
A Unified Engine for Accelerating GNN
Weighting/Aggregation Operations, with Efficient

Load Balancing and Graph-Specific Caching
Sudipta Mondal, Susmita Dey Manasi, Kishor Kunal, Ramprasath S., Ziqing Zeng, and Sachin S. Sapatnekar

Abstract—Graph neural networks (GNN) analysis engines are
vital for real-world problems that use large graph models.
Challenges for a GNN hardware platform include the ability
to (a) host a variety of GNNs, (b) handle high sparsity in
input vertex feature vectors and the graph adjacency matrix
and the accompanying random memory access patterns, and
(c) maintain load-balanced computation in the face of uneven
workloads, induced by high sparsity and power-law vertex
degree distributions. This paper proposes GNNIE, an accelerator
designed to run a broad range of GNNs. It tackles workload
imbalance by (i) splitting vertex feature operands into blocks,
(ii) reordering and redistributing computations, (iii) using a
novel flexible MAC architecture. It adopts a graph-specific,
degree-aware caching policy that is well suited to real-world
graph characteristics. The policy enhances on-chip data reuse
and avoids random memory access to DRAM. GNNIE achieves
average speedups of 7197× over a CPU and 17.81× over a
GPU over multiple datasets on graph attention networks (GATs),
graph convolutional networks (GCNs), GraphSAGE, GINConv,
and DiffPool. Compared to prior approaches, GNNIE achieves
an average speedup of 5× over HyGCN (which cannot implement
GATs) for GCN, GraphSAGE, and GINConv. GNNIE achieves
an average speedup of 1.3× over AWB-GCN (which runs only
GCNs), despite using 3.4× fewer processing units.

Index Terms—GNN, hardware accelerator, graph-specific
caching, load balancing.

I. INTRODUCTION

Deep learning accelerators have largely focused on data with
Euclidean embeddings, e.g., audio/video/images/speech. Many
real-world problems (e.g., network analysis, embedded sens-
ing, e-commerce, drug interactions) use graphs to model rela-
tionships. Inferencing on large, unstructured, and sparse graphs
with non-Euclidean embeddings requires specialized graph
neural networks (GNNs). Today’s GNNs [1]–[4] are based
on nearest-neighbor operations, with improved efficiency over
early methods [1], [5], [6].

Multilayer GNNs perform two computation steps per layer:
(a) Weighting performs a linear transform of vertex feature
vectors through multiplication by a weight matrix.
(b) Aggregation consolidates information from the neighbors
of a vertex to compute the feature vectors for the next layer.
The challenges in building GNN accelerators are as follows:
(1) Versatility An accelerator should be able to handle a diverse
set of GNNs to cover a wide range of GNN architectures to

S. Mondal, S.D. Manasi, K. Kunal, Ramprasath S., Z. Zeng, and S. S.
Sapatnekar are with the Department of Electrical and Computer Engineering,
University of Minnesota, Minneapolis, MN. This work was supported in part
by the Semiconductor Research Corporation (SRC).

provide appropriate computation/accuracy tradeoff points for
various applications. The achievable accuracy depends on the
GNN: graph attention networks (GATs) achieve higher accu-
racy than other GNNs, but with more computation (Fig. 1).

Fig. 1. GNN accuracy comparison (data from [3], PPI dataset).

(2) Adjacency matrix sparsity The graph adjacency matrix
encodes vertex neighborhood information required for Aggre-
gation. The adjacency matrix is highly sparse (> 99.8% for all
datasets in this paper; in contrast, DNN data shows 10%–50%
sparsity). Unlike image/video data, adjacency matrix sparsity
patterns typically exhibit power-law behavior, with vertex
degrees ranging from very low (for most vertices) to extremely
high (for very few vertices): in the Reddit dataset, 11% of the
vertices cover 88% of all edges.
(3) Input feature vector sparsity The vertex input feature
vectors are highly sparse, e.g., the 2708 input vertex feature
vectors of the Cora dataset have 98.73% average sparsity. In
Fig. 2, Region A is sparser than B and requires less compu-
tation, leading to load balancing issues during Weighting.

Fig. 2. Nonzero histogram for input vertex feature vectors (Cora).

(4) Memory footprint and random-access patterns Real-world
graphs have a large number of vertices and a massive memory
footprint (Reddit: 2.3Gb in sparse format). High sparsity and
power-law distributions can lead to random memory access
patterns and poor data access locality in Aggregation.

Therefore, GNN-specific accelerators must address:
(a) load balancing during Weighting, due to the sparsity
variations in Fig. 2, and during Aggregation, due to the
imbalance of computations for high- and low-degree vertices.

1

(b) lightweight graph-specific caching of the adjacency matrix
for high data access locality and maximal reuse of cached data.
Relation to other acceleration engines: The Weighting
step performs matrix-vector multiplication which resembles
convolutional neural network (CNN) computations, but CNN
accelerators [7]–[13] are inefficient at handling graph data.
Aggregation operates on graph neighborhoods and resem-
bles graph analytics, but graph processing accelerators [14]–
[16] are designed to perform lightweight computations, sig-
nificantly lower than the needs of a GNN. Extensions of
CNN/graph processing engines are inadequate.

An early GNN accelerator, HyGCN [17], bridges the divide
by using two pipelined engines: an Aggregation engine that
operates on graph data and consolidates vertex feature vectors
from the neighborhood of each vertex, followed by a Combi-
nation engine, which uses a multilevel perceptron to weight
the aggregated features with the weight matrix. The disparity
between engines raises challenges in providing a steady stream
of data to keep the Aggregation/Combination engine pipeline
busy. The Aggregation engine does not account for power-law
behavior while caching partial results, and high-degree vertices
may create stalls due to the limited size of on-chip buffers.
In the Combination engine, the aggregated feature vectors
are both sparse and show high sparsity variations (Fig. 2).
Consequently, stalls are required, leading to inefficiency.

AWB-GCN [18] views the GNN computation as two con-
secutive sparse-dense matrix multiplications (SpMMs). Dur-
ing Weighting, the method is targeted to moderate sparsity
of 75% – but input layer vertex feature vectors are ultra-
sparse (Fig. 2). During Aggregation, the graph-agnostic SpMM
view necessitates numerous expensive off-chip accesses to the
adjacency matrix. AWB-GCN addresses workload imbalances
issues through multiple rounds of runtime load-rebalancing,
but this leads to high inter-PE communication. Finally, SpMM-
based approaches face more severe load imbalances for imple-
menting GNNs that involve additional complex computations
before Aggregation (e.g., softmax in GATs and DiffPool). In
fact, AWB-GCN targets only GCNs and not general GNNs.
Novelty of this work: We propose the GNNIE (pronounced
“genie”) architecture that uses a single engine that efficiently
performs both Weighting and Aggregation. The GNNIE frame-
work handles high levels of sparsity in the input vertex feature
vectors and the adjacency matrix, with novel approaches for
load balancing and graph-specific caching. It covers a number
of GNN topologies, from lower accuracy/lower computation
(e.g., GCN, GraphSAGE) higher accuracy/higher computation
(e.g., GATs), as motivated in Fig. 1, and is more versatile than
previous methods in handling functions such as softmax over
a neighborhood (e.g., as used for attention normalization in
GATs; prior work [19] on GATs, skips this crucial step).

Novel methods to mitigate sparsity effects, and overcome
load imbalances and compute bottlenecks, include:
• Load balancing during Weighting based on splitting vertex

features into blocks (Section IV-A). Together with load
balancing (Section IV-C), this enhances throughput during
Weighting by ensuring high PE utilization and skipping un-
necessary computations, by (a) Reordering computations on
a flexible MAC (FM) architecture to address imbalances due

to input feature vector sparsity variations. Computations are
dynamically mapped to heterogeneous PEs, each with dif-
ferent numbers of MAC units. (b) Static load redistribution
to nearby PEs, offloading computations from heavily-loaded
to lightly-loaded rows, minimizing inter-PE communication.

• Load-balanced edge Aggregation (Section V) through a
mapping scheme that fully utilizes the PEs. For GATs, we
further propose a novel linear-complexity computation that
implements compute-bound attention vector multiplication
similarly as Weighting, and memory-bound attention coef-
ficient computation to maximize reuse of cached data.

• Lightweight graph-specific dynamic caching (Section VI),
fetching vertices in unprocessed degree order; aggregation
operates on dynamic subgraphs formed by cached vertices.
This new lightweight scheme is effective in avoiding the
random DRAM accesses that plague graph computation.

Speedups: On five GNN datasets, results based on an RTL
implementation and simulation show that even including all of
its preprocessing overheads, GNNIE delivers average speedups
of 7197× over CPUs (Intel Xeon Gold 6132 + PyTorch
Geometric), 17.81× over GPUs (V100 Tesla V100S-PCI +
PyTorch Geometric) and 5× over prior work.

II. BACKGROUND

In layer l of a GNN, each vertex i in the graph is represented
by an F l-dimensional row vector, hli, called the vertex feature
vector; h0

i is the input vertex feature vector. For each vertex
i in a layer, over a set of neighboring vertices j, the GNN
aggregates information from vectors hl−1j of the previous
layer, and processes it to create the output feature vector, hli.

Table I shows the Weighting and Aggregation operations
for graph convolution networks (GCNs) [1], GraphSAGE [2],
graph attention networks (GATs) [3], and GINConv [4].

Table I: Summary of operations in layer l of various GNNs.

