.

Let �i;step refer to the delay of component i on a path of the circuit, with all input

waveforms having step transitions. The delay of the circuit, Delaystep, is given by
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Delaystep = �1;step +�2;step + � � �+�n;step (7)

When we incorporate the e�ect of the transition time, and add the simplifying assumption

that the magnitude of the threshold voltage is the same for nMOS and pMOS enhancement

mode transistors, the delay along the path is given by

Delayn = �1;step + [�2;step + � �Delay1]

+[�3;step + � � (Delay2 �Delay1)]

+[�4;step + � � (Delay3 �Delay2)] + � � �

+[�n;step + � � (Delayn�1 �Delayn�2)]

= �1;step +�2;step + � � �+�n�1;step +�n;step + � �Delayn�1

= w1 ��1;step + w2 ��2;step + � � �+ wn ��n;step: (8)

where

Delayk = circuit delay up to kth component from primary inputs

� =
1

3
�
"
1 +

2 j VT j
VDD

#

VT = threshold voltage (assumed equal in magnitude for

nMOS; pMOS for simplicity)

wk =
n�kX
i=0

�i:

Thus, the delay is expressed by the weighted sum of the �i;step values. Since each

of the �i;step expressions is posynomial [3], and the wi's are constant, the expression for delay

along a path under excitations with nonstep transitions is a posynomial.

In the case where the threshold voltage, VT is di�erent in magnitude for n and p

type transistors, the form of (8) remains the same, but the expression for the wk's is more
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involved. In this work, we have assumed that the magnitude of the threshold voltage is the

same for n and p type transistors.

As will be shown in Section V, the delay times calculated by our estimator are in

good agreement with SPICE results.

Area and Delay Functions

Let n denote the number of transistors in a combinational circuit and let x =

[x1; x2; � � � ; xn] be an n-dimensional vector of the transistor sizes. The total area of the

circuit is taken, for simplicity, to be the sum of the transistor sizes, i.e.,

Area(x) =
nX

i=1

xi: (9)

Note that the area function is a posynomial in x.

The equation for the overall delay Delay(x) through the critical path, using our

gate-delay model, has been shown to be a posynomial of the form

Delay(x) =
X
j


j
nY

i=1

x
�ij
i =

X
j


jx
�1j
1 x

�2j
2 � � �x�njn (10)

where


j � 0; �ij 2 f�1; 0; 1g 8 i = 1; 2; � � � ; n:

Also, �ij may be -1 only for critical transistors, i.e., transistors that lie in the LRP of a

component on the critical path. This is because the delay is expressed as a sum of RC

products. The only transistors that contribute terms with an exponent of `-1' to these RC

products are those that act as resistances, i.e., the critical transistors. Any other transistor

may either contribute a term with exponent `1', when it acts as a capacitance, or may make

no contribution to the RC product.
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III. THE CONVEX PROGRAMMING ALGORITHM

The objective of the algorithm is to solve the following transistor sizing problem

minimize Area(x) =
nX

i=1

xi (11)

subject to Delay(x) � Tspec

where the delay Delay(x) is maximum of delays along all paths to a primary output node

of the circuit. By making the variable transformation

(xi) = (ezi)

the original transistor sizing problem (11) of minimizing a posynomial area function over

posynomial constraints becomes

minimize Area(z) =
nX

i=1

ezi (12)

subject to D(z) � Tspec

The other formulations mentioned in the introduction, namely, minimizing the delay subject

to area constraints, minimizing the area-delay product, or a formulation that involves the

area, delay and power dissipation, can also be handled by this algorithm. However, since

the above formulation is the most practically useful one, we restrict our discussion to this

formulation.

Note that under this transformation, the delay along a path has the form

X
j


je
Pn

i=1
�ijzi

which is a convex function. Since the circuit delay is de�ned to be the maximum of all path

delays, and the maximum of convex functions is also convex, D(z) is a convex function. It
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can be seen that Area(z) is also a convex function of z. Hence, (12) is a convex programming

problem of minimizing a convex function over a convex set of constraints.

