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Abstract—We present an efficient optimization scheme for ~ However, due to the fact that the nominal designs are
gate sizing in the presence of process variations. Our metdo perturbed by the random process variations, a large number

is a worst-case design scheme, but it reduces the pessimis ; ; i Py
involved in traditional worst-casing methods by incorporating "bf chips may fail to meet the original delay specifications.

the effect of spatial correlations in the optimization proedure. Thi_s leads to a redl_Jction in the ti_ming yield of the circuit,
The pessimism reduction is achieved by employing a bounded defined as the fraction of total chips whose delay does not
model for the parameter variations, in the form of an uncertainty ~ exceed the original specified value. An obvious way to increase
ellipsoid, which captures the spatial correlation information the timing yield of the circuit is to design for the worst-case
gﬁﬁ‘)""s%?é‘ gl‘gnghxﬁﬁ'hepggﬂﬁ}g{%nTtﬂgt hse rgfnégfn L\‘/’;‘r:gligg‘ty scenario, e.g., choose a delay specification of the circuit much
correspdnding to the varying parameters, follow a multivaiiate Flghter than the required de'?y' Unless this new specification
Gaussian distribution, enables us to size the circuits for a IS appropriately selected, this could lead to large overheads
specified timing yield. Using a posynomial delay model, the in terms of the circuit area and the power, as the optimizer
delay constraints are modified to incorporate uncertainty h  may have to aggressively size the critical as well as the non-
the tran5|stprt.W|dthTshand ef[.ect've tph.""”?d Iengglhs d.”elto “g critical paths. Hence, it is necessary to develop smart worst-
process variations. The resulting optimization problem isrelaxe . L -

to a Geometric Program and is efficiently solved using convex ¢2SiNg methodologies in the presence of process uncertainties,
optimization tools. The effectiveness of our robust gate sing that keep the area and the power budgets within reasonable
scheme is demonstrated by applying the optimization on the bounds.

ISCAS '85 benchmark circuits and testing the Optimized ciraits In thls Work’ we present a novel Worst_CaS""lg Scheme, based

by performing Monte Carlo simulations to model the process ot :
variations. Experimental results show that the timing yied of the on robust optimization theory. In our method, we modify the

robustly optimized circuits improves manifold over the traditional ~ delay constraints to incorporate uncertainty in the parameters
deterministically sized circuits. For the same transistorarea, the due to the process variations. Ancertainty ellipsoid method

circuits sized by of our robust optimization approach have,on is used to model the random parameter variations, assuming
an average, 12% fewer timing violations as compared to the normal distribution of parameters. Spatial correlations of intra-
ggtseeg'gﬂgrff'b“;ﬁé‘iﬁg?}t%'t”h%%‘l"athe traditional, deterrimistically  gie narameter variations are incorporated in the optimization
procedure. We impose no restriction on the sign of correlation
I. INTRODUCTION TOROBUST GATE SIZING factor, i.e., the parameters may b_e positively or negatively
correlated. The resulting optimization problem is relaxed to
The limitations of the manufacturing process in the curreat geometric program (GP), and is efficiently solved using
technologies leads to random variations in various circubnvex optimization tools. By using the well-knowdhi-
parameters such as the transistor width, channel length, agdare probability distribution function, the desired timing
oxide thickness, which may cause a large spread in the ciroyééld can be parameterized into the optimization formulation.
performance measures such as the delay and power. Since @ig formulation is based on the principle of adding uncer-
impossible to control process-driven variations, it is essentiainty related, parameter correlation-aware, margins to delay
for the design tools to account for these uncertainties to enabishstraints at the output pin of each logic gate. However,
the design of robust circuits that are as insensitive to the devigg using these guard-bands for the delay constraints at the
parameter variations as possible. output of each node in the circuit graphinstead of the
The optimization of gate sizes offers a degree of flexibilitwhole path delay, leads to a problem of overestimation of the
in addressing this issue. The gate sizing problem determirgfect of variations. We reduce this problem by employing a
an optimal set of transistor sizes, defined as the ratio of theaph pruning technigque to reduce the number of intermediate
transistor width ¢) to the effective channel lengtiL(), that nodes in the circuit graph, and the corresponding arrival time
minimize the area or power consumption of a combinationgriables in the optimization formulation. The use of variable
circuit, subject to meeting the specified delay constraintsize uncertainty ellipsoid at different topological levels of
Conventional gate sizing tools employ a static timing analysiise circuit graph helps in further removing the extra timing
(STA) routine to generate the delay constraints by addimgargins in the constraints.
intermediate variables at the output of each gate in the circuit,
and then solve the res_,ultln_g OptImI_ZatI_On prObIe_m_ to deterr‘nquhe graph obtained by modeling each pin of a gate as a venexeach
the widths of the devices in the circuit. The minimum lengtpin-to-pin connection, in the whole circuit, as an edge efemred to as the
is chosen for all the devices. circuit graph or the timing graph.



The organization of this paper is as follows. We reviewo identify a size that will absorb the slack assigned by the
the previous work on uncertainty-aware gate sizing in Sectioptimization solution. Such a method based on local searches
II. Section 11l covers the preliminaries of geometric progranhas to assume that the delay of the gate depends only on the
ming, the traditional gate sizing formulation, the ellipsoid sdixed local choices, e.g., a particular size and the fanout load of
and the Chi-square probability distribution. In Section 1V, wa gate. In reality, the gate delay is also a function of the slope
present our formulation of the robust sizing problem, and usé the signals at the input pins of the gate, which in turn are
a simple example to explain the details of this formulatiofiunctions of the sizes of the fanin gates and the interconnect
Section IV-C points out the problem of overestimation odlelay. Hence, although local search method of [10] works well
the effect of variations in our robust formulation. The grapfor simple delay models as functions of output load only, it is
pruning technique and the use of variable amounts of timingplikely to work for a realistic delay model also considering
margins at different topological levels of the circuits, agput slews.

methods to reduce this pessimism in the robust formulation,Recently a novel method for optimizing the binning yield of
are described in Sections IV-D and IV-E. Experimental resul&schip was proposed in [12]. This method provides a binning
are presented in Section V, and Section VI concludes tRjg|qd loss function that has a linear penalty for delay of the

paper. circuit exceeding the target delay, and proves the convexity
1. PREVIOUS WORK of this formulation. However, the method has to rely on an

. o . SSTA engine to evaluate the gradient of the binning yield
d '{radl_tlc_)ntal ga?e .S'Z![ng metkgclndologfles [{1]’ [2] SOIV_?hthEss function for optimization purposes. This could potentially
eterministc optimization problem 0f gale sizing WIthOUL, 5y the overall procedure considerably slow for many iter-

aggozgmgl f(;)é|Z\i/aré?)t:]()sr:t’sailr?tspg:]?jn;grﬂaia:[reh?ﬁee Tgé?gnﬂsa%%ns of the optimization loop. As the objective function in
posy y P 3 optimization formulation in this work is non-differentiable,

geometric program. Section IlI-B reviews the formulation used o procedure could also run into some serious numerical

in these convent_lo_nal gate sizing Work.s.' .Wh|le the met[h oblems while generating the subgradients of the objective
of [1] performs sizing based on a sensitivity-based heurist nction