GCN hl
i = σ

(∑
j∈{i}∪N(i)

1√
didj

hl−1
j W l

)
GraphSAGE hl

i = σ
(
ak

(
hl−1
j W l∀ j ∈ {i} ∪ SN(i)

))
GAT hl

i = σ

(∑
j∈{i}∪N(i) exp(eij)hl−1

j W l∑
j∈{i}∪N(i) exp(eij)

)
eij = LeakyReLU(aT · [hl−1

i W l||hl−1
j W l])

GINConv hl
i = MLPl

(
(1 + εl)hl−1

i +
∑

j∈N (i) h
l−1
j ,W l,bl

)
Weighting multiplies the vertex feature vector, hl−1i of each
vertex by a weight matrix, W l, of dimension F l−1 × F l.
Aggregation combines the weighted vertex feature vectors
neighboring vertex i. If N(i) is the immediate one-hop neigh-
borhood of vertex i, then for GCNs, GATs, and GINConv,
N (i) = {i} ∪ N(i). For GraphSAGE, N (i) = {i} ∪ SN(i),
where SN(i) is a random sample of N(i). At vertex i:
GCNs: Each product hl−1j W l, j ∈ N (i), is multiplied by
1/
√
didj (d∗ is the vertex degree). The result is summed.

GraphSAGE: The products hl−1j W l are combined over j ∈
N (i) using aggregator ak (typically, mean or pooling).
GATs: For each edge (i, j), an inner product with a learned
attention vector al finds the normalized attention coefficient

αij = softmax(LeakyReLU(al
T · [hl−1i W l]||hl−1j W l]))

2

followed by
∑
j∈{i}∪N (i) eijh

l−1
j W l, a weighted aggregation.

GINConv: The vertex feature vertices of all neighbors of a
vertex i are summed and added to εl times the vertex feature
vector of i, where εl is a learned parameter, using a multilayer
perceptron (MLP) with weights W l and bl:

hli = MLPl
(
(1 + εl)hl−1i +

∑
j∈N (i) h

l−1
j ,W l,bl

)
(1)

The activation operator σ (softmax or ReLU), is applied to
the aggregated weighted vertex feature vector, yielding the
updated hli. For GINConv, activation is built into the MLP.

GINConv concatenates the sum of all vertex feature vectors
across all layers to obtain a representation for the graph as

hG =
∣∣∣∣∣∣L
l=1

(∑
i∈G hli

)
(2)

DiffPool [20] can be combined with any of these GNNs to
reduce the volume of data. It uses two GNNs, one to extract
vertex embeddings for graph classification, and one to extract
embeddings for hierarchical pooling. The embedding GNN at
layer l is a standard GNN with Weighting and Aggregation,

Zl−1 = GNNembed(Al−1, X l−1); (3)

where Al−1 is the adjacency matrix of the coarsened graph at
level (l− 1), and X l−1 is the matrix of input cluster features.
The pooling GNN generates the assignment matrix:

Sl−1 = softmax
(
GNNpool(Al−1, X l−1)

)
(4)

The number of clusters in layer l is fixed during inference.
The coarsened adjacency matrix Al = S(l−1)TAl−1Sl−1, and
the new embedding matrix X l = S(l−1)T Zl−1.

III. ACCELERATOR ARCHITECTURE

The block diagram of the proposed accelerator is illustrated
in Fig. 3, and it consists of the following key components:
(1) HBM DRAM: The high-bandwidth memory (HBM)
DRAM stores information about the graph. The adjacency
matrix of the graph represents its connectivity information and
is stored in sparse compressed sparse row (CSR) format. Other
formats (CISR [21], C2SR [22], CISS [23]) are not viable can-
didates as they ignore the underlying graph structure: GNNIE
uses adjacency matrix connectivity information to schedule
computations and is not a matrix multiplication method.

The sparse input vertex feature vectors are encoded using
run-length compression (RLC) [24]. We choose RLC because
it is lossless and the decoder has low power/area overhead: this
is important because it is only used for the input layer and
not thereafter. Alternatives such as CISS have much higher
implementation overhead and have been targeted to lock-step
systolic arrays, which are unsuitable for Weighting due to the
insertion of stalls to handle feature vector sparsity variations.

The DRAM is also used to store intermediate results that
do not fit in on-chip memory. High bandwidth options such
as HBM or GDDR6 are viable for edge AI [25], [26].
(2) Memory interface: The input buffer stores vertex features
for one pass of the current layer l, i.e., hl−1i for vertices i
being processed, and the edge connectivity information of the
subgraph. Double-buffering is used to reduce DRAM latency:
off-chip data is fetched while the PE array computes.

Fig. 3. Block diagram of the proposed architecture.

Sparse data is transmitted from off-chip DRAM to the input
buffer using RLC encoding. The input buffer keeps this data
in RLC format until it is ready for use, when the data is sent
through the RLC decoder to the PE array. The RLC decoder
is activated for sparse input layer vertex feature vectors, and
bypassed for denser feature vectors in later layers.

The output buffer caches intermediate results for vertex
feature vectors, including the result of multiplication by W l

after Weighting, and the result after Aggregation. The end
result is written to off-chip memory. The weight buffer holds
the values of the weight matrix W l during Weighting, and, for
GAT computations, the attention vector during Aggregation.

The memory access scheduler coordinates off-chip memory
requests from the input/output/weight buffers.
(3) An array of processing elements (PEs): The array
consists of an M×N array of computation PEs (CPEs). Each
CPE has two scratch pads (spads) and MACs.

Within the array of CPEs, we merge multiple columns
of Special Function Units (SFUs) (e.g., exp, LeakyReLU,
division) [grey blocks], and a row of merge PEs (MPEs) [red
blocks]. Interleaved placement allows low latency and com-
munication overhead with CPEs. For exponentiation, we use
an accurate, low-area lookup-table-based implementation [27].

Merge PEs (MPEs) are used to aggregate partial results of
vertex features sent from the CPE array during Weighting and
Aggregation. One MPE is dedicated for each CPE column in
the array (Fig. 3), for merging the partial results of vertices.
Since these partial results may belong to different vertices we
use 16 wires, i.e., one for each CPE, while sending the partial
results to the MPEs. A tag is sent along with each partial result
to indicate the vertex that the partial result is associated with.

The partial results, along with the tags, are received from the
CPEs and stored in the update spad of the MPE. The updated
spad can hold 16 such partial results and corresponding tags
received from the 16 CPEs of the column. If the tags of partial
results match (i.e., if they belong to the same vertex), they are
sent to one of the 16 accumulators in the accumulator bank of
the MPE to be merged. The result is stored in one of the 16
psum spads with the corresponding tag. The intermediate result
stored in the psum spad may be brought into the accumulator
again if a partial result with the same tag is found in the
updates spad. Following the same procedure, these values are

3

summed and the result is stored in the psum spad. After
merging of the partial results in the update spad is completed,
the psum spads send the results and tag to the output buffer.
(4) The Activation unit performs an activation operation on
the vertex features at the final activation stage of computation.
(5) The controller coordinates operations, including assigning
vertex features to the CPE, workload reordering among the
CPEs, sending CPE results to the MPEs, sending MPE data
to the output buffer, and writing concatenated MPE data.

For a GCN, the layer-wise computation can be written as:

hli = σ(Ãhl−1i W l) (5)

Here, Ã = D−1/2(A+ I)D−1/2 is the normalized adjacency
matrix, I is the identity matrix, and Dii =

∑
Aij . This can be

computed either as (Ã×hl−1i)×W l or Ã×(hl−1i ×W l). The
latter requires an order of magnitude fewer computations than
the former [18], [28], and we use this approach. Moreover,
as Ã is highly sparse and shows power-law behavior, we
will perform edge-based Aggregation with optimized graph-
specific cache replacement policies to limit off-chip accesses.

IV. MAPPING WEIGHTING TO CPEs
A. Scheduling Operations in the CPEs

We now map the Weighting step, which multiplies the sparse
feature row vector hl−1i with the dense weight matrix W l, to
the architecture. The feature vectors are fetched from DRAM,
core computations are performed in the CPEs, and the results
from the CPEs are assimilated in the MPEs before being writ-
ten back to DRAM. Our novel scheduling methodology keeps
the CPEs busy during the computation, so that Weighting is
not memory-bounded. We partition data in two ways (Fig. 5):
(1) Across the vertex feature vector: We process a block
of k elements of hl−1i at a time, and multiplying it by the
corresponding k rows of W l. This is mapped to a row of the
CPE array. With a block size of k =

⌈
F l−1/M

⌉
, the entire

feature vector is processed in the CPE array.
(2) Across vertices: We process feature vectors for a set of s
vertices at a time in the PE array, as shown in Fig. 5, where
s is constrained by the size of the input buffer. To process all
vertices in the graph G(V,E), we process d|V |/se sets as:

hl−1i W l =

[
N−1∑
i=0

hl−1(0:k−1)W
l
(0:k−1,i),

N−1∑
i=0

hl−1(k:2k−1)W
l
(k:2k−1,i),

· · · ,
N−1∑
i=0

hl−1
((M−1)k:F l−1)

W l
((M−1)k:F l−1),i

]
(6)

where the term in each sum is processed in a separate CPE.
We use a weight-stationary scheme (Fig. 4). Each vertex

goes through Weighting set by set, placing k-element blocks
of the vertex feature vectors for each set into the input buffer.