The algorithm proposed by Vaidya in [16] provides an e�cient technique for solving

(12). De�ne the feasible set

S = fz 2 Rn : D(z) � Tspecg (13)

and let zopt be the solution to (12). Initially, a polytope P that contains zopt is chosen. It is

of the form

P = fz : Az � bg (14)

where A 2 Rm�n and b 2 Rm. Here, m denotes the number of linear inequality constraints

describing the polytope. The initial polytope P , for example, may be selected to be an

n-dimensional box describing the set

fz : loge(xmin) � zi � loge(xmax)g (15)

where xmin and xmax are the user-speci�ed minimumand maximumallowable transistor sizes,

respectively. Thus, this system naturally incorporates upper and lower bound constraints

on transistor sizes.

The algorithm proceeds iteratively as follows. First, a center zc deep in the interior

of the current polytope P is found by using a technique which will be described later. Next,

an oracle is then invoked to determine whether or not the center zc lies within the feasible

region S. From the de�nition of S, the oracle is simply a routine that invokes the delay

estimator described in Section II, with the transistor sizes xi = ezc;i, to determine whether

or not the delay requirement is met. If the point zc lies outside S, it is possible to �nd a

separating hyperplane passing through zc that divides the polytope P into two parts, such

that S lies entirely in the part satisfying the constraint

cTz � � (16)
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where

c = �[rDcritpath(z)]
T (17)

is the negative of the gradient of the critical path delay (constraint) function, and

� = cTzc (18)

The separating hyperplane described above corresponds to the tangent plane to the path

delay along the critical path. Note that the discontinuity of the derivative of the circuit

delay function does not a�ect matters, since we only deal with the gradient of a path delay,

which is a continuous function.

If the point zc lies within the feasible region S, then there exists a hyperplane that

divides the polytope into two parts such that zopt is contained in one of them satisfying the

constraint (16) with

c = �[rArea(z)]T (19)

being the negative of the gradient of the area (objective) function, and � is once again

de�ned by (18). In either case, the constraint (16) is added to the current polytope to give

a new polytope that has roughly half the original volume. The process is repeated until the

polytope is su�ciently small.

Since this is the �rst practical implementation of this convex programming algo-

rithm on problems of the size that we have handled, our work addresses several issues that

were inconsequential to previous implementations that worked with a smaller number of

variables. Hence, a description of some of the practical issues involved is provided in some

detail in this section.

Example 2: Consider the problem

minimize f(x1; x2)

s:t: (x1; x2) 2 S
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where S is a convex set and f is a convex function. The shaded region in Fig. 4(a) corresponds

to S, and the dotted lines show the level curves of the function f . The point x� is the solution

to this problem. The procedure begins by bounding the expected solution region by a closed

polytope, which corresponds to a rectangle in two dimensions. This is shown in Fig. 4(a).

The center, zc of this rectangle is found. The oracle is invoked to determine whether zc lies

within the feasible region or not; in this case it can be seen that zc lies outside the feasible

region. Hence, the gradient of the constraint function is used to pass a hyperplane through

zc, such that the polytope is divided into two parts, one of which contains the solution

x�. This is illustrated in Fig. 4(b), where the hatched region corresponds to the polytope

containing the solution. The process is repeated on this new smaller polytope. Its center

lies inside the feasible region, and hence the gradient of the objective function is used to

generate a hyperplane that further shrinks the size of the polytope, as shown in Fig. 4(c).

The result of another iteration is illustrated in Fig. 4(d). The process continues until the

polytope has been shrunk su�ciently.

It can be seen that the key parts of this algorithm are

(1) �nding the center zc of the existing polytope P ,

(2) generating gradient functions in (17) and (19) above, and

(3) deciding when to terminate the algorithm.