[2] offers an exact optimization algorithm to perform gate _ . )
sizing, based on convex programming techniques. There havé? this work, we propose a novel gate sizing technique
been several recent attempts to perform uncertainty-aw8@S€d on robust optimization theory [13]. For simplicity, our
gate sizing to reduce the timing violations or increase th@plementation uses the Elmore delay based model, but our
timing vyield. In [3], the gate sizing problem is formulatec®PProach is applicable to any posynomial delay model, such
as a nonlinear optimization problem with a penalty functios the rich class of generalized posynomial delay models
added to improve the distribution of timing slacks. One of thieroposed in [14]. In our method, we first generate posyno-
first works on statistical gate sizing [4], proposes formulatiofial constraints by performing an STA. We then aufust
of statistical objective and timing constraints, and solves tifgnstiraints to the original constraints set by modeling the
resulting nonlinear optimization formulation. In other workdtra-chip random process parameter variations as Gaussian
on robust gate sizing [5-8], the central idea is to capture tM@riables, contained in a constant probability densitger-
delay distributions by performing a statistical static timingginty €lipsoid [15], centered at the nominal values. The
analysis (SSTA), as opposed to the traditional STA, armethoo_l o_f [1_6] also uses th_e ellipsoid uncer_tamty model, but
then use either a general nonlinear programming techniqfﬁ’é optimization of small size analog circuits. We use the
or statistical sensitivity-based heuristic procedures to size #yell known Chi-square distribution tables to assign a timing
gates. In [9], the mean and variances of the node delays in Yi@ld value in our optimization constraints. Under the ellipsoid
circuit graph are minimized in the selected paths, subject yhcertainty model, the r(_asuln_n_g optimization f_ormulanon is
constraints on delay and area penalty. reque_d to be a GP, and is eff|C|ent_Iy solved using the convex
Some of the abovementioned variation-aware gate sizifgtimization tools. Furthermore, using a GP to perform robust
works are heuristics [6-8] without provable optimality propeidate sizing ensures that the optimizer finds a global minimum,
ties. The sensitivity-based approaches optimize the statisti#4lich is not guaranteed in the case of a general nonlinear
cost function in a local neighborhood, and cannot guarant@gram. The relaxation of the robust counterpart of the
convergence to the globally optimal solution. Others rely dipnventional deterministic GP-based gate sizing solution as
nonlinear nonconvex optimization techniques [4], [5], [9]_z,mother GP is a major contrlbutl_on of this work; in general,
which are either not scalable to practical circuits or may gBtiS not true that the robust versions of convex programs are
stuck in locally optimal solutions. Some of these works [4], [5}ISO convex programs [13].
ignore important statistical properties of varying parametersOur robust gate sizing scheme is a type of worst-case
such as the spatial correlations. design method, but by incorporating spatial correlations in the
In [10], the authors present an interesting approach design procedure, we reduce some pessimism in the design.
optimize the statistical power of the circuit, subject to timingpatial intra-die correlations between the parameter variations
yield constraints under convex formulation of the problem asase incorporated in the optimization scheme by using a grid-
second-order conic program. However, the formulation suffdoased spatial correlation model used in [17] and [18]. In
from the same problem of overestimation of statistical nodatldition, we show that the nodal constraints formulation adds
delay constraints as [11], which will be explained in Sectiopessimism, and reduce some of this pessimism by employing
IV-C, and we partially correct this by the techniques describélde graph pruning technique of [19]. Heuristic methods for
in Section 1V-D and IV-E. More importantly, the solution inassigning smaller timing margins at lower topological levels
[10] relies on a local search over the gate configuration spaafethe circuit graph, and increasing the guard-banding at higher



levels, by employing different sized uncertainty ellipsoids, alssherez;, represents the nominal size of the gaigjs some

help in reducing the effects of this pessimism. weighting factor such as the number of transistors in a gate
We focus on the intra-die variations i, andw parameters; cell, ¢; are the intermediate input arrival time variables at the

however, the method can be easily modified to include intéanin of gatei, d;; is the delay of gate, from the j** input

die variations. Process-driven variations in the interconngamn to the output pin, as a function of the vec®g of the

widths and thickness can also be included in our method. Theminal gate sizes/,.. is the specified target delay,,,

following sections in this paper, describe in details the varioasd z,,,,, are the lower and upper bounds on the gate sizes,

steps of our robust gate sizing method. respectively.
Using the Elmore delay modeleach gate in the circuit
I1l. PRELIMINARIES can be replaced by an equivale®y,,; C; element, where,,,,

represents the effective on resistance of the pull-up or the pull-
own network, and the terfi; subsumes the source, drain and
Bate capacitances of the transistors in the gate. The expressions

In this section, we will review some of the basic tools an
formulations that we build on to obtain our robust optimizatio

formulation. for R,,, andC; for a gatei are given by:
A. Geometric Programming R, = 1 L, Cs = cyLe w; + 3 ()
A function is called anonomial function if it can be written Wi

in the form: where, the constants,,c. and ¢z can be derived from [2].

_ a1 s @ Both the capacitances and the on resistance of the transistors in
flx) = caray’ay a gate are posynomial functions of the gate size, characterized
B - a; 1 by the widthsw of the transistors in the gate. Consequently,
= cH”’i @) the termR,,,,C;, which is the equivalent delay contribution
i=1

of gate: in the circuit, is also a posynomial function ef
wherex € R}, ¢ > 0 anda; € R. The variables in a  From Equations (4) and (5), the delay constraints at each
monomial function, and the coefficientare strictly positive, node of the circuit graph can be written as:
and the exponents; can be any real numbers. )
A sum of monomials is called posynomial function. It can ti < Tspee Vi€ PO

be written as: ti+> K [[ep < ti Vi€ fanin(i)  (6)
k n 1 k
fla) = Z € H ;" (2)  where,K; is a constant coefficient of tH& monomial term in
j=t =l the posynomial delay expression, and can be derived from (5),
wherec;, > 0. x, represents the width of gafe, anda, is the exponents
From Equations (1) and (2), a geometric program can é the k" components of th&X, vector,e {—1,0,1}. By
defined as an optimization problem of the form: substituting Equation (6) in Equation (4) for all gates in the
L circuit, the conventional transistor sizing is formulated as a GP
Minimize  fo(x) optimization problem of Equation (3), having a posynomial
Subjectto fi(z) <1, i=1,---,m objective function and posynomial constraints, which can be
hi(x) =1, i=1,---,p (3) solved using the convex optimization techniques. In Section
) . ) ] IV, we show how the robust version of the standard GP
where fo, - - -, f, are posynomial function as in Equation (2)formulation, for the deterministic case, can be converted to
andhq,-- -, h,, are monomial functions as in Equation (1). another GP.