We fetch N columns of the weight matrix, W l, from the
DRAM to the weight buffer. A pass processes all vertex
feature vectors (i.e., processing all vertices in all sets). As
shown in Fig. 5, we multiply the vertex feature vectors in all
sets with N columns of W l in the pass. At the end of a pass,
the next set of N columns of W l is loaded. After all passes are
completed, the current set of weights is replaced by a new set,

and the process continues under the weight-stationary scheme.
Within each pass, the CPEs are loaded as follows:
• Each column of W l is loaded to a CPE column in chunks

of k rows, i.e., W(ik:(i+1)k−1,j) is loaded into CPE (i, j).
• For a given set of s vertices, the ith subvectors, of size k, of

all s vertex feature vectors are broadcast to the entire CPE
row i using a bus. This is indicated by h in Fig. 4. Since
the CPEs in a row work independently of each other and
CPE rows do not talk to each other during the Weighting
phase, we do not require a complex interconnection scheme:
since all CPEs in a row are assigned the same feature vector
blocks of length k, we use a bus-based interconnection to
broadcast this data to a CPE row.
To leverage input data sparsity, a zero detection buffer is

used to detect whether a k-element block that is to be broadcast
contains zeros only, so that these computations can be skipped.
In case such a block is detected we refrain from broadcasting
it to the CPE row. We place zero detection circuitry at the
output of the RLC decoder (Fig. 3), at a stage after the k-
element blocks are created. The zero-detection function uses
a set of OR gates and has minimal hardware overhead.
Benefit of using vertex feature subvector blocks: Our use
of k-element blocks instead of the entire vector allows a
CPE to skip zero subvectors during pipelined execution and
immediately move on to a block from the next available
subvector. The next block will be fetched from the input
buffer, and under the weight-stationary scheme, it can start
computation with the already-loaded weights in the CPE.

The proposed weight-stationary dataflow maximizes the
reuse of the weights cached in the weight buffer, which in
turn reduces the size requirement of the on-chip weight buffer.
Though the feature vectors fetched in the input buffer are get
reused, for all datasets evaluated, the computation time for
vertices cached in the input buffer is seen to be larger than
the memory fetch time under the HBM 2.0 off-chip bandwidth.

B. MPE Processing and Weight Updates

The MAC operation within each CPE generates a partial result
for an element of the transformed vertex features. This is sent
to the MPE in its column for accumulation over the vertex
feature subvectors, along with a tag that denotes its vertex. Due
to the irregular completion times for the CPEs, the MPE may
accumulate partial sums for several vertices at a time. A bank
of psum buffers holds the partially accumulated results: when

Fig. 4. Weight-stationary linear transformation of vertex features.

4

Fig. 5. Mapping Weighting operations to the CPE array.

all partial sums are accumulated for a vertex feature vector,
the MPE sends the result to the output buffer, along with the
vertex ID i: this is one element of the result of multiplying
the feature vector of vertex i and W l. When all F l elements
are computed, the result is written back to DRAM.

After a CPE column processes all feature blocks for all
vertices, the next pass begins. The weights in that column
are replaced with the next column of weights from W l. To
overlap computations and keep the CPEs busy, we use double-
buffering to fetch the next block of weights from the DRAM
to the chip while the CPEs perform their computations.

C. Load Balancing for Weighting

The Weighting computation skips zeros in the vertex feature
vector. Vertex feature vectors in the input layer have different
sparsity levels (e.g., in Regions A and B of Fig. 2), and this
is also true of the k-subvectors. Hence, some k-subvectors
are processed rapidly (“rabbits”) while others take longer
(“turtles”). This causes workload imbalance in the CPE array.

The MPEs that accumulate the results of the CPEs must
keep track of psums from a large number of vertices, but they
have only limited psum slots for accumulating information.
The rabbit/turtle disparity implies that stalls may have to be
introduced to stay within the limits of available psum memory
in the MPE. As results are accumulated in the output buffer, a
larger number of vertex feature vectors must be stored within
the buffer, waiting to be completed and written to the DRAM,
to account for the disparity between rabbits and turtles.
Flexible MAC (FM) Architecture: We can avoid stalls and
speed up computation with more MACs per CPE. Increasing
the number of MACs per CPE uniformly throughout the
array overcomes the bottleneck of “turtles,” but is overkill for
“rabbits.” Our flexible MAC architecture uses a heterogeneous
number of MAC units per CPE in different rows of the array.
The CPE array is divided into g row groups, each with an equal
number of rows; the number of MACs per CPE, |MAC|i, is
monotonically nondecreasing from the first row to the last,
i.e., |MAC|1≤ |MAC|2≤ · · · ≤ |MAC|g . The input buffer
has a scheduler that assigns vertex feature vectors to CPE
rows. The scheduler uses information about the total nonzero
workload for each k-element block of the vertex feature vector
to assign the workload to CPE rows. The workloads for the
k-element blocks are first binned based on the number of
nonzeros, where the number of bins equals the number of CPE
groups. Workload binning is carried out as a preprocessing
step in linear time on a CPU. The bin with fewest nonzeros is

Fig. 6. Workload reordering in flexible MAC (FM) approach.

sent to the first CPE group with fewest MACs, and so on; the
bin with the most nonzeros is sent to the last CPE row group
with the most MACs. After workload binning, each block in
a bin is assigned an ID that denotes the CPE row to which it
should be broadcast. The scheduler receives these block IDs
for the k-element blocks of each feature vector from the host
CPU. The input buffer is connected to the embedded scheduler
through one port which fetches the block ID information for
each feature vector as they are sent over to RLC decoder and
eventually the k-element feature vector blocks are broadcast
to a CPE row according to their IDs. Since the assignment
of IDs to k-element blocks is computed as a preprocessing
step, the scheduler does not require any runtime information.
The total preprocessing overheads (which include the prepro-
cessing overheads for the linear time binning of k-element
blocks) for the four datasets used in our experiment are shown
in Table IV. For the Cora, Citeseer, Pubmed, and Reddit
datasets, the preprocessing times required for the binning of k-
element blocks are, respectively, 5.5%, 4.8%, 3.4%, and 0.7%
of the total inference time. It should also be noted that this
percentage overhead is lower for the larger datasets (Reddit
(233K vertices) has a lower percentage overhead than Cora
(2.7K vertices)), indicating the scalability of the solution.

An example of workload reordering among CPE rows is
shown in Fig. 6. The CPE array is divided into three groups,
Group 1, 2, and 3, where Group i is equipped with |MAC|i
MACs per CPE, where |MAC|1< |MAC|2< |MAC|3. The
vertex feature blocks are binned into three bins that will be
assigned to each group. Each bin has several vertex feature
blocks: the vertex feature blocks in the left-most bin have the
most nonzeros (six), and those of the right-most bin have the
fewest of nonzeros (four). We see that the least populated bin
is assigned to the group with the fewest MACs, the next to
the group with the next number of MACs, and so on.
Load Redistribution (LR): The FM approach does not
completely balance the workload. For greater uniformity, we
redistribute loads among nearby CPEs. Based on workload
distribution in CPE rows, the controller selects pairs of CPE
rows to perform workload redistribution, offloading a portion
of workload from heavily loaded to lightly loaded CPE rows.

To perform computation on the offloaded workloads, the
weights must be transferred with the data. To minimize com-
munication overhead, we first finish the computation in FM,
to the point where the current weights are no longer needed,
before applying LR. The spads for weights in these CPE rows

5

Fig. 7. Reordering of GAT computations.

are loaded with weights for the offloaded workloads.

V. AGGREGATION COMPUTATIONS

For most GNNs in Section II, Aggregation is a simple sum-
mation over the neighbors of the vertex, but GATs require
significantly more computation in determining attention co-
efficients, which are used for weighted aggregation. The first
two subsections focus on GAT-specific computations. We then
consider Aggregation operations that affect all GNNs.

A. Reordering for Linear Computational Complexity

We present a new method for reordering GAT computations
for efficient hardware implementation (Fig. 7). We define
the weighted vertex attention vector for vertex p as ηw

l
p =

hl−1p W l. The first step in finding the attention coefficient
αij for neighboring vertices i and j, is to multiply the 2F l-
dimensional attention vector, al, by a concatenation of two
F l-dimensional weighted vertex feature vectors, (ηw

l
i, ηw

l
j).

Rewriting al = [al1 al2], where alq is the subvector that
multiplies ηw

l
q , we can denote this inner product as

eij = al T1 · ηw
l
i + al T2 · ηw

l
j = ei,1 + ej,2 (7)

where ei,1 = al T1 · ηw
l
i, ej,2 = al T2 · ηw

l
j , This goes through

a LeakyReLU and then a softmax over all neighbors of i to
find the normalized attention coefficient,

αij = softmax (LeakyReLU(eij)) (8)

As shown in Fig. 7 a naı̈ve approach would fetch ηw
l
j from

each neighbor j of i, compute eij using (7), and perform
softmax to find αij . However, since ej,2 is required by every
vertex for which j is a neighbor (not just i), this would
needlessly recompute its value at each neighbor of j. To avoid
redundant calculations, we propose to reorder the computation
(Fig. 7): for each vertex i, we compute
(a) ei,1 = al T1 ηw

l
i, used to compute αi∗ at vertex i.

(b) ei,2 = al T2 ηw
l
i, used by all vertices j for which i is a

neighbor, to compute αj∗ at vertex j.
Since al = [al1 al2] is identical for each vertex, we calculate
ei,2 just once at vertex i, and transmit it to vertices j.

For |V | vertices and |E| edges, the naı̈ve computation
performs O(|E|) multiplications and memory accesses to ηw

l
i)

per vertex, for a total cost of O(|V ||E|). Our reordered
computation is O(|V |+|E|), with O(|E|) accumulations over
all vertices, i.e., latency and power are linear in graph size.