Procedure for �nding the center of the polytope

We would like to �nd a point inside a polytope that satis�es the property that

any separating hyperplane drawn through it divides the original polytope into two parts

of approximately equal volume. Finding such a point is di�cult [16], and so we settle for

�nding a point that is reasonably deep within the interior of the polytope, and can be found

through relatively inexpensive computation.

Consider a polytope P de�ned by (14), and let ai
T be the ith row of the m � n
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matrix A, and bi be the i
th element of the m-dimensional vector b. The center zc, is taken

to be the vector that minimizes the following log-barrier function

F (z) = �
mX
i=1

loge(ai
Tz� bi) (20)

Note that near the boundary of the polytope, F (z) tends to in�nity and its value decreases

as one moves deeper into the interior of the polytope. Also, the value of F (z) is unde�ned

outside the boundary of the polytope. Moreover, F is a convex function of z 2 P , with a

1� n gradient vector

rF (z) = �
mX
i=1

ai
T

(ai
Tz� bi)

(21)

and an n� n Hessian matrix

H(z) = r2F (z) =
mX
i=1

aiai
T

(ai
Tz� bi)2

(22)

Since the initial polytope is a box, its center is easy to �nd. At each subsequent

iteration, a constraint of the form cTz � � is added to the previous polytope whose center

is found iteratively using the Newton's method [19] as follows. The initial point z0 for the

Newton's method is found by moving halfway to the closest boundary in the direction c.

The initial point z0 thus obtained is guaranteed to be in the interior of the new polytope.

The Newton's method for �nding the center zc then generates iterates of the form

zk+1 = zk + t��k (23)

for k = 0; 1; 2; � � �, until convergence, where �k is the Newton direction at zk given by

�k = �H�1(zk)[rF (zk)]T = �[r2F (zk)]
�1[rF (zk)]T (24)
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and t� is the point that minimizes the one-dimensional function

�(t) = F (zk + t�k) (25)

and is obtained by performing a one-dimensional line-search.

Note that the process of computing a Newton direction by (24) involves the inver-

sion of an n�n Hessian matrix which takes O(n3) time and can prove to be rather expensive.

This expense can be cut down by maintaining the inverse of an approximate Hessian Ĥ via

rank-one updates [19] as described below, and by using an approximate Newton direction �̂k

instead of �k in the line search. We note that using an approximate Newton direction instead

of the exact one essentially does not a�ect the convergence properties of the center-�nding

algorithm [16].

Rank-one updates

Let zk be the point at the beginning of the (k+1)th iteration of Newton's method

for �nding the center zc of the polytope P described by (14).

Two methods for maintaining the approximate Hessian, using rank-one updates

[19] are outlined below.

Method 1

The Hessian at zk may be written as

H(zk) = r2F (zk) =
mX
i=1

aiai
T

(ai
Tzk � bi)2

= AT�A (26)

where � is a diagonal matrix.

Let �1; �2 > 0 be small parameters. An approximate Hessian is given by

Ĥ = AT �̂A (27)
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where �̂ 2 Rm�m is a diagonal matrix such that at the start of the (k + 1)th iteration, the

ith diagonal entry of �̂, �ii satis�es the condition

(ai
Tzk�1 � bi)

�2��11 � �ii � (ai
Tzk�1 � bi)

�2�2 8 1 � i � m: (28)

We maintain an approximate inverse Hessian, H�1; the following rank-one correction proce-

dure is used to update H�1 at the beginning of the (k + 1)th iteration.

For each i = 1 , 2 , � � � , m {

if (�ii < (ai
Tzk � bi)�2�

�1
1 ) or

(�ii > (ai
Tzk � bi)�2�2) then {

! = (ai
Tzk � bi)�2 � �ii

�ii = (ai
Tzk � bi)�2

e = H�1ai

� = !(1 + !ai
Te)�1

H�1 = H�1 � �eeT

}

}

One of two schemes may be used to calculate the approximate Newton direction :

(a) maintaining a more accurate H�1, and setting

�̂k = �H�1(rF (zk))T (29)

It can easily be veri�ed that each rank-one update to H�1 is of complexity O(n2). Typically,

the number of updates to �̂ per iteration is less than O(
p
n) and this reduces the average

cost of an iteration of the center �nding algorithm from O(n3) to O(n2:5).