Geometric programs are not, in general, convex optimiza-
tion problems. However, by a simple transformation of varc. The Ellipsoidal Uncertainty Set
ables,z; = e¥i in the objective and the constraint functions For any vector€) and(, € R", and a non-singular matrix
of Equation (3), they can be converted to a convex progra € R™< an ellipsoid set is defined as [15];
[13], and hence can be efficiently and globally solved using ' P ’
the convex optimization methods. U={Q:(Q-Q)"P Q2 -Q) <¢*} )

If P is a symmetric and positive definite matrix, an al-

i o o _ ternative representation of (7) is realized by substituting,
The conventional deterministic gate sizing problem is folp—1/2() — Q) = u as:

B. Deterministic Gate Szing as a Geometric Program

mulated as: s

n U={Q +P"u |ull, <y} (8)

Minimize ~ Area = aiz;, where ||lully = u”u is the 2-norm of vectoru. For a

) _ =1 symmetric and positive definite matrik, the matrixP'/2 can

Subject to: (4)  be computed by the eigen decompositionfof The ellipsoid

t; < Tspec Vi € PO

t; + dji(XO) <t Vje fam'n(i) Traditional gate sizing methods of [1] and [2] also use thedk delay.

. In any GP based formulation, the Elmore delay model is usedifoplicity.
. Alternatively, generalized posynomial delay models [i4hich have a higher

Tmin < iy < Tmag  Vgate 1 accuracy, can be used for the GP formulation.



represents a-dimensional region, where the vect@rvaries for a random variable following the Chi-square distribution,
around the center poir2y. The vectoru characterizes the the cumulative density function (CDF) efis given by [20]:
movement ofQ) around(.

oy (n/2,2/2)
F(z;n) = (n/2) (10)
e where I" is the gamma function, and is the incomplete

gamma function [20].
Referring back to Equation (7), it can be proved that the

random variablez = (2 — Qo)TP~1(2 — Q) is X2 dis-
tributed [15]. Therefore, the solid ellipsoid given by Equation
(7) can be assigned a prespecified amount of probabileg:

\
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__________________________________ = a = Fx% (1/)2) (11)

I
! 0 where F' is the Chi-square CDF function given by Equation
| (10).
\ As will be explained in Section IV, we use the uncertainty
ellipsoid to pad the deterministic delay constraints, and with
Fig. 1. An uncertainty ellipsoid set in two dimensions. Ttigpsoid setis the prespecified probability: given by the lower bound on
used as a bounded model for multivariate normal parametétieas. timing yield specification, we define the size of the ellipsoid.
This determines the amount of margin required for each delay

Figure 1 illustrates the ellipsoid i2. The half-lengths of constraint.
the axis of the ellipsoid are a factgr of the square roots of IV. VARIATION-AWARE GATE SIZING
the eigenvalues); and\», of the matrixP, and the direction . .
of thegaxis is given by the eigenvectors Bf e; andes. A. Effect of Variations on Constraints
Considering the vectof2 to consist of random variables The deterministic posynomial constraints of (6) can be
corresponding to the parameters of variations, with an d&presented as:
sociated covariance matrix given by, and assuming that ) B ,
the parameters of variation follow a Gaussian distribution, ti+fiXo) = (12)
the ellipsoid set described in Equations (7) and (8), can leret; + f;i(Xo) = t; + >, Ki[[; x;j' represents thgt”
used as a bounded model of variations. In particular, it caonstraint functionXy is the vector representing the nominal
be shown that the constant probability density contours ofgate sizes:,, for all gates. The conventional GP optimization
multivariate normal distribution represent an ellipsoid set. Trassigns a set of optimal, to the vectoiXy, so that each delay
joint probability distribution function (PDF) of the multiiate constraint is satisfied, i.et; + f;(Xo) < ¢; for all constraints
normal random vectof2, with a covariance matrix’ is: i, and the area objective is minimized.
1 L S However, due to the effect of process variations, the posyn-
fa(Q) = me{_fm_n") P (O—90)} (9) omial delay models of the gate can no longer be assumed to
(2m)n/2|P| be deterministic quantities. Thus, the constraint inequalities at
where|P| is the determinant of the covariance matfixand each node should be rewritten as:
n is the number of components in the variation ve&rit is
clear from Equation (9), that the PDF of a multivariate normal tj + fij(Xo, ) < i (13)
distribution would be a constant if (2 — Q¢)"P~1(Q — where © is the random vector of perturbations around the
Qo) = c. This relation represents precisely the surface @bminal values of the parameters. For the cases when the new
an ellipsoid given by Equation (7), with = +?*. Since the value of the constraint function; + f;i(Xo, ) > t;, the
covariance matrixP is symmetric and positive definite [15], effect of the random process variations leads to the original
we can also equivalently represent the constant probabiliignstraints being violated and a possible timing failure for the
ellipsoid as Equation (8). Thus from the discussion abovgrcuit.
by assuming normality of parameter distribution, the ellipsoid Assuming that the random parameter perturbations around
set can be regarded as a high-dimensional region insi# nominal values are small, the new value of the gate delay

which the parameters randomly vary. This bounded model @fodel f;(Xo, £2) can be approximated by a first order Taylor
parameter variations in the form of an ellipsoid set is referregries expansion as:

to as anuncertainty elipsoid. In Section IV, we use this

uncertainty ellipsoid model to simplify our robust constraints ., 9f5i(Xo, ) ‘
N : ji ) +6Q = i (Xo, Qo) + Q: — Q-
and formulate the robust GP optimization problem. (X0, 20 ) Jii(Xo.82e) Z 0(2) oy, (8 = )
J
D. Chi-square Distribution = [ii(Xo,R0) + Vag fji (X0, 2)0
If r; aren independent normally distributed random vari- = ZKI Hﬁgl + VQO(Z K Hx}l”m) 14
ables with meang;; and variances?, the random variable ! i ! i

z =), (7-#)? is distributed according to the Chi-squarewhereVg,, represents the gradient calculated at the nominal
distribution (2), with n degrees of freedom [15]. The Chi-values of the parameters, an@ represents the zero-mean
square distribution is a special case of gamma distribution, armhdom variation in the parameters such as transistor width,