B. Mapping Attention Vector Multiplication

As in Weighting, we use a block strategy to distribute compu-
tation in the CPE array. The vector ηwi is distributed across all
N columns of a row, so that the size of each block allocated
to a CPE for vertex i is G = dF l/Ne. Each CPE column
processes Va vertices. Here, Va depends on the number of
columns N in the CPE array, and also depends on the size of
the output buffer |OB|, i.e., the size of the set of vertices that
can be cached in the output buffer: Va = |OB|/N .

This dot product computation is very similar to the weight-
stationary scheme used in the Weighting step, i.e., the attention
vectors remain stationary until a pass through all the vertices.
The F l-dimensional subvector al1 is divided into N blocks of
size G and distributed columnwise to one of the spads in each
CPE. Vertex feature blocks for Va vertices at a time, divided
into chunks of size G, are loaded into the other spad, and the
inner product computation proceeds. Since ηw

l
j and al are

dense, load balancing in the CPE array is unnecessary.
As the CPEs in a column finish computation for a vertex,

the partial results are sent to the corresponding MPE for
Aggregation. We overlap the computation in a CPE column
and with the Aggregation in the corresponding MPE: as the
MPE aggregates partial results for the current vertex, the
blocks of the next weighted vertex features are loaded into
the CPE. Thus, all CPEs and MPEs remain busy.

After all Va vertices in the row are processed, the spad that
contains al1 is loaded with al2, and the second inner product
computation for the Va vertices is performed, reusing ηw. The
computed ei,1 and ei,2 are written back to the output buffer
and are appended to the feature vector of vertex i.

C. Mapping Edge-based Computations

The last step requires edge aggregation from each neighbor of
a vertex. All GNNs, perform edge-based summations followed
by an activation function; for GATs, the weights for this sum-
mation are computed using methods in the above subsections.

Typical graphs are too large for the on-chip buffers. We use
a dynamic scheme (Section VI) to process a subgraph of the
graph at a time, processing edges in parallel in the CPE array.
Load Distribution: The Aggregation computation brings data
into the input buffer. For each vertex in the subgraph corre-
sponding to the vertices in the buffer, it accumulates edge data
by pairwise assignment to CPE spads.

Due to power-law behavior, the vertex degrees in the
subgraph may have a large range. To distribute the load,
the Aggregation summations are divided into unit pairwise
summations and assigned to CPEs. For instance, accumulation
of a sum effectively implements an adder tree in which the
number of CPEs required to process Aggregation for each
vertex depends on its degree in the subgraph. Thus, the number
of CPEs assigned for Aggregation of a vertex in a subgraph is
proportional to its degree. The degree-dependent assignment
of CPEs to vertices tackles imbalance in workload that might
occur due to the power-law behavior.
GATs: The final step in computing the attention coefficient
αij involves edge-based computations (Equation (8)):
• the addition, eij = ei,1 + ej,2

6

• a LeakyReLU step, LeakyReLU(eij)
• a softmax step, exp(eij)ηwj/

∑
k∈{i}∪N(i) exp(eik)

Each edge from a neighbor j to vertex i contributes an eij
to the numerator of the softmax, and one to the denomina-
tor. These computations are parallelized in the CPEs among
incoming edges of a vertex using pull-based aggregation [29].

Fig. 8. Data flow corresponding to computation of an edge.

The computation of numerator in the softmax step is shown
in Fig. 8. For a target vertex i connected to a neighbor j by
edge (i, j), ηwi, ei,1, and ei,2, are loaded into one spad of a
CPE, and the corresponding data for j into the other spad. For
vertex i, the result ei,1 + ej,2 is sent to the SFU to perform
LeakyReLU followed by exponentiation. The output returns
to the CPE and is multiplied with ηw

l
j . A similar operation is

performed for vertex j to compute exp(eji)ηw
l
i.

Other GNNs: The Aggregation step for GCN, GraphSAGE,
GAT and GINConv involves a sum of weighted vertex feature
vectors over all neighbors j (or a sample of neighbors for
GraphSAGE) of each vertex i. This computation is similar to
but simpler than that in Fig. 8: just addition is performed.

As before, a subgraph of the larger graph is processed
at a time. In processing vertex i, the data for all neighbors
j is processed in an adder tree, placing operands in spad1
and spad2 of a CPE, and storing the result in spad1. The
partial results for a vertex (partial sum for a general GNN, or
the summed numerator and softmax denominator for a GAT)
are written to the output buffer after each edge computation.
For a GAT, the values of exp(eik) are also added over
the neighborhood to create the denominator for the softmax.
Finally, the accumulation over neighbors is divided by the
denominator, in the SFU to obtain the result. Similarly, in
the another round of accumulation the partial results of the
vertices are sent form the output buffers to CPEs to compute
the final result. When all components of the sum for vertex i
are accumulated, the result is sent through the Activation unit
and written to DRAM.

VI. GRAPH-SPECIFIC CACHING

Aggregation operations intensively access the graph adja-
cency matrix. Computational efficiency requires graph-specific
caching techniques to transfer data to/from on-chip input and
output buffers, maximizing data reuse and minimizing off-chip
random memory accesses. A notable feature of our proposed
policy is a guarantee that all random-access patterns are
confined to on-chip buffers and off-chip fetches are sequential.

As stated earlier, the adjacency matrix is stored in the CSR
format. Our input is a graph represented by three arrays: (i) the
coordinate array lists the incoming/outgoing neighbors of each
vertex, (ii) the offset array contains the starting offset of each

Fig. 9. Example illustrating the subgraph in the input buffer (left) and its
evolution after cache replacement (right).

vertex in the coordinate array, and (iii) the property array with
the weighted vertex feature, ηw

l
i (see Section V-A), for each

vertex i; for GATs, this is concatenated with {ei,1, ei,2}.
Subgraph in the Input Buffer: Edge-mapped computations
involve a graph traversal to aggregate information from neigh-
bors. At any time, a set of vertices resides in the input buffer:
these vertices, and the edges between them, form a subgraph
of the original graph. In each iteration, we process edges
in the subgraph to perform partial Aggregation operations
(Section V-C) for the vertices in the subgraph. Under our
proposed caching strategy, ultimately all edges in the graph
will be processed, completing Aggregation for all vertices.

We illustrate the concept through an example in Fig. 9,
showing a graph with vertices V1 through V16. The highest
degree vertices are first brought into the cache, i.e., the input
buffer: vertices V1, V2, and V3 of degree 5, vertices V5 and
V6 of degree 2, and then two vertices of degree 1, V4 and
V7. The subgraph, Subgraph 1, consists of these vertices and
edges E1 to E6 which connect them. After edges E1 through
E6 are processed, vertices V4 through V7 have no unprocessed
edges and may be replaced in the cache by V8 through V11 in
Iteration 2. This creates Subgraph 2, the subgraph with edges
E7 through E10), which is processed next, and so on.
Cache Replacement Policy: As vertices are replaced after
computation of each subgraph, a replacement policy is neces-
sary. Our policy prioritizes vertices with the most unprocessed
edges for retention in the input buffer. Since such vertices
appear more frequently in the list of neighbors for other
vertices in the coordinate array, this increases the likelihood of
finding both the source and destination of edges in the cache.

The policy requires inexpensive preprocessing to sort ver-
tices in order of their degrees. In practice, it is enough to sort
vertices into bins based to their degrees, differentiating high-
degree vertices from medium-/low-degree vertices to prioritize
higher-degree vertices. After preprocessing, vertices of the
input graph are stored contiguously in DRAM in descending
degree order of the bins. Ties are broken in dictionary order
of vertex IDs. The key to avoiding random-access fetches from
DRAM is the preprocessing step and the replacement policy.

We track the number of unprocessed edges, αi for vertex i,
decrementing it as each neighbor is processed. Initially αi is
the vertex degree; when αi = 0, hli is fully computed. Track-
ing αi requires minimal hardware overhead (a decrementer

7

Fig. 10. Input buffer replacement policy during Aggregation.

and one word of storage per vertex), and its tracking enables
GNNIE to maximize edge processing in each iteration.

Fig. 10 illustrates our policy, managed by a cache controller
using a 4-way set associative cache. Graph vertices are stored
contiguously in DRAM in descending degree order, where
vertex 1 has the highest degree. If the input buffer capacity
is n vertices, initially data (i.e., feature vector, connectivity
information, αi) for vertices 1 to n are loaded from DRAM.

The algorithm processes each such set of vertices in the
input buffer in an iteration. We track αi for vertex i, decre-
menting it as each neighbor is processed. Tracking αi requires
minimal hardware overhead (a decrementer and one word of
storage per vertex). Initially αi is the vertex degree. At the
end of iteration 1 (after finishing computation of the subgraph
of the first n vertices), if αi < γ for any vertex, where γ
is a predefined threshold, it is replaced from the cache. We
replace r vertices in each iteration using dictionary order.
These vertices are replaced in the input buffer by vertices
(n+1) to (n+1+r) from DRAM: these have the next highest
vertex degrees. For each such vertex i, we write back the αi
value into DRAM. When all vertices are processed once, we
have completed a Round.

Similarly, the partial sums for the vertex feature vector in the
output buffer are updated as more edges in the subgraphs are
processed. Any hli for which all accumulations are complete is
written back to DRAM. Due to limited output buffer capacity,
and only a subset of partial vertex feature vector sums can be
retained in the buffer, and the rest must be written to off-chip
DRAM. To reduce the cost of off-chip access, we use a degree-
based criterion for prioritizing writes to the output buffer vs.
DRAM. As partial Aggregation results for softmax are written
to DRAM, the numerator and denominator components for a
vertex are stored nearby, for locality during future fetches.
How our policy avoids random-access DRAM fetches: Our
policy makes random accesses only to the input buffer; all
DRAM fetches are sequential. In the first Round, data is
fetched from consecutive DRAM locations. In the CPE array,
aggregation of each vertex fetches the vertex feature data of
its neighbors in the current subgraph in the cache. Each vertex
feature vector may be thus fetched by the CPE array multiple
times according to the graph neighborhood structure, but all
such random accesses are limited to the cache, which has much
better random-access bandwidth than the off-chip memory.