(b) maintaining a more approximate H�1, and using it as a preconditioner for a precondi-

tioned conjugate gradient method [20] that solves

H�̂k = �(rF (zk))T (30)

This method trades o� the cost of maintainingH�1 accurately against the cost of performing

a few iterations of the preconditioned conjugate gradient method.
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For Scheme (a) for maintaining an approximate inverse Hessian described above,

the parameter �1 above is typically chosen to be around 1.5, while �2 may be set to about 5,

while for Scheme (b), typical values for �1 and �2 are 3 and 20 respectively.

The reason why �2 is set to be larger than �1 is as follows. When ! is positive

(i.e., when �2 determines whether an update is to be made or not), the denominator of �

is relatively large, and hence numerical errors in the calculation of � are damped out. In

the case where ! is negative (i.e. the update decision is dependent on the value of �1), the

denominator of � grows smaller as �1 increases, and a large �1 could lead to an ampli�cation

of numerical errors. small. Therefore, the choice of �2 may be more liberal than that of �1.

In each of these two methods, it su�ces to maintain H�1; it is not even necessary

to explicitly �nd Ĥ.

Method 2

The Hessian at zk may also be written as

H = � + UT
U (31)

Let p be the number of additional planes added to the initial polytope, the box, described

by (15). � 2 Rn�n is the Hessian at zk due to the planes of this box only, and is a diagonal

matrix. The ith diagonal element of �, denoted 
ii, is given by


ii =
h
[zk;i � xmin]

�2 + [xmax � zk;i]
�2
i
�1

The rows of UT 2 Rp�n correspond to the planes added to the initial polytope, i.e., the

(2n + 1)th to the mth rows of AT . 
 2 Rp�p is a diagonal matrix, whose diagonal entries

correspond to the last p diagonal entries of the matrix � in (26).

We may now write

H�1 = ��1 � ��1U
h

�1 + UT��1U

i�1
UT��1 (32)
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= ��1 � ��1UC�1UT��1 (33)

where C = 
�1 + UT��1U

We maintain an approximation C�1 to C�1. An approximate inverse Hessian is

then given by

H�1 = ��1 � ��1UC�1UT��1 (34)

As in Method 1, it su�ces to maintain the approximate inverse of C; it is not necessary to

explicitly store C itself. The approximate Hessian or the approximate inverse Hessian are

never explicitly maintained; the search direction is found by computing � = �H�1[rF (zk)]T ,

which involves multiplication of the expression (34) for H�1 by a n � 1 vector. The cost

of this computation can be seen to be O(np) (if n � p), i.e., the number of added planes

is much less than the problem dimension. This is seen to be the case for large problems,

and hence the use of this method would speed up the computation substantially for large

problems.

If the number of additional planes, p has not changed since the last calculation of

C�1, all that needs to be done to get the new C�1 is a set of rank-one updates. If a new

plane has been added, a method outlined in [21] may be used to update C�1. The method

involves a rank-one update and a few additional operations to incorporate the e�ect of the

newly-added plane. As before, one of two schemes may be used to calculate the approximate

Newton direction:

(a) Maintaining a more accurate C�1, and setting

�̂k = �H�1(rF (zk))T (35)

(b) Maintaining a more approximate C�1, and using it to as a preconditioner for a precon-

ditioned conjugate gradient iteration that solves

H�̂k = �(rF (zk))T (36)
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It may be noted that the preconditioned conjugate gradient does not need an

approximateH or H�1 explicitly, but multipliesH�1 by a n�1 vector; we have already seen

that this operation is computationally cheap when p is small.

It was found experimentally that Scheme (b) of Method 2 gave the best overall

results for the problems that we worked on.