4



effective channel length and oxide thickness, around the nom- J
inal values. Note that the coefficief; also depends on the
parameters, and therefore should be regarded as a function > © > G
K;(€2) of the perturbation vector.
In (14) the term Vg, (3, K; [, ;7)o is the variational (w1, Le,) (w2, Le,) I Cload
term representing the effect of ‘process variations, added to L
the nominal term}_, K; []; m;‘g To safeguard against the -
uncertainty of process variations, it is necessary to meet t,l_q& 2. A simple example circuit to explain the geometric geon
constraint¢; + f;(Xo, Q) < t;, for the maximum value of the formulation for robust gate sizing problem.
variational term. In other words:

ti+ > K [+
l J
max (Va, (Y K [["60) <t (15)
l J

V6QEU set. We use the toy circuit of Figure 2, comprising of just
one driver gate and one load gate, for this illustration, but
Next, we show that by employing the concept of an uncertainye idea can be generalized to arbitrarily large circuits. In this
ellipsoid U, the constraint of (15) can be transformed to axample, we consider the widths)(,w,) and the effective
set of posynomial constraints, so that the robust optimizatigRannel lengthsI(,, , L.,) of the two gates as the only varying

formulation remains a GP, and can be efficiently solve@arameters. The scheme can be directly extended to include
Our robust GP formulation is applicable for all cases whetgher parameters.

the original constraints are in the form of a generalized

posynomial [14]. Applying the Elmore delay model to the gates of circuit of
We use the uncertainty ellipsoid to model the process vaFigure 2, and for simplicity, neglecting the interconnect delay

ations that randomly perturb the transistor parameters arow@tl the effect of drain and source capacitances of the driver

the nominal values for which they were designed. As trgate, the delay constraint for the circuit can be written as:

rand_om vector2 of uncertain parameters varies arOl_md the K\Le,Leyws KL,

nominal parameter vectdr,, the variations are considered +

to be bounded within the ellipsoid regions defined by (8). In

other words, referring to Equation (8), the variatiéf from WhereK, and K, are constants. As explained in Section IV,
Qo is given bydQ = PY/2u with [jul|, < ¢. to ensure that the delay constraint of (16) is met under the

Alternatively, we could have chosen the variatiifa in the €ffect of random process variations, the first order Taylor series
parameters to be bounded in ardimensional box given by expa_nsion of the constraint function results in the following
Qin < 62 < Q0. However, using the box as a moderelation:
for bounded variation, ignores any correlation information K, L
between the random components @f as each component
can move independently inside a box, assuming any values

S Tspec (16)
w1 w2

610 620

L520 w20 " KzL

Wi, w2,

between the minimum and maximum range. Thus, optimizing 1ax <K1L510L620 0w, + K Ley, wao0Le, + (17)
for a maximum variation in such a box region would translatéw,iL.€U Wi, Wi,

to an overly pessimistic design. Moreover, afdimensional KiLe,w2,0Le,  K36Le,

box modeling of parameter variations would be accurate only wr, + W -

in the highly unlikely case when all parameters are statistically

independent with respect to each other, and follow a uniform KiLe,, Le;O wapdwr K2Le;0 6w2> Tipec
distribution. Most parameters have been observed to follow wi, W,

a dIStI’IbUtIOH that I’esemb|es a GaUSSIan one. The advantmrewo and LEO represent’ respec“vely’ the nomlnal Values
of using the ellipsoid uncertainty mc_>d¢| is that it not onlbf the transistow and L., andéw andsL. are, respectively,
accurately models the region of variation for normally dishe random variations im and L.. Employing the ellipsoid

tributed parameters, any correlations between the paramete{gjgertainty model of (8) for the random parameter variations,
directly captured by appropriately constructing the elements|ggs to:

the covariance matri¥. The covariance matrix can be derived

from a spatial correlation model such as the ones used in [17] owy (Pi/ju)l
and [18]. ow; _ | (PY*u),

In the next section, we show with the aid of a small example, e1 (P/7a);
the use of the uncertainty ellipsoid model in converting the 0Le, (PY/?u),

constrair_n of (15) to a set of posyn(_)mia_d constraints, an ere P is the covariance matrix of the random vec@r
formulating the robust GP for gate sizing in the presence 9fqisting of the variations in gate and L. of the driver
process variations. and the load gate of Figure 2, amndis the vector bounding
B. Robust GP formulation the variation within the 4-dimensional ellipsoid centered at the

: _ ‘nominal values ofw and L., with [Jul|2 < .
We use a simple example to explain the procedure to in-

corporate the process variation effects in the delay constraint®Ve introduce a vectos to collect the coefficients of the



variational parameters of (17) as: As the optimizer tries to minimize the value of the robust

Ky Leyy Legy w2, variablesr; andr, the relaxed inequality constraints of (27)
Wl and (28) would enforce the equality constraint of Equation
KiLey Loy, KoLey (25).
¢ = w1, T Wl (19) The inequality of (26) is clearly a posynomial with the
Ky Ley way robust variables; andr, added to the original variable list
wy, of the gatew and the intermediate arrival time variablegot

KiL. . . . R
SR | Ky used in this example). From Equation (22), by construction, all

o ) . the elements ofj; are posynomials, and all the elements;of
From the definitions in (18) and (19), (17) can be rewrittege negative of posynomials. Thus, the quadratic teyfis.,
as: andny 5, are a summation of monomials with positive coef-
KiLe, Le, w2, KzLe, 1/2 ficients. Consequently, the constraints of (27) and (28) are also
5,10 ° + W, -+ max (<P 29, “>) < Tipec (20) posynomials. Hence, by following the procedure described in
_ the above equations, we convert the non-robust posynomial
where(a, b) represents the inner product of vectarandb.  cgonstraint of (16) to a set of robust posynomial constraints
Since the covariance matrik is symmetric and positive of (26-28), by introducing two additional variables. It is
definite [15]: worth emphasizing that unlike [11], the robust GP formulation
1/2 , _ . T presented in this section does not restrict the elements of the
Pre=0 dwg(\/x’ ’\/E) @9 (21) P matrix to be only nonnegative, i.e., the method can handle
where ) is the matrix containing eigenvectors @f, and both positively and negatively correlated parameters.
i, -+, A are then eigenvalues ofP. Next, definingM = Next, we address the issue of assigning a timing yield
P2 = Q diag(v/A1,- -+, v ) QF, the positive and negative parameter to the optimization formulation. As discussed in
terms of the elements of vectdd ¢ can be separated as:  Section IlI-D, we can assign a prespecified probabilityo
172, _ the uncertainty ellipsoid model of variations by using
PG = Mo =m + 12 (22) " Gistribution. From Equation (11), we can determiﬂéwjg
where 15, and 1, contain all positive and negative termsthe upperl00a" percentile of thex? distribution from the

w10 ’(1}20

respectively, of the elements of the veétdd ¢. standard tables of the Chi-square CDF. For instance, for the
From the well-known result of the Cauchy Schwartz inexample circuit of Figure 2, correspondingdo= 0.9 or 90%,
equality*: the value ofy) determined from the3 CDF tables, for the

four-dimensional ellipsoid, ig = 2.79. The value assigned to
<a,b> < lallz-[[bll2 (23) 1, determines the size of the uncertainty ellipsoid used to pad

and from Equations (21) and (22), along with the fact th&#e nominal terms in the timing constraints. The prespecified

in the ellipsoid uncertainty modeljull, < v, a sufficient Probability a serves as the lower bound on the timing yield,
conditior for (20) is: because the robust constraints formulated using the ellipsoid