Vertices evicted from the cache, with αi < γ, may be
fetched again in a subsequent Round. Even in these Rounds,
data blocks are brought into cache in serial order from DRAM:

Fig. 11. Histogram of α through various Rounds (Pubmed). The inset shows
a magnified view.

there are no random accesses from DRAM. During DRAM
fetches, a cache block is skipped if all of its vertices are fully
processed. The total unprocessed edges in a cache block is
tracked through inexpensive hardware, similar to tracking αi.

The effectiveness of the approach is illustrated in Fig. 11,
which shows the histogram of αi distributions in the input
buffer after each Round. The initial distribution corresponds
to the power-law degree distribution, and in each successive
Round, the histogram grows flatter – with both the peak
frequency and maximum α becoming lower, thus mitigating
the problems of power-law distribution. In contrast, HyGCN
ignores the power-law problem, and AWB-GCN overcomes it
using high inter-PE communication. Moreover, our approach
is shown to be effective even for much more intensive GAT
computations (prior accelerators do not address GATs).

Fig. 12 shows the impact of γ on DRAM accesses for three
datasets during Aggregation of first layer. For the calculation
we use the weighted feature vector size at first layer to 128
B. As γ increases, more vertices are evicted and may have
to be brought back to the cache, resulting in more DRAM
accesses. However, if γ is too low, vertices may not be evicted
from the cache, resulting in deadlock as new vertices cannot
be brought in. In our experiments, we use a static value
γ = 5, but in practice, γ may have to be changed dynamically
when deadlock arises. Deadlock detection is inexpensive and
is based on the number of total unprocessed edges in the
partition, which is monitored by a counter, and this dynamic
scheme will be inexpensive in hardware.

VII. RELATED WORK

There has been much work on CNN accelerators [7]–[13],
but these are not efficient for processing GNNs. Graph ana-
lytics accelerators include ASIC-based (Graphicionado [14],
GraFBoost [16]), FPGA-based (FPGP [15]) and in-memory
(GraphPIM [30]) platforms. However, graph accelerators target
lightweight operations, do not focus on data reuse, and would
be challenged by computation-intensive GNNs.

(a) (b) (c)

Fig. 12. Ablation study on γ: (a) Cora (b) Citeseer (c) Pubmed.

8

Software frameworks for GNNs include Deep Graph Li-
brary, AliGraph, and TensorFlow. Some hardware accelerators
have been proposed, but we know of no prior work that
can handle networks that require softmax nonlinearities on
graphs such as GATs. Although some GAT computations are
addressed in [19], the crucial attention normalization step is
left out. To our knowledge, no methods handle extreme input
feature vector sparsity using graph-specific methods.

HyGCN [17] uses an Aggregation engine for graph pro-
cessing and a Combination engine for neural operations. This
requires separate on-chip buffers for each engine, which are
not fully utilized due to with workload imbalance at differ-
ent stages of computation. HyGCN must arbitrate off-chip
memory access requests coming from on-chip buffers of two
different engines, which involves complicated memory access
control. Using a single hardware platform optimized to handle
both the irregular graph computation and compute-intensive,
albeit regular, DNN computation, GNNIE achieves perfor-
mance gains over HyGCN. Moreover, HyGCN uses sharding
with window sliding/shrinking to reduce random memory
access during Aggregation: this has (1) limited efficacy for
highly sparse adjacency matrices as the number of overlapping
neighbors of vertices is a small farction of the total number of
vertices in a shard, undermining its efficacy; moreover, no spe-
cific effort is made to address power-law degree distributions.
(2) limited parallelism, as the sliding window of the current
shard depends on the shrinking of the previous shard; HyGCN
does not fully leverage data reuse opportunities of high-degree
vertices during Aggregation, performing (Ãhl−1i)W l, instead
of the cheaper Ã(hl−1i W l) [18], [28]. Input feature vector
sparsity is not addressed and can result in inefficiency due to
stalls. These factors explain GNNIE’s speedups over HyGCN.

BlockGNN [31] optimizes Weighting by applying an FFT
and block-circulant constraint on the weight matrix. Similar to
HyGCN [17], GNNerator [32] and DyGNN [33] pipeline sep-
arate engines for Aggregation and Weighting. Thus susceptible
to stalls due to (i) unbalanced loads between engines (ii) work-
load variations in each engine due to variable input feature
vector sparsity and power-law degree distributions. DyGNN
also employs pruning to reduce vertex/edge redundancy.

AWB-GCN [18], which is limited only to GCNs and not
general GNNs, views the problem as a set of matrix opera-
tions. It does not specifically try to reduce random memory
accesses due to the highly sparse graph adjacency matrix.
Its dynamic scheduling scheme in AWB-GCN for workload
redistribution among PEs may incur high inter-PE communi-
cation, degrading energy efficiency. The GCNAX/SCGNAX
approaches [34], [35] also propose a matrix-multiplication-
based approach and handle only GCNs, and their results show
reducing speedups as the dataset sizes increase. EnGN [28]
uses a ring-edge-reduce (RER) dataflow for Aggregation,
where each PE broadcasts its data to other PEs in the same
column. To reduce communication, EnGN reorders the edges,
but this is an energy-intensive step, undermined by high
sparsity in the adjacency matrix, that occurs frequently as
the limited number of cached edges are replaced. The scheme
has large preprocessing costs. In the literature, reconfigurable
PE array designs (e.g., Planaria [36], RecPipe [37]) have

been proposed for DNN acceleration. However, focus of these
works are orthogonal to GNNIE’s approach. For instance,
Planaria targets dynamic architecture fission for spatial multi-
tenant execution and RecPipe focuses on optimizing multi-
stage recommendation inference.

Prior accelerators have not fully explored load balancing.
Methods that offload tasks to idler PEs (ring-edge-reduce [28],
multistage networks [18]) involve high communication and
control overheads. GNNIE bypasses such approaches and
uses the flexible MAC architecture for load balancing, using
heterogeneous PEs, and assigning computation according to
need. The idea is simple, effective, and easily implemented.
In addition, as stated in Section IV-C the load redistribution
scheme of GNNIE results in low inter-PE communication,
low control overhead, and high speedup gain for the hardware
overhead (Fig. 19). Preprocessing is cheap and involves linear-
time binning of vertex features blocks into groups.

Frequency-based caching techniques for graph data have
been proposed in [38] using a programming interface. How-
ever, [38] is a purely software-based framework, agnostic to
the underlying hardware, for traditional graph analytics and
uses a static approach. GNNIE uses a hardware-centric dy-
namic frequency-based caching scheme that tracks the α value
for each vertex with minimal hardware overhead, and ensures
serial access to DRAM. Other schemes are also static and more
computational than GNNIE: they use hashing functions [39]
or perform more computation [40], [41] in finding static com-
munities/partitions that do not specifically address cache size.
On the other hand, GNNIE’s computationally cheap dynamic
scheme automatically adapts to the cache size using subgraphs
built from vertices in the cache. GRASP [42], another cache
management scheme for graph analytics, employs a most-
recently-used (MRU) approach. However, this scheme is based
on past history, while GNNIE’s use of the unprocessed vertex
count measures future potential for a vertex.

VIII. EVALUATION

A. Experimental Setup

Accelerator Simulator: We develop a simulator to measure
the execution time in terms of the number of cycles required.
The simulator models each module of GNNIE and integrated
with Ramulator [43] to model the memory access to the off-
chip HBM with 256 GB/s bandwidth.

Each module was implemented and synthesized in Verilog
and the synthesized design was verified through RTL simula-
tions. Synopsys Design Compiler was used to synthesize the
accelerator at 32nm technology node with standard VT cell
library. The chip area, critical path delay, and dynamic/static
power, extracted from Design Compiler, are used for evaluat-
ing performance and energy. CACTI 6.5 is used to estimate
the area, energy consumption, and access latency of on-chip
buffers. The energy of HBM 2.0 is 3.97 pJ/bit [44]. The chip
area is 15.6mm2 and its frequency is 1.3 GHz.
Benchmark GNN Datasets and Models: For evaluation of
the performance of GNNIE, we used the benchmark graph

9

Table II: Dataset information [45]

Dataset Vertices Edges Feature Length Labels Sparsity
Cora (CR) 2708 10556 1433 7 98.73%

Citeseer (CS) 3327 9104 3703 6 99.15%
Pubmed (PB) 19717 88648 500 3 90%
Reddit (RD) 232965 114.6M 602 41 48.4%

Table III: Convolution layer configurations (len[hl
i] = length of hl

i)

GNN Model Weighting Aggregation Sample size
GAT len[hl

i] , 128 Sum −−
GCN len[hl

i] , 128 Sum −−
GraphSAGE len[hl

i] , 128 Max 25
GINConv len[hl

i] , 128 / 128 Sum −−
DiffPool (GCNpool) len[hl

i] , 128 Sum −−
DiffPool (GCNembedding) len[hl

i] , 128 Sum −−

datasets listed in Table II. We used five GNN models for evalu-
ations, i.e., GAT, GCN, GraphSAGE, GINConv, and DiffPool.
The convolution layer configurations are shown in Table III.
All preprocessing costs are included in the evaluation.
Configurations for Baseline/Cross-Platform Comparison:
We first compare GNNIE against two baseline architectures,
i.e., a general-purpose CPU and a GPU. The CPU platform
is equipped with Intel Xeon Gold 6132@2.60GHz and 768
GB DDR4. The GPU platform is equipped with V100 Tesla
V100S-PCI @1.25GHz and 32 GB HBM2.