One-dimensional Line Search

Once the Newton direction �k of (24) has been found, the value of t� that minimizes

the one-dimensional function �(t) de�ned by (25) is obtained as follows. First, the allowable

values of t are bounded by tmin and tmax, where tmax is found by computing the distance from

the point zk to the nearest boundary of the polytope along the �k direction. The derivative

of � in the interval [0; tmax] can be shown to be

�0(t) = rF (zk + t�k) � �k = �
mX
i=1

si
sit+ ri

(37)

where si = ai
T �k and ri = ai

Tzk � bi for each i = 1; 2; � � � ;m. Note that

�0(0) = rF (zk) � �k = �rF (zk) �H�1 � [rF (zk)]T < 0 (38)

since the Hessian of F , a convex function is positive de�nite. Also,

lim
t!tmax

�0(t) > 0 (39)

As a result of (38) and (39), and since the function � is convex in the interval [tmin; tmax],

tmin can be set to 0, and a simple bisection search can be used to �nd t� at which �0(t�) = 0

as follows :
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repeat {
t� = (tmin + tmax)=2
if (�0(t�) and �0(tmin) are of opposite sign )

tmax = t�

else
tmin = t�

}

until ( j �0(t�) j< �)

where � is a small positive number.

Generation of hyperplanes

When the center zc of a polytope lies within the feasible region S, the gradient

of the area function is required to generate the new hyperplane passing through the center.

The area function of (12) has a gradient at the point z given by

rArea(z) = [ez1; ez2; � � � ; ezn ] (40)

In the case when the center zc lies outside the feasible region S, the gradient of

the critical path delay function Dcritpath(zc) de�ned by (10) is required to generate the new

hyperplane that is to be added. For each k = 1; 2; :::; n, the kth component of the required

gradient vector at a point z is given by (see equation (10))

[rDcritpath(z)]k =
X
j


j�kje
Pn

i=1
�ijzi (41)

Note that the transistors in the circuit can contribute to the kth component of the gradient

of the delay function in either of two ways :

(a) If the kth transistor is critical (i:e:, it lies on the LRP of a component on the critical path

of the circuit), or

(b) If the kth transistor is a capacitive load for some critical transistor.

Transistors that satisfy neither of these two requirements have no contribution to

the gradient of the delay function.
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Termination criterion

The algorithm should be terminated when the volume of the �nal polytope is

su�ciently small. In practice, near the optimum, the polytope becomes 
at in the direction

normal to the gradient of the area. A practical termination criterion uses this property.

From the current center, zc, let z1 and z2 be the two nearest points on the boundary

of the polytope, in the direction of the positive and negative gradient of the area respectively.

The di�erence between the area of the circuit corresponding to the transistor sizes at z1 and

z2 provides a measure of the 
atness of the polytope in the direction of the area gradient.

Hence, the termination criterion is taken to be

j Area(z1)�Area(z2) j
Area(zc)

< � (42)

where � is a small user-speci�ed number (a reasonable default value is 0.01).

IV. EXTENSION TO SEQUENTIAL CIRCUITS

For sizing sequential circuits, it is �rst required that latches in the circuit be

identi�ed. Next, the combinational subcircuits that lie between these latches are extracted,

and the delay constraint for each of these subcircuits is computed. For each subcircuit, the

transistor sizing problem is solved by minimizing the area of the subcircuit, while ensuring

that its delay requirement is satis�ed.

The task of identifying latches proceeds as follows. The circuit is represented

by a graph, G, with vertices corresponding to components, and with edges drawn from a

component to each component that it fans out to. Feedback loops in the circuit (e.g. cross-

coupled NAND gates), which manifest themselves as strongly connected components in this

graph, are identi�ed using Tarjan's algorithm [22].
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Next, each clock signal is traced from the primary inputs, proceeding from a com-

ponent to each of the components that it fans out to, until the signal intersects either a

feedback loop or a transmission gate. Such a feedback loop or transmission gate is identi�ed

as a latch. Thus, this procedure identi�es latches which are clocked not only by clock signals

at the primary input, but also by quali�ed clock signals.