I I w KoL margin corresponding to such an would be satisfied for at
1 2 2 i I 1
Ki1Ley Leoy w2 + o Glimllz + ¥lnzllz < Tapee (24) leasta% of all cases. Since there are other points outside the

Wi, w2, ellipsoid set of the specified probability value that may not
We then introduce two additionabbust variables r, andr, Cause timing violations, the timing yield could be more than
as: Q.
_ ) I For a general circuit, the procedure described for the exam-
rr = Ylnll, ie., i =v¢7mm ple circuit of Figure 2 is repeated for each constraint. Thus, by
ry = ||nalle, €., 2= nTn, (25) addition of at most two additional variables for each constraint,

] ) ] ) robustness against the process uncertainties is added to the
The inequality of (24) is then replaced by the following relaxegyiginal constraint set, while still maintaining the desirable
constraints: posynomial structure of the constraints. By this procedure, we

Ky Le, Ley w2, N K3Le, convert the conventional GP formulation of the gate sizing

wy, W, tritr: < Topee (26) problem to a robust gate sizing problem, which is also a
N GP and hence, can be efficiently solved using the convex
Yoy < (27) " optimization machinery.
Vnetnery® <1 (28)

C. Overestimation of Variations

3Note that the eigen decomposition of tHematrix, to obtain\/ = P1/2, The optimization formulation described in Section IV, adds
has a one time cost associated with it. For a given correlatimdel, margins to the deterministic constraints generated by an STA
the covariance matri¥’> does not change for different circuits or dn‘ferentprocedure Due to the fact that separate margins are added at
placements of a circuit. Hence, the eigen decompositioR oéin be obtained h d ’ fth . . h i d of th hol h th
in a precharacterization step. each node of the circuit graph, instead of the whole path, the
%In our case, the equality in (23) also holds, as there are gmites in resultln_g f_ormulanon could result in a Ia_rge overestimation of
the ellipsoid set which havéP'/2¢, u) = [|P/2¢||s - ||ul|z. the variational component of the circuit delay, which could
SAn equivalent condition for (20) is: lead to excessive design penalties.

KiLe, Le KoL : . . .
170 2020 P20 22 20 4 |(n 4+ n2)ll2) < Tspec. However, — To understand the problem of this overestimation of varia-

w10 . . . . . . . .
this does not lead to the formulation of posynémial constsabf (27) and tiON, consider a simple example circuit consistingfchain
(28). of inverters as shown in Figure 3. For this simple circuit,




t o E tm the circuit graph of Figure 3 is given by:
D - D Cloaa Proz = [Pr(dy(Xo, ) > t1)] U[Pr(ty + da(Xo,2) > 1)U
I U [P""(tmfl + dm(Xo, Q) > Tspec)] (35)

Clearly, from Equations (34) and (3%)tai1 < Pfairz- Thus,
Fig. 3. An example of a chain of inverters circuit to expldie problem of the robust GP formulation attempts to safeguard against a
overestimation of variations in the robust GP formulation. probability of timing failure that is greater than the actual
failure probability, which could lead to extra design margins.
For a simple circuit similar to the one in Figure 3, it is
. trivial to trace the path delay, and then add margin to the
an STA module would generate the following block-baseghole path delay constraint. However, in general, the number

constraints: of paths in a circuit graph can be exponential in the number of
nodes. Therefore, enumeration of paths has a prohibitive cost
di(Xo) < t orel I
(X < for large circuits consisting of thousands of gates.
ti+dx(Xo) < 12 To reduce the problem of unnecessary padding at the inter-

mediate nodes in the circuit, without incurring the exponential

cost of formulating the path-based constraints, we employ
tm a graph pruning technique proposed in [19]. The following
Tspec (29) section discusses this pruning method.

tmfl + dm (XO)
tm

whered; is the delay of the*” inverter, which is a function of D. Graph Pruning

the vector of nominal gate sizé6,. By the method explained |n [19], the authors propose a technique to reduce the
in Section IV, the equivalent robust constraints for the exampi@mber of variables, constraints and redundancy in the circuit

IN AN -

circuit of Figure 3, can be written as: optimization formulation, by removing the internal nodes and
di (X Vaodi (Xo, 2)6Q) < ¢ the or|g|r_1al edges con_nected to them in the circuit graph. We
1(Xo) +vf5rs12anU( 201 (X0, 2)02) <t adapt this graph pruning technique to our method to reduce
t1 + d2(Xo) + V%Igl)aXU(VQOdQ(Xo, N)oRN) < to the pessimism in our gate sizing formulation.
S

This technique alters the delay constraints formulation by
(30) operating on the timing graph of the circuit. An initial timing
graph of the circuit is constructed by representing each pin of
tm—1 + dmn(Xo) + V%*EXU(Vﬂodm(Xov 2)o) < tn a gate in the circuit as a vertex, and the connections between
Tipee @D input and an output pin of the same gate, and between an
output pin of a gate and an input pin of its fanout gate, as
It is easy to see that for the simple circuit of Figure 3, thedges in the graph. The arrival time at a pin of a gate is used
delay is given by the whole path delay @5Xo,€2) +---+ to annotate the edge originating at the node corresponding to
dm(Xo,$2). Thus, the effect of variations can be accountefiat pin. Two additional nodes, representing the primary inputs
for by a simple robust constraint of the form: (P1) and primary outputs (PO) are added to the vertex set of the
graph. Figure 4 shows a simple circuit and its corresponding

tm <

max (Vg (di(Xo,R)) + - + dn(Xo, 2)02) < Topec

VoQeU ;s

For anym nonnegative functionsy:, - - -, y,., the following %
inequality is well-known: / }/ "

max(y; + -+ Ym) <maxy; + - - + maxy,, (32)

Therefore, for the variation terms in the constraints of (30 g . ~1 ("
and (31), the following inequality holds: 1

o
Jmax (Vao Z di(Xo,2)d2) < ngf;lagU(Vno di(Xo,82)0€2) (33)
2 (2

a

It is clear from (30), (31) and (33), that the approach of adding @ ®
the variational component of delay at each node leads to exti@ 4. A simple example circuit to illustrate the graph pngnmethod. (a)
guard-banding. A two-level combinatorial circuit. (b) Timing graph for thercuit.