For GNNIE, the sizes of output and weight buffers are
1MB and 128KB, respectively. The input buffer size is 256KB
for the smaller datasets (CR, CS) and 512KB for the larger
datasets (PB, RD). The area and power numbers reported later
correspond to the larger input buffer size. The output buffer is
larger since it must cache many partial results before they are
aggregated, particularly for high-degree vertices. For a 1-byte
weight, for the dataset with the largest feature vector (∼4K
for CS), to keep 16 CPE columns occupied, the buffer size is
4K×16×2 (for double-buffering) = 128KB.

The 16×16 CPE array consists of four MAC units for CPE
row number 1 to 8, five MAC units for CPE row number 9
to 12 and six MAC units for CPE row number 13 to 16. The
heterogeneous CPE array is blockwise regular and is friendly
to back-end physical design. The number of MACs per CPE
was chosen through design space exploration, optimizing the
cost-to-benefit ratio (speedup gain : hardware overhead).

B. Baseline Platform Comparisons

Performance comparisons with CPU and GPU: To make
a fair performance comparison with the general-purpose CPU
and GPU, we implement the GNN models with the PyTorch
Geometric (PyG) software framework. The PyG-based imple-
mentations for CPU and GPU used in our experiment are
denoted as PyG-CPU and PyG-GPU, respectively. Neighbor-
hood sampling for GraphSAGE is based on cycling through a
pregenerated set of random numbers. Table IV shows the ab-
solute run time including the preprocessing overheads for the
five datasets across the GNN models used in our experiment.
The total preprocessing time (including degree-based vertex
reordering (Aggregation: Section VI) and workload reordering
(Weighting: Section IV-A) and neighborhood sampling time

(a)

(b)

Fig. 13. GNNIE performance vs. (a) PyG-CPU (b) PyG-GPU.

for GraphSAGE) is shown in the parenthesis along with the
run time. It can be seen that the total preprocessing time is
very negligible for smaller datasets (CR and CS) and a small
percentage of run time for larger datasets (RD).

Table IV: Absolute run time of inference

Dataset GCN GAT GraphSAGE GINConv
CR 45.80 µs (27.50 µs) 53.80 µs (27.50 µs) 54.70 µs (34.7 µs) 56.01 µs (27.5 µs)
CS 49.50 µs (26.40 µs) 62.60 µs (26.40 µs) 61.30 µs (37.40 µs) 66.40 µs (26.40 µs)
PB 0.25 ms (94.60 µs) 0.39 ms (94.60 µs) 0.36 ms (0.21 ms) 0.34 ms (94.60 µs)
RD 10.31 ms (0.31 ms) 12.32 ms (0.31 ms) 83.12 ms (74.9 ms) 11.31 ms (0.31 ms)

As shown in Fig. 13(a), the average speedup of GNNIE over
the PyG-CPU across the datasets used in our experiment for
GCN, GAT, GraphSAGE, GINConv, and DiffPool are 6229×,
5894×, 625×, 22878×, and 359×, respectively. According
to Fig. 13(b) the average speedup of GNNIE over the PyG-
GPU across the datasets used for GCN, GAT, GraphSAGE,
GINConv, and DiffPool are 8.25×, 24.67×, 17.53×, 17.37×,
and 21×, respectively. The speedup calculations take into
account the total preprocessing times mentioned in Table IV.

The speedup comes from several GNNIE optimizations:
(i) The segmentation of vertex feature vectors and their as-
signment in our FM architecture tackles the feature vector
sparsity challenge. (ii) Our degree-aware cache replacement
policy avoids random memory accesses to DRAM. (iii) During
Weighting, distributed computation across multiple batches
enables weight reuse. Note that PyG-CPU and PyG-GPU do
not allow our dynamic caching scheme to be implemented
within their purely software based frameworks. The speedup
of GNNIE on GINConv is further enhanced because of Py-
Torch Geometric executes Aggregation before Weighting: as
described in Section III, this requires more computation than
the reverse order of computation used in GNNIE.

For the GraphSAGE speedup calculations, the neighborhood
sampling time on PyG-CPU/PyG-GPU is excessive and is
excluded (for RD it is 13s whereas the execution time is
0.35s for PyG-CPU and 0.003s for PyG-GPU), but GNNIE
runtimes include neighborhood sampling times. This results in
lower speedup compared to PyG-GPU for RD. However, the
GPU is much more power-hungry than GNNIE, e.g., it requires
98.5× more energy for GraphSAGE/RD than GNNIE. GNNIE
is scalable on PyG-CPU: for GCN, GAT, and GINConv, the
speedups generally increase with benchmark size. GraphSAGE
bucks this trend for the above reasons, but while its sampling
scheme improves scalability, it reduces accuracy [3], [46].

10

On PyG-GPU, the speedups do not monotonically improve
with the number of nodes. This is because larger datasets (e.g.,
PB) reap greater benefit from GPU parallelization: for these
datasets, GNNIE vs. PyG-GPU speedup decreases whereas
GNNIE vs. PyG-CPU speedup increases. It is important to
note that the GPU comparison is not entirely fair to GNNIE’s
lightweight accelerator with low on-chip memory, targeted to
edge applications. In contrast, this GPU has a ∼20× larger
on-chip memory than GNNIE and its power-hungry nature
makes it impractical for the edge. Nevertheless, GNNIE shows
speedups over even this powerful GPU.

C. Cross-platform Comparisons

We conduct cross-platform performance comparisons with
HyGCN and AWB-GCN. Neither computes exponentiation
for softmax, required by GATs, and AWB-GCN only imple-
ments GCN. Thus, for GCN we perform a comparison with
HyGCN and AWB-GCN. For GraphSAGE and GINConv we
also show a comparison with HyGCN. Unlike the original
implementations, HyGCN uses 128 channels for hidden layers
of all the GNN models, and therefore we have also configured
the hidden layers similarly (Table III). To compare with
HyGCN, AWB-GCN runs the customized GCN model with
128 channels for hidden layers on a E5-2680v3 CPU with PyG
and reports relative speedup and inference latency. We leverage
inference latency data from AWB-GCN for our comparison.

Fig. 14. Performance comparison with HyGCN and AWB-GCN.

To compute speedup over HyGCN for GraphSAGE, GIN-
Conv, and DiffPool we run the GNN models on Intel Xeon
Gold 6132@2.60GHz CPU, which has similar performance
as the E5-2680v3@2.50GHz CPU, and determine the relative
speedup of GNNIE. We then take a ratio of the computed rel-
ative speedup with the relative speedup of HyGCN compared
to E5-2680v3 CPU. It should be noted that PyG framework
is used to optimize both the baseline CPUs of HyGCN
and GNNIE. Fig. 14 shows compared to HyGCN, GNNIE
achieves average speedup of 5.23×, 6.81×, and 3.1× for
GCN, GraphSAGE, GINConv, respectively. A comparison for
DiffPool is not possible: HyGCN does not report results on
the widely used datasets that we evaluate. As before, these
speedup comparisons include GNNIE preprocessing costs.
Even though the on-chip buffer size of HyGCN (24 MB + 128
KB) is much larger than GNNIE (1.7 MB), GNNIE shows an
average speedup of 5.05×.

AWB-GCNs scatter-based-aggregation requires 3x larger
on-chip buffers than GNNIEs gather-based-aggregation.
Sparse matrix-vector-multiplication-based AWB-GCN loses
graph-adjacency view, sacrificing efficiency. GNNIEs caching
scheme VI specifically leverages graph adjacency to reduce
expensive random DRAM accesses. For GCNs, GNNIE (with

Fig. 15. Energy breakdown for GCN and GAT.

Fig. 16. Energy efficiency: GNNIE vs. HyGCN, AWB-GCN.

3.4x fewer PEs) shows 1.3x speedup (Fig. 14) over AWB-
GCN and 15-51x higher (Fig. 16) inferences/kJ. We note that
AWB-GCN results are reported on an FPGA, which is likely
to be slower and more power-hungry than an ASIC.

D. Throughput and Energy Comparisons

Table V shows the throughput for various datasets for our
configuration of GNNIE. The table shows that the throughput
degrades only moderately as the graph size is increased.

The power dissipation of GNNIE is 3.9W in 32nm, lower
than HyGCN (6.7W in 12nm), similar to recent CNN edge
inference engines (Edge TPU, Hailo-8, InferX1). Fig. 15
shows the energy breakdown for GNNIE for GAT and GCN
across three datasets, including DRAM energy required to
supply the output, input, and weight buffers. The output buffer
has the most of transactions with DRAM due to psum storage.
On-chip weight buffer energy is negligible and not shown.

Fig. 16 compares GNNIE’s energy efficiency with prior
works. The efficiency ranges from ranges from 2.3×101 –
5.2×105 inferences/kJ for HyGCN and 1.5×102 – 4.4×105

inferences/kJ for AWB-GCN. GNNIE clearly outperforms the
others, going from 7.4×103 – 6.7×106 inferences/kJ.

E. DRAM Access Analysis

To illustrate the efficiency of the proposed graph-specific
caching scheme we compare the number of DRAM accesses

Table V: Throughput for various datasets for GNNIE.