All latches are then removed from the circuit. In case of transmission gate latches,

this could result in a single component being broken up into two or more components. A

new graph Ĝ is formed, in the same way as G, to represent this new circuit. A breadth-�rst

search of Ĝ can detect strongly connected components of this new circuit; each such strongly

connected component corresponds to a combinational subcircuit that lies between a set of

input latches and a set of output latches. From the clock arrival times at these latches, the

timing requirements for the combinational subcircuits can be found.

V. EXPERIMENTAL RESULTS

The algorithms described in the previous sections have been implemented in iCON-

TRAST (illinois Convex Optimization-based Novel TRAnsistor Sizing Tool). The pro-

gram, written in C, now consists of approximately 6000 lines of code.

The input to the program is a SPICE deck that gives a transistor-level netlist of

the circuit. In the preprocessing stage, the circuit is �rst divided into channel-connected

components. Next, latches in the circuit are identi�ed. The circuit is divided into combina-

tional subcircuits that lie between latches, and the delay constraints for each such subcircuit

are determined. The main body of the procedure carries out a convex optimization on each

combinational subcircuit.

It must be mentioned here that for our experimental results, the approximate
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Hessian for �nding the Newton direction was maintained using Scheme (b) of Method 2

described in Section III.

A set of test circuits described in Table 1 were used to evaluate the performance

of iCONTRAST. The entries under unsized area and unsized delay correspond to the area

and delay when all transistors in the circuit are set to the minimum size. In case of the

sequential circuit, the delay refers to the maximum stage delay for the circuit. It may be

noted that the word `area' refers to the sum of transistor sizes. The technology parameters

used here correspond to a submicron technology. The number of iterations for each circuit

were of the order O(n). For these circuits, the initial polytope was taken to be a box with

the minimum transistor size being 1.8, and the maximum size being 500.

Table 1 : Circuits used to evaluate iCONTRAST

Circuit Description # Transistors Unsized Area (�m) Unsized Delay

Inv6 6-inverter Chain 12 21.6 7.0ns

Inv10 10-inverter Chain 20 36.0 12.6ns

Tree Tree of NAND gates 28 50.4 4.0ns

Add2 2-bit Adder 52 93.6 24.2ns

Add8 8-bit Adder 208 374.4 109.8ns

Add32 32-bit Adder 832 1497.6 452.5ns

Seq Sequential circuit 244 439.2 26.9ns
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Table 2 shows the area of the circuit after it has been sized by iCONTRAST to

meet a delay speci�cation, Tspec, and the execution time on a Sun SPARCstation I. Since

our method solves the underlying convex programming problem exactly, the areas shown

here correspond to the globally optimum solution to the transistor sizing problem, with an

accuracy that is dictated by the tightness of the user-speci�ed termination criterion. The

number of iterations, and the memory requirement for each circuit are also shown. In case

of the sequential circuit, Seq, the number of iterations corresponds to the maximum number

of iterations required to size any combinational subcircuit.

Consider, for example, the results on the example circuit, Add8. As seen in Table

1, the unsized area and delay for this circuit are 374.4 �m, and 109.8 ns respectively. The

area penalty required to achieve a relatively loose delay speci�cation such as the �rst one, 100

ns, is not very large; the active area of the sized circuit is only 11% larger than the unsized

circuit. As the delay speci�cation becomes tighter, the area penalty increases non-linearly;

to achieve a delay speci�cation of 40 ns, the active area of the sized circuit is 182 % larger

than that of the unsized circuit. A similar trend is visible for each of the other example

circuits in Table 2.

The number of iterations and the memory requirement are seen to increase slightly

in most cases with the tightness of the delay speci�cation. For the largest circuit, however,

the number of iterations is seen to be roughly independent of the delay speci�cation.