Another way to understand the amount of pessimism in-
troduced in the formulations is by realizing that the actual In the graph pruning method, the nodes of the graph are
probability of failure, psqu1, for the circuit of Figure 3 is iteratively screened for a possible elimination by evaluating
given by: the cost of this node removal. The cost is typically expressed

o as some simple function of change in the number of variables

Praitt = Pr(di(Xo, @) + -+ din(Xo, @) > Topee  (34) 204" conctraints in the optimization formulation, after the
On the other hand, the probability of failurey.;2, as vertex under consideration is removed from the graph. If the
computed by the padding of constraints at the each nodeewaluated cost is negative, implying a reduction in the problem



size, the node is removed, and subsequently all incoming and ts +ds57(Xo, ) <ty

outgoing edges of this node are also pruned from the graph. te + de7(Xo,2) < tr

@ @ ’ t7 S Tspec (38)
whereXj is the vector consisting of the sizes of the three gates

@ 0 @ @ of Figure 4(a), and2 is the random vector corresponding to

» the process uncertainties. From the discussion in Section IV-C,

adding margins for each of the constraints of (38) can result in
excessive guard-banding against the effect of variations, and

(im) o ) hence a pessimistic design.

@ (b) t

Fig. 5. A segment of the timing graph of a circuit to illusaahe removal

- O
of a node in the graph pruning method. (a) The original graggment. (b) / @L » 2 z @L@
Sl cd
t

The graph segment after pruning nade

The change in the formulation of delay constraints by a @// (b)
node removal can be understood by considering a segment @ ‘

of a circuit graph shown in Figure 5. In the above figure, b s, 17

we assume that nodemeets the removal criterion according M
to the pruning cost. This node has fanins,iy,- -, i, and b to, by &9
n fanouts,o,,---,0,,. The timing constraints for this graph
segment before the node removal, as depicted by the graph

segment of Figure 5(a) are:
Fig. 6. The graph pruning method applied to the example itiafuFigure
ty +dyy <t VE€L--m 4. (a) The original circuit graph. (b) Graph after removirgdes 1, 2, 3 and
ti+d 0; < to,— Vi€l ---,n (36) 4. (c) Graph after removing nodes 5 and 6. (d) The final prumraghy

by, t, t7

(d)

After eliminating nodel, and the corresponding arrival time . . . . L

variablet;, from the above constraint set, we obtain: As described in the previous section, the circuit timing graph
] of Figure 4(b), and the corresponding constraints formulation

iy Tdipg +dio; <to; VEk€1,---,m, Vjel,--,n(37) of (38) can be altered by selectively removing nodes from the

These new constraints are shown graphically in Figure 5(§)aPh- Figure & illustrates the application of the graph pruning
The two sets of constraints in (36) and (37) are equivale ,chmque on the example circuit of_Flgyre 4, For th|s specn‘l_c
and no timing information is lost in transforming from one sefX@mple, the pruning cost chosen is simply the difference in
to the other. Since the pruning cost determines the nodesl§ NUmMber of variable and constraints after removing a node
be removed, a cost function constructed to reduce the probl&gm the graph. Figure 6(a) shows the graph obtained after
size, e.g., a weighted sum of change in the number of variabfeéninating nodes 1, 2, 3 and 4 in the original graph. Similarly,
and number of constraints, results in making the optimizatigfigure 6(p) represents the graph after removing nodes 5 and
formulation more compact after every pruning step. , as well. The final pruned graph, obtained after removing
1) Example of the Pruning Procedure: The application of all nodes except the Pl and the PO nodes is shown in Figure
the graph pruning method of [19] to reduce the pessimism d). For each pruned node, a new edge is added between the
our optimization formulation can be best explained using fanin and fanout nodes of the removed node, and the new edge
simple example circuit, and its corresponding timing grapk an_notated with the prun_ed_ arrival times. This annotation is
For this we refer back to the circuit of Figure 4. As showfequired to generate the timing constraints at the end of the
in the figure, the arrival times at each pin of the logic gaté¥uning procedure. _ . _
are represented by variables, - - -, t;. For simplicity, it is From the edgg annotations, a_nd the orlglnal constramts (_)f
assumed that the interconnects have zero delay and that(3®), the constraints corresponding to the final pruned circuit
primary inputs arrive at a time = 0. The d,; variables in 9graph of Figure 6(d) can be written as:

Figure 4(a), represent the pin to pin delay of a logic gate. di5(Xo, Q) + d57(X0, Q) < Tapec

Figure 4(b) shows the corresponding timing graph for the Do (X Q) 4 den(Xer. O 2 Tp

example circuit. By employing an STA procedure, the delay 25(Xo0, @) +ds57(Xo, @) < Tipec
constraints at the output of pin of each gate in the circuit of d36(Xo,§2) + do7(Xo0,Q2) < Tipec

Figure 4(a) can be written as: di(Xo, Q) +de7(Xo0,2) < Typee (39)

0 < t; i€{1,2,3,4} In the above set of constraints, the pruning method elim-
t+di5(Xo, Q) < s inates all nodes, except the ones corresponding to primary
ts + dos(Xo, Q) < ¢ inputs and the primary output. Since all intermediate arrival
2T 02820, = time variablest; are pruned, the above formulation does
t3 + d36(Xo,2) < 16 away with the problem of keeping redundant margins for the
ty +dss(Xo0,Q2) < g constraints at the output pin of each node. It should be em-



phasized that the example circuit of Figure 4 is an extrematyethods, such as the interior point algorithm.

simple case for which the pruning method can eliminate all To overcome this issue of potential slow down of the
intermediate nodes, and arrive at the path delay constraigtie sizing procedure, due to the increase in density of the
of (39). Therefore, the problem of overestimation of effect afonstraint Jacobian matrix, we modify the pruning cost to
variation, as described in Section IV-C is completely resolvédclude a penalty term related to increasing the number of
for this example circuit. In general, for practical circuitsterms in then; and. vectors. We definé/fono,.,, as the

the graph pruning procedure could determine some nodeaximum number of monomial terms in all the constraints
unsuitable for pruning, and some intermediate nodes coulffected by removing the node under consideration. The cost
still remain in the final pruned circuit graph. However, due tof pruning this node is then calculated as:

the removal of many intermediate nodes, the pessimism in the
robust optimization formulation is considerably reduced. Jeost = a8con +bAvar + cmax(Mononum — Monospec, 0)