Peak Cora (CR) Citeseer (CS) Pubmed (PB) Reddit (RD)
3.16 TOPS 2.88 TOPS 2.69 TOPS 2.57 TOPS 2.52 TOPS

11

required by GNNIE with those in the widely used 2-D
graph partitioning method (employed by GridGraph [47],
HyGCN [17], Marius [48]). In 2-D graph partitioning, vertices
of the graph are divided into u equal-sized disjoint partitions
and stored in DRAM. Edges are then grouped into u2 blocks
that can be viewed as a grid. In this grid, each edge block
(p, q) contains the edges for which source nodes belong to
the pth vertex partition and destination nodes belong to qth

partition. In this scheme, except for the self-edge blocks (e.g.,
edge block (p, p)) vertex partition p and q must be in the
cache (input buffer) together at least once to process the
corresponding edge block (p, q).

If the input buffer can hold v vertex partitions at a time (u ≥
v), a lower bound on the number of DRAM block accesses
for processing the graph using 2-D partitioning is [48]):⌈(

u(u− 1)

2
− v(v − 1)

2

)/
(v − 1)

⌉
(9)

To compare the caching schemes of GNNIE and 2-D
graph partitioning we evaluate the DRAM accesses required
for executing Aggregation of the first layer for the Pubmed
dataset. In our experiment we use a 512 KB input buffer and
the size of each vertex feature vector is set to 128 B. For the 2-
D partitioning scheme, we vary the number of vertex partitions
in DRAM (u) from 2 to 100 in steps of of 1 and compute the
corresponding lower bound on the number of DRAM access
for 2-D partitioning using (9). The lower number is multiplied
with the size of each vertex partition in the input buffer to
determine the DRAM accesses in MB. To calculate the each
vertex partition size the input buffer size is divided by v. In
Fig. 17, the x-axis denotes the number of vertex partitions
in DRAM (u) and the y-axis shows the corresponding lower
bound for 2-D partitioning on the DRAM access required (in
MB) to process the graph. From Fig. 17 we can see that
initially, the lower bound on the DRAM accesses decreases
with the number of partitions and plateaus eventually for
higher values of u. For u = 100, the lower bound is 5.59MB.

The static caching scheme proposed in 2-D graph partition-
ing must go through all the vertex pair combinations to process
all the edges. Due to the power-law behavior and sparsity of
real-world graphs, not all vertices in a vertex partition are
used to process the edges of its corresponding edge blocks.
However, processing of an edge block requires all vertices of
the corresponding vertex partition to be cached in this scheme.
Since this approach does not make any effort to distinguish
between the useful vertices of a vertex partition to process the
edge blocks, it incurs redundant DRAM access and provides
suboptimal performance in reducing DRAM accesses.

On the other hand, as shown in Fig. 12(c) and Fig. 17 for
γ = 5 GNNIE requires 4.62 MB of DRAM access to execute
the first layer Aggregation of Pubmed dataset. In GNNIE the
number of vertex feature vectors that get replaced after each
iteration dynamically varies according to the α of cached
vertices and γ. In each iteration, GNNIE tries to maximize the
number of edges being processed by retaining the vertices with
a higher potential of being reused in the next iteration. Thus,
by dynamically tuning the retentivity of cached vertices at each
iteration to maximize their reuse the proposed graph-specific

Fig. 17. Comparison of DRAM access of GNNIE with the lower bound on
DRAM access vs vertex partitions in DRAM of 2-D graph partitioning.

caching scheme leads to lower DRAM accesses compared to
calculated lower bound of 2-D partitioning.

F. Optimization Analysis

We analyze key optimization techniques applied in GNNIE. To
evaluate these techniques we select a baseline design (Design
A) which uses four MACs per CPE uniformly. Parameters for
the flexible MAC architecture and on-chip buffer sizes for all
designs are as described at the end of Section VIII-A. The
dimension of the PE array in all cases is 16× 16.

(a)

(b)

(c)

Fig. 18. CPE row workload in Weighting: (a) Cora (b) Citeseer (c) Pubmed.

Optimizing Weighting Time: We first analyze the perfor-
mance improvement of applying flexible MACs (FM) on the
baseline design during Weighting. For the Cora, Citeseer, and
Pubmed datasets, the workload distribution among the CPE
rows for the baseline (without load-balancing) and FM designs
are shown in Figs. 18(a), (b), and (c), respectively. Due to
vertex feature sparsity, the CPE rows in the baseline design
suffer from workload imbalance. The FM design smooths
the workload distribution among the CPE rows results in
6% (Cora), 14% (Citeseer), and 24% (Pubmed) reduction in
the number of cycles required to compute 16 elements of

12

the output vertex features during Weighting. The imbalance
between the maximum and minimum is also reduced by FM.

For all datasets, the last four CPE rows require more cycles
than others (heavily loaded CPE rows) and the first four CPE
rows finish computation earlier (lightly loaded rows) in FM.
We perform load redistribution (LR) between “LR pairs” of
heavily loaded and lightly loaded CPE rows, offloading a
portion of the workload from the heavily loaded CPE row
to the lightly loaded one. The figure shows that applying LR
on FM further smooths the workload distribution, reducing the
imbalance between the maximum and minimum significantly,
and also further reduces the number of cycles.

Fig. 19. Cost/benefit ratio for adding MACs in Designs B–E.

Cost/Benefit Ratio: We introduce a metric, the cost/benefit
ratio, β, relative to Design A with 1024 MACs (4 MACs/CPE)

β = (% reduction in Cycles)/(% increase in MACs) (10)

The percentage reduction in cycles required is measured for
Weighting for various choices of MAC counts. The additional
hardware overhead is measured in terms of percentage increase
in MACs compared to the baseline design. We compute β for
four designs. These design choices are as follows: (i) 5 MACs
per CPE (i.e., Design B, 1280 MACs in all), (ii) 6 MACs per
CPE (i.e., Design C, 1536 MACs in all), (iii) 7 MACs per
CPE (i.e., Design D, 1792 MACs in all), (iv) flexible MAC
architecture for GNNIE, described at the end of Section VIII-A
(i.e., Design E, 1216 MACs in all).

Fig. 19 plots β on the three datasets used in our experiment
for the four design choices. As MAC units are added uniformly
to the baseline design β drops and is lowest for Design D
across all datasets. β drops for Designs B, C, and D as the high
sparsity and sparsity variation among vertex features yield low
speedup gains as more MACs are added. By employing MACs
among CPE rows as needed, the FM approach tackles input
vertex feature sparsity, achieving high β across all datasets.
Optimizing Aggregation Time: Our baseline design has
4 MACs/row (no FM), no load balancing (i.e., no degree-
dependent load distribution in Aggregation), and no graph-
specific caching (i.e., vertices are processed in order of ID).

We first evaluate our degree-aware graph reordering and
our proposed cache replacement policy (CP). We measure the
execution time of the baseline during Aggregation with and
without CP. Fig. 20(left) shows that CP reduces Aggregation
time by 11% (Cora), 35% (Citeseer), and 80% (Pubmed). This
is due to reduced random off-chip memory accesses as more
edges in a subgraph are processed under degree-aware caching.

Fig. 20. Effectiveness of GNNIE’s optimization methods.

Next, we apply CP over FM to measure their combined
effect. From Fig. 20(left), the added MACs in CP + FM yield
gains of 17% (Cora), 39% (Citeseer), and 82% (Pubmed).

We add our approach for load-balancing (LB) during Aggre-
gation, using the load distribution approach in Section V-C, on
top of CP+FM. The combined effect (CP+FM+LB) is shown
in Fig. 20(left) to reduce Aggregation time cumulatively by
47% (Cora), 69% (Citeseer), and 87% (Pubmed).
Optimizing Inference Time: We evaluate our techniques on
GCN and GAT inference time. We first analyze the effect of
CP on inference time. Next, we incrementally add FM and
LR optimization to CP and measure their combined effect
on inference time. Finally, we add all load-balancing (LB)
methods: the LR technique for Weighting as well as load
distribution during Aggregation. Figs. 20(middle) and (right)
shows the reduction in the GCN and GAT inference time,
respectively for CP, CP+FM, and CP+FM+LB. The reduction
in inference time is higher for Pubmed (19717 vertices) than
Cora (2708 vertices), indicating the scalability of GNNIE.

Customizing GNNIE for specific GNNs: GNNIE is specif-
ically designed to support a wide variety of GNNs. The
baseline architecture used for GNNs can be used without
any change for GraphSAGE; for GINConv, a larger PE array
can be used to overlap some additional computations (e.g.,
multiplication by 1+ε), but these PEs are not well utilized for
other parts of the computation and the speedup is not worth the
hardware cost. For GAT, where one could increase the number
of SFUs to one per CPE to achieve 17.6% higher speedup, at
the cost of 1.0% area increase and 21.1% higher power.

IX. CONCLUSION

We have proposed GNNIE, a versatile GNN acceleration
platform for a wide degree of GNNs, including GATs. GNNIE
efficiently works with unstructured data, input vertex feature
vector sparsity, and adjacency matrix sparsity, and “power-
law” vertex degree distribution. It mitigates load balancing
issues, computational bottlenecks, and irregular/random data
accesses using multiple methods: splitting the computation
into blocks to leverage sparsity; optimized caching strategies;
employing a flexible MAC architecture in the CPE array.
Substantial improvements over prior work are shown.

REFERENCES

[1] T. N. Kipf et al., “Semi-Supervised Classification with Graph Convolu-
tional Networks,” in International Conference on Learning Representa-
tions, 2017.

[2] W. Hamilton et al., “Inductive Representation Learning on Large
Graphs,” in Proceedings of the International Conference on Neural
Information Processing Systems, pp. 1025–1035, 2017.