None of these results violates the theoretical prediction that the order of magnitude

of the number of iterations for a given circuit is dependent only on the size of the initial

polytope (which was the same for all circuits) and is independent of the delay speci�cation.

The basis for this prediction lies in the fact that the volume of the polytope is roughly halved

in each iteration; hence, the volume of the polytope containing the solution is roughly the

same after the same number of iterations, regardless of where the solution lies within the
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initial polytope.

Table 2 : Results on sizing various circuits using iCONTRAST

Circuit Tspec Sized Area (�m) Execution Time # Iterations Memory requirement

Inv6 5.0ns 29.2 1.2s 26 648 KB
4.0ns 40.9 1.7s 31 652 KB
3.0ns 72.2 2.0s 34 656 KB
2.0ns 244.8 2.9s 39 660 KB

Inv10 10.0ns 45.2 2.5s 31 812 KB
8.0ns 62.3 2.4s 33 816 KB
6.0ns 110.0 4.1s 50 848 KB
5.0ns 177.4 5.2s 59 860 KB
4.5ns 251.0 6.6s 62 856 KB

Tree 3.5ns 58.8 11.8s 53 796 KB
3.0ns 74.8 12.3s 64 784 KB
2.5ns 104.5 14.1s 76 820 KB
2.0ns 174.7 18.3s 93 836 KB
1.5ns 407.0 20.6s 108 880 KB

Add2 18.0ns 114.3 33.5s 71 1.6 MB
15.0ns 132.0 34.0s 74 1.5 MB
12.0ns 167.3 45.9s 79 1.5 MB
10.0ns 198.6 60.7s 89 1.6 MB
8.0ns 247.1 101.6s 115 1.7 MB
7.0ns 459.6 160.3s 143 1.8 MB

Add8 100.0ns 414.6 18.2m 147 4.4 MB
80.0ns 491.1 12.3m 179 5.7 MB
60.0ns 692.9 11.4m 236 5.7 MB
40.0ns 1430.3 41.7m 271 6.0 MB

Add32 350.0ns 1909.5 420.9m 595 11.1 MB
250.0ns 2866.5 456.9m 545 11.1 MB
200.0ns 4329.6 543.5m 538 11.2 MB

Seq 20.0ns 498.5 169.6s 86 y 3.0 MB
15.0ns 633.9 258.7s 89 y 3.1 MB
10.0ns 1125.8 429.4s 105 y 3.2 MB

(y largest number of iterations required by a combinational subcircuit)

In a comparison with the optimization algorithm of TILOS [3, 6, 23], using the

same delay models for both algorithms, it was found that when the delay speci�cation was

loose, the area of the TILOS-sized circuit was close (within a few tenths of a percent) to the

29



optimal one obtained using the iCONTRAST algorithm. However, as the delay speci�cation

was made tighter, it was observed that the TILOS solution moved away from the optimal one;

in some cases, the area achieved by iCONTRAST was under 1/3 that given by TILOS [23].

In comparison with TILOS, both the CPU time and the memory requirements were found to

be larger; however, the improvement in the quality of the solution provided by iCONTRAST

could be considerable, since the global optimum is guaranteed by this algorithm.

Fig. 5 shows the variation of transistor sizes in a 7-stage inverter chain. The

minimum transistor size allowed here is 1.8 �m. The load that is driven by the chain

corresponds to an inverter of Wp=Wn = 50 �m/50 �m. This problem has exactly two paths

between the primary inputs and the primary output; the delay along both paths, i.e., the rise

and the fall delays at the output node, are equal after sizing, as expected. For relatively loose

delay speci�cations, it is seen that only the last stages are made larger, while those towards

the input remain relatively una�ected. As Tspec (given in ns) is made tighter, it is seen that

in addition to a�ecting the transistors at the output stages, the sizes of the transistors that

are closer to the input are also signi�cantly increased. The sizes of transistors in the input

stage are restricted by the contribution of the user-speci�ed resistance of the source that

drives the �rst stage. The variation of sizes in the n-transistor stages is illustrated in Fig.