2) Practical Issuesin Using Graph Pruning for the Robust (40)
GP Formulation: By removing a node withn fanins and wherec is a weight factor, and/ onosp.. is a user specified
n fanouts from the circuit graph, the change.,, in the quantity to represent the maximum number of monomial terms
number of constraints i&.,, = 2(mn — (m + n)), and the allowed in each constraint. A higher value &fonos,.. could
changeA,.-, in the number of variables id,,. = —2, resultin more pruning, but at the cost of a potential slow down
as the variables corresponding to both rise and fall delays obtaining the solution of the GP optimization problem.
of the pruned node are eliminated. A pruning criterion cafhus, by adjusting theM onog,.. parameter, the user can
thus be established as some functifins:(Acon, Avar), Of choose an engineering tradeoff between the runtime and the
change in the number of variables and constraint. The pruniagiount of pessimism reduction desired in the gate sizing
procedure operates iteratively, in which the nodes with thocedure.
lowest nonpositivef,,s; are pruned in the first pass. After the Inthe next section, we elaborate on another heuristic method
first iteration, the number of fanins and fanouts of the unprunesl further reduce the pessimism in our formulation.
nodes are recalculated due to the addition of new edges in the
pruned graph. This iterative method continued until all nodgs Using Variable Size Ellipsoids
in the graph produce a positive,,;. At this point, no more ) ) ) )
nodes can be removed from the graph according to the giveﬁrhe graph pruning procedure of [19], explained in Section
pruning metric. Typically, the pruning criterion is chosen a&/-D; helps in eliminating many intermediate arrival time
Feost = @.Aeon +b.Agar, Wherea andb are some normalized yarlables, and r_educe the problem of variation overestimation
weighting factors. However, due to some practical problen our formulation. However, as described in the previous
in applying the graph pruning method to our formulation, wé€ction, it may not be possible to remove all mtermedla'ge
use a slightly modified pruning cost function. The followind'odes from the graph, and leave only the ones corresponding

discussion explains these practical issues. o the primary_ inputs and the primary outputs unpruned._The
number of fanins and fanouts of a node increase monotonically

From (.37|)' tfge (rjlulmber o’gjil terms, corre_sponding to tl:[‘ed ring the pruning procedure. Therefore, for a given pruning
posynomial gate delay models, Increase in every Constray of Equation (40), if a node is unsuitable for pruning in any
during the pruning procedure. This results in the followinge a4ion of the pruning method, i.e., it has a positive pruning

problel;n fto&gur r;)hbudsthP .ft())r?gjlagoni_ Re;‘\e;rgng bade'.[ ost, it will never be pruned under the same criterion. Due to
our robus method described in Section 1V-5, We Modily, q presence of the unpruned nodes in the circuit graph, the

each delay constraint to |r_1clud_e the terms corresponding to simism in our optimization formulation is not completely
maximum effect of variations inside the bounded uncertain adicated

ellipsoid model. This is achieved by adding to each constraifityy, esant another method, to be employed after the graph
new robust variables, andr,, defined in Equation (25), and , ine brocedure, to further reduce the excessive margins
g(;l)ui‘lgg ?gg)'t'%g?z cojpstrzygtitol tgﬁ df(;brzmglatlopé gﬂveln b rom the timing constraints formulated at the unpruned nodes
For constraints at egéhnﬁgae of cireuit ranzhnzt?e veolis of the graph. This method is based on setting variable margins
tvpically sparse. as this vectors consist%f gnfries confes 0at different topological levels of the circuit. We use a simple
typically sp ' . . PO ample circuit consisting of just two inverters to explain this
ing to a few parameters, affecting only a single gate del%‘ethod

As a result, the vectorg; andr,, derived, respectively, from '
the positive and negative terms of the element®6f2¢ are

also sparse. However, during the graph pruning method, as Uy U
the intermediate nodes are removed, the numbet; oferms
increase in every constraint. Thus, the sparsity géctor, and d

. . 1 dg
consequently, the sparsity gf andr. is adversely affected. t
Moreover, as these vectors become dense, the number of %>O D@i
monomial terms in the quadratic expansion of the constraints
Y2 Tyury?, andy?ng nary 2 grow rapidly. As a result many T

constraints have monomial terms involving a large number
of variables. Consequently, the constraint Jacobian matp'lx
becomes very dense, which can considerably slow down {Q
gradient computations required by the convex optimization

. 7. An example circuit to explain the use of variable sfigosoids to
uce the pessimism in the robust GP formulation.



Consider the circuit of Figure 7 consisting of two invertefollowed by a sufficiently large design margin for higher levels
gates. For this simple circuit, the intermediate node, correan still provide the necessary guard-banding to achieve the
sponding to the output pin of the first inverter, can be easitlesired timing yield.
removed to formulate the path delay constraint. However, forFor a general circuit withk topological levels, we employ

the purposes of exposition of the method of using variabkeuncertainty ellipsoidsl/;, Us, - - -, Uy, characterized by the
ellipsoids, we do not employ any pruning and formulate theonstantsg,, 1, - - -, g, With ¢ < 1y < --- < ). Since
constraints for this circuit as: it is extremely difficult to relate the individual ellipsoid sizes
with the timing yield specification, we heuristically chogg
1 (Xo) + vg?z%}f]l(vﬂodl (Xo,£2)002) <t (41) to correspond to the lower bound on the specified timing yield
ty + da(Xo) + max (Va,dz(Xo,R2)0Q) < T.,.(42) @r» and progressively decrease the constants,, - -, ;.

! 2(Xo) V696U2( 20d2(Xo, 2)0) - < vek42) The value ofyy is determined from the tables of the’
We use different guard-bands for the constraints (41) and (4distribution. The margins at logic leveld,---,k — 1, are
by employing two uncertainty ellipsoid&}, andU, given by: determined by setting:

U ={Q:(Q- Q)P 1 - Qo) < ¥} (43) aj=ar—7.(k—i) i=1-- k-1 (50)
Uy ={Q: (2 - Q) P12 - Qo) <¢3} (44) where is an empirically determined factor. Using smaller

wherey, < 1. As explained in Section I1I-D, we can usetlmlng margins at lower topological levels, as compared to

the CDF tables of th? distribution to associate probabiIityfrTeO(l)g\',cegr t&?ur?grgﬁ trin”z]ii:]gln iztl obii" Iheevlelss,inc?;rdejg(r)]nd;ﬂg to
values,a; andasy with the ellipsoidsU; andUs,, respectively. essimism in our formulati%ril ks P 9
As 1 < 1, it follows thata; < as. P :

A simple probabilistic analysis to achieve the timing yield izlédsr;z(l)l?lgoik:jes ir;Ot:r?] '?r(;atet;hflgr iﬁgeglne rSLe%SIEgdgng%?:F
of the circuit of Figure 7, provides insights into the idea o P ploy P X y

using variable ellipsoids. Using the bounded ellipsoid mod rter the graph pruning step. The graph pruning method of

L , . . 9], followed by the heuristic scheme of keeping variable
for parameter variations, we first define two random variabl ard-bands at different topological levels of the final pruned

A1 andp, as: circuit, significantly reduces the problem of overestimation of

B = max (Va,di(X,2)02) - (vsndi (X, 2))45) variation in our gate sizing procedure.

el

Bo = max (Vaodz(X,2)092) — (vend2(X, 2))X46)  F Incorporating Spatial Correlations
The random variables defined in Equations (45) and (46),We use the grid based spatial correlation model of [18]
relate to the valuea; andas as : and [17] to incorporate the intra-die correlations between the

parameters variations that exhibit spatial dependence, such as
ar < Pr(s>0) (47)  the transistor and L..

ay < Pr(B;>0) (48)

By using a smaller ellipsoid/; to guard-band the timing % .

constraint of (41), we associate a smaller probability as

a lower bound on the chance that this small design margin
would be sufficient to meet the constraint in the face of
variations. However, even if the design margin is not sufficient
to meet this constraint, corresponding to the caseghat 0,

by employing a larger ellipsoid/,, and the corresponding
bigger probabilityas, to pad the timing constraint of (42),
we have a better chance to compensate for the violation of M
constraint (41). Mathematically, ifl is the probabilistic event
that constraint (41) is not met, andl is the event that the
circuit fails to meet the specified delay, the following relatiogig. 8. A grid based spatial correlation model. The layoutiisded into a
hold$: 3x 3 grid. The gates in the same grid are assumed to have a pefeelation.