13

[3] P. Veličković et al., “Graph Attention Networks,” in International
Conference on Learning Representations, 2018.

[4] K. Xu et al., “How Powerful are Graph Neural Networks?,” in Interna-
tional Conference on Learning Representations, 2019.

[5] J. Bruna et al., “Spectral Networks and Locally Connected Networks
on Graphs,” in International Conference on Learning Representations,
2013.

[6] M. Defferrard et al., “Convolutional Neural Networks on Graphs with
Fast Localized Spectral Filtering,” in Proceedings of the International
Conference on Neural Information Processing Systems, pp. 3844–3852,
2016.

[7] S. Han et al., “EIE: Efficient Inference Engine on Compressed Deep
Neural Network,” in Proceedings of the ACM/IEEE International Sym-
posium on Computer Architecture, pp. 243–254, 2016.

[8] Y.-H. Chen et al., “Eyeriss: An Energy-Efficient Reconfigurable Ac-
celerator for Deep Convolutional Neural Networks,” IEEE Journal of
Solid-State Circuits, vol. 52, no. 1, pp. 127–138, 2017.

[9] A. Aimar et al., “Nullhop: A Flexible Convolutional Neural Network
Accelerator Based on Sparse Representations of Feature Maps,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 30, no. 3,
pp. 644–656, 2019.

[10] N. P. Jouppi et al., “In-datacenter Performance Analysis of a Tensor
Processing Unit,” in Proceedings of the International Symposium on
Computer Architecture, pp. 1–12, 2017.

[11] A. Parashar et al., “SCNN: An Accelerator for Compressed-sparse
Convolutional Neural Networks,” in Proceedings of the ACM/IEEE
International Symposium on Computer Architecture, pp. 27–40, 2017.

[12] H. Sharma et al., “Bit Fusion: Bit-Level Dynamically Composable
Architecture for Accelerating Deep Neural Network,” in Proceedings
of the ACM/IEEE International Symposium on Computer Architecture,
pp. 764–775, 2018.

[13] N. P. Jouppi et al., “A Domain-Specific Supercomputer for Training
Deep Neural Networks,” Communications of the ACM, vol. 63, no. 7,
pp. 67–78, 2020.

[14] T. J. Ham et al., “Graphicionado: A High-Performance and Energy-
Efficient Accelerator for Graph Analytics,” in Proceedings of the
IEEE/ACM International Symposium on Microarchitecture, pp. 1–13,
2016.

[15] G. Dai et al., “FPGP: Graph Processing Framework on FPGA A Case
Study of Breadth-First Search,” in Proceedings of the ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pp. 105–
110, 2016.

[16] S.-W. Jun et al., “GraFBoost: Using Accelerated Flash Storage for Ex-
ternal Graph Analytics,” in Proceedings of the ACM/IEEE International
Symposium on Computer Architecture, pp. 411–424, 2018.

[17] M. Yan et al., “HyGCN: A GCN Accelerator with Hybrid Architecture,”
in Proceedings of the IEEE International Symposium on High Perfor-
mance Computer Architecture, pp. 15–29, 2020.

[18] T. Geng et al., “AWB-GCN: A Graph Convolutional Network Accel-
erator with Runtime Workload Rebalancing,” in Proceedings of the
IEEE/ACM International Symposium on Microarchitecture, 2020.

[19] A. Auten et al., “Hardware Acceleration of Graph Neural Networks,” in
Proceedings of the ACM/IEEE Design Automation Conference, pp. 1–6,
2020.

[20] R. Ying et al., “Hierarchical Graph Representation Learning with
Differentiable Pooling,” in Proceedings of the International Conference
on Neural Information Processing Systems, pp. 4805–4815, 2018.

[21] J. Fowers et al., “A High Memory Bandwidth FPGA Accelerator
for Sparse Matrix-Vector Multiplication,” in Proceedings of the IEEE
International Symposium on Field-Programmable Custom Computing
Machines, pp. 36–43, 2014.

[22] N. Srivastava et al., “MatRaptor: A Sparse-Sparse Matrix Multiplication
Accelerator Based on Row-Wise Product,” in Proceedings of the IEEE
International Symposium on High Performance Computer Architecture,
pp. 766–780, 2020.

[23] N. Srivastava et al., “Tensaurus: A Versatile Accelerator for Mixed
Sparse-Dense Tensor Computations,” in Proceedings of the IEEE/ACM
International Symposium on Microarchitecture, pp. 689–702, 2020.

[24] D. Salomon, Data Compression: The Complete Reference. London, UK:
Springer Science & Business Media, 4th ed., 2007.

[25] J. Hruska, “HBM2 vs. GDDR6: New Video Compares, Contrasts Mem-
ory Types.” https://www.extremetech.com/computing/289391-hbm2-vs-
gddr6-new-video-compares-contrasts-memory-types, 4/11/2019.

[26] S. Ward-Foxton, “Memory Technologies Confront Edge AI’s Diverse
Challenges.” https://www.eetimes.com/memory-technologies-confront-
edge-ais-diverse-challenges, 9/18/2020.

[27] P. Nilsson et al., “Hardware Implementation of the Exponential Function
using Taylor Series,” in NORCHIP, pp. 1–4, 2014.

[28] S. Liang et al., “EnGN: A High-Throughput and Energy-Efficient
Accelerator for Large Graph Neural Networks,” IEEE Transactions on
Computers, vol. 70, no. 9, pp. 1511–1525, 2021.

[29] J. Malicevic et al., “Everything You Always Wanted to Know about
Multicore Graph Processing but Were Afraid to Ask,” in Proceedings
of the USENIX Annual Technical Conference, pp. 631–643, 2017.

[30] L. Nai et al., “GraphPIM: Enabling Instruction-Level PIM Offloading
in Graph Computing Frameworks,” in Proceedings of the IEEE In-
ternational Symposium on High Performance Computer Architecture,
pp. 457–468, 2017.

[31] Z. Zhou et al., “BlockGNN: Towards Efficient GNN Acceleration Using
Block-Circulant Weight Matrices,” in Proceedings of the ACM/IEEE
Design Automation Conference, pp. 1009–1014, 2021.

[32] J. Stevens et al., “GNNerator: A Hardware/Software Framework for
Accelerating Graph Neural Networks,” in Proceedings of the ACM/IEEE
Design Automation Conference, pp. 955–960, 2021.

[33] C. Chen et al., “DyGNN: Algorithm and Architecture Support of
Dynamic Pruning for Graph Neural Networks,” in Proceedings of the
ACM/IEEE Design Automation Conference, pp. 1201–1206, 2021.

[34] J. Li et al., “GCNAX: A flexible and energy-efficient accelerator for
graph convolutional neural networks,” in Proceedings of the IEEE
International Symposium on High-Performance Computer Architecture,
pp. 775–788, 2021.

[35] J. Li et al., “SGCNAX: A scalable graph convolutional neural network
accelerator with workload balancing,” IEEE Transactions on Parallel
and Distributed Systems, vol. 33, no. 11, pp. 2834–2845, 2022.

[36] S. Ghodrati et al., “Planaria: Dynamic Architecture Fission for Spatial
Multi-Tenant Acceleration of Deep Neural Networks,” in Proceedings of
the IEEE/ACM International Symposium on Microarchitecture, pp. 681–
697, 2020.

[37] U. Gupta et al., “RecPipe: Co-designing Models and Hardware to Jointly
Optimize Recommendation Quality and Performance,” in Proceedings of
the IEEE/ACM International Symposium on Microarchitecture, pp. 870–
884, 2021.

[38] Y. Zhang et al., “Making Caches Work for Graph Analytics,” in
Proceedings of the IEEE International Conference on Big Data, pp. 293–
302, 2017.

[39] X. Chen et al., “Rubik: A Hierarchical Architecture for Efficient Graph
Neural Network Training,” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, vol. 41, no. 4, pp. 936–949,
2022.

[40] J. Arai et al., “Rabbit Order: Just-in-Time Parallel Reordering for Fast
Graph Analysis,” in Proceedings of the IEEE International Parallel and
Distributed Processing Symposium, pp. 22–31, 2016.

[41] Y. Wang et al., “GNNAdvisor: An Adaptive and Efficient Runtime
System for GNN Acceleration on GPUs,” in Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation, pp. 515–
531, 2021.

[42] P. Faldu et al., “Domain-Specialized Cache Management for Graph
Analytics,” in Proceedings of the IEEE International Symposium on
High Performance Computer Architecture, pp. 234–248, 2020.

[43] Y. Kim et al., “Ramulator: A Fast and Extensible DRAM Simulator,”
IEEE Computer Architecture Letters, vol. 15, no. 1, pp. 45–49, 2015.

[44] M. O’Connor et al., “Fine-Grained DRAM: Energy-Efficient DRAM
for Extreme Bandwidth Systems,” in Proceedings of the IEEE/ACM
International Symposium on Microarchitecture, pp. 41–54, 2017.

[45] P. Sen et al., “Collective classification in network data,” AI magazine,
vol. 29, no. 3, pp. 93–93, 2008.

[46] V. P. Dwivedi et al., “Benchmarking Graph Neural Networks,” arXiv
preprint arXiv:2003.00982, 2020.

[47] X. Zhu et al., “GridGraph: Large-Scale Graph Processing on a Single
Machine Using 2-Level Hierarchical Partitioning ,” in Proceedings of
the USENIX Annual Technical Conference, pp. 375–386, 2015.

[48] J. Mohoney et al., “Marius: Learning Massive Graph Embeddings on
a Single Machine,” in Proceedings of the USENIX Symposium on

Operating Systems Design and Implementation, pp. 533–549, 2021.

14