5(a); the variation of p-transistor sizes, shown in Fig. 5(b), follows the same trend as the

n-transistor stages.

It should be noted that in this circuit, since the number of n-transistors (p-

transistors) in the two paths is not equal, the nature of the variation in transistor sizes

is somewhat di�erent from a circuit such as an 8-inverter chain, which has equal numbers

of n-transistors (p-transistors) on each path. To illustrate this, note that the path with the

larger unsized delay goes through p-transistors 1, 3, 5 and 7. Hence, in the sized circuit,

where both path delays are equal, it is seen that p-transistors 3 and 5 contribute to the
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disruption of the smoothness of the curve by being larger than their interpolated values.

Transistors 1 and 7, being at the primary input and primary output respectively, are in-


uenced by other considerations (namely, the input resistance and the output capacitance,

respectively), and therefore, such e�ects are not visible.

However, a caveat is in order here: the above considerations are not the only reason

for nonsmoothness of the curve; the curve for an 8-inverter chain is seen to be nonsmooth

too. Also, one should curb an instinctive tendency to compare these variations with the

smooth exponential variations of Mead and Conway [24], since the two problems are not the

same. The Mead-Conway problem principally di�ers from ours in the following respects:

(a) The objective of their problem is to minimize the number of stages and the circuit delay.

In our problem, the circuit topology, and hence, the number of stages is �xed.

(b) The Mead-Conway approach uses a simpler delay model.

Finally, the performance of iCONTRAST's delay estimator on a chain of 8 inverters

(Inv8), a complete binary tree of seven 2-input NAND gates (Tree), and a 2-bit adder using

complex gates (Add2), in relation with SPICE delay values, is shown in Figs. 6, 7 and 8,

respectively. To illustrate the improvement provided by the enhancements of our algorithm, a

comparison is provided with the delay obtained by a simple summation of component Elmore

delays, without considering input slopes, and without considering the e�ects of capacitances

that do not lie on the LRP. The various SPICE delay values correspond to a di�erent set of

transistor sizes in the circuit. For the circuits Inv8 and Tree, where the individual gates are

inverters and NAND gates, respectively, the values are in excellent agreement. For a circuit

like Add2 that is composed of complex gates, the accuracy can be seen to deteriorate slightly,

but remains close to SPICE. It is clear from the data displayed here that the enhancements

in our algorithm provide a considerable improvement.

31



VI. CONCLUSION

In this paper, we have presented a convex programming approach to solving the

transistor sizing problem. This approach is guaranteed to �nd the global minimum solution

to the problem. Any of the commonly-speci�ed forms of the transistor sizing problem can be

handled by this approach; we have illustrated the algorithm on the most useful form, given

in Eq. (1). A major advantage is that the delay constraints do not need to be explicitly

stated. Ensuring that the delay of the circuit satis�es the speci�cation, is equivalent to

ensuring that the delay along each path of the circuit satis�es the speci�cation; since the

number of paths in the circuit could be exponentially large, the number of constraints could

be exponential in number. A conventional technique, such as Lagrangian multipliers, would

not be able to solve a problem with such a large number of constraints in a reasonable time.

The complexity of the algorithm is dependent on the number of variables, the size of the

initial polytope, and the termination criterion, and is independent of the number of convex

constraints. Moreover, the discontinuities in the circuit delay function do not require special

treatment from the algorithm, as in many other transistor sizing algorithms such as [7].

A new delay estimation algorithm, that takes waveform slopes into account and

calculates the worst-case delays, is also presented. Experimental comparisons with SPICE

show that the enhancements made by this approach over previous approaches a�ord a large

improvement in the quality of the solution.

The algorithm was implemented as a C program on a SUN Sparcstation I, and

results on purely combinational circuits with up to 832 transistors, and on a sequential

circuit, have been presented here.
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