Gates in the nearby grids are assigned a high correlatidarfand the gates
in far away grids are assigned a low or a zero correlatiorofact

Pr(B/A) = Pr(B1 <0)Pr(B2>0/81 <0)Pr((|81] > |B2|)/B2 >0,
B1 < 0) + Pr(B2 < 0)Pr(B1 < 0/B2 < 0) (49)

The use of a larger ellipsoi@, with an associated lower Figure 8 refers to such a model, where the layout area is

bound probabilityay, < Pr(8: > 0), ensures that for the partitioned intorn = 9 grids. The widths (channel lengths)

cases wher; < 0, the termPr(83; < 0) and the conditional of the devices located in the same grid are assigned a perfect

probability term Pr((|31] > [82|)/B= > 0,61 < 0) in correlation factor, device widths (channel lengths) in nearby

Equation (49) are reasonably small. Therefore, the schemegafls are assigned a high correlation factor, and the ones in

using a smaller design margin for a lower topological levelar away grids have a low or zero correlation factor. As seen
in Figure 8, gateg1,2} have perfect correlation between their

6Since the parameters of the two inverters may be correl&@gdation (49) Widths _(Channel lengths), gatgd,3} and {2,3} have high
contains terms corresponding to conditional probatsiitie correlations, where as gat¢$,4} and{2,4} are uncorrelated.
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For a random vecta®2 representing the variations in and
L., and its corresponding covariance matfixthe entryP;; =
oio;pi; denotes the covariance between compongeatsl; of
Q, whereo is the standard deviation of each random variable,
andp;; is the correlation factor between the random variables
andj. By employing the spatial correlation model of Figure 8,
the correlation factor between all element<Xbis computed,
and stamped out in matrik. The ellipsoid uncertainty model,
described in Section IlI-C, then incorporates the impact of
correlations in the robust optimization formulation.

The following simple example explains how the correlations
are captured by the uncertainty ellipsoid. Consider a simpleb)

1)

2)

3)

4)

Generate the initial non-robust timing constraints by an
STA procedure.

On the original circuit graph, employ the graph pruning
method of [19], described in Section IV-D, to remove
as many intermediate nodes as possible according to the
pruning cost function of Equation (40).

For the final pruned graph, generate new timing con-
straints using the edge annotations in the final pruned
graph.

Generate a first order Taylor series expression for each
constraint at the nominal values of the parameters.
Employing the uncertainty ellipsoid model, transform

each constraint to a set of robust constraints as described
in Section IV-B. For this step, use variable size ellipsoids

constraint involving the transistor widths of two gates:

t; + < t (51) at each topological level of the circuit, as explained in
w2 Section IV-E.
For simplicity, we assume that the gate widtlss,andw-, are 6) Solve the resulting GP by using convex optimization
the only two varying parameters, and the other parameters are tools.

subsumed in the constarf;. Furthermore, we assume thatrhe solution of the convex optimization problem provides the
the gates are placed in the same grid of the spatial correlatigite sizes for the circuit that minimize the area objective,
model, hence, the variations in the two gate widths are sanggbject to the specified timing yield constraints.

i.e., dw; = dws. If the nominal gate sizes are also assumed
to be identical, i.e.u;, = ws,, the effect of process variation V. EXPERIMENTAL RESULTS

cancels out in the numerator and denominator of (51), and nol he proposed robust gate sizing procedure was implemented
guard-banding is required. To verify that the ellipsoid uncein C++, and an optimization software [21] was used to solve
tainty correctly incorporates this perfect correlation scenarihe final GP. All experiments were performed on P-4 Linux
we apply our robust optimization procedure to the constraifftachines with a clock speed of 3.2GHz, and 2GB of memory.
of (51). Generating a first order Taylor series expansion of tAdéie robust gate sizing technique was applied to the ISCAS
constraint around the nominal values (, w-,), and applying 85 benchmark circuits. The cell library selected comprised
the ellipsoid uncertainty yields: inverters, and two and three input NAND and NOR gates.
We assume capacitive loading for the gates. For simplicity we
consider the variations in the transistor width, and the effective

tj + M+ channel length as the only sources of variation. However, our

12 1“/};0 approach can be gasily extended to incorporate various other

max (2 (P 7a)  Kyw, (P 11)2) <t (52) Parameters of variation for the gate and interconnect delays.
vul|lul|2 <% Wa, wgo = We use a simple Elmore delay model to generate posynomial

gate delay models. Our approach can work just as well for
any other posynomial based delay models, such as the ones
based on generalized posynomials proposed in [14].

We use the spatial correlation model of [18] and [17] to
generate the elements of the covariance madtriXo use these
spatial correlation models, we first place the circuits using

) . ) the placement tool Capo [22], and then divide the chip area
Furthermore, since the variationsdn andw., and the mean i giferent number of grids, depending on the circuit size,

values are same, we must have= o,. It then follows that g4 that each grid size is no greater than/5& 50 u. The
for all vectorsu = [uy, u,], which characterize the uncertaintysiandgard deviations of the and L, parameters are chosen
e!g"IOSO'd, we have P'/?u), = qu +0o102U2 = (1),1/2“)2 from [23] for a 100 nm technology node. Using this spatial
o3uz + 0103uy, and the variational term in (51) is: correlation model, all the elements of the covariance matrix
K (PY?u);  Kyjwi, (PY?u), are obtained to be nonnegz_itive, Which_ simplifies the implemen-
— > tation of the robust constraint generation process. However, the
W2, formulation, as described in Section IV-B, does not impose
Thus, the ellipsoid uncertainty model easily captures tly sign restrictions for the elements of tfematrix. The
effects of correlations between random variables, and incormjective function chosen for the optimization is to minimize
rates the same in the optimization procedure. Incorporating tHeea = ), a;w;,, Wherea; is the number of transistors in
correlations in gate sizing optimization procedure reduces thate:. For each circuit, the value df;,.. is chosen to be the
pessimism involved with a worst-casing scheme, and providesint of 15% slack, i.eTspec = Dimin +0.15(Dmaz — Dmin),
opportunities for saving expensive design resources. whereD,,,;, andD,,.. are, respectively, the minimum and the
_ maximum possible delays of the circuit, found by setting all
G. The Complete Sizing Procedure gates to the minimum and the maximum size, respectively.
The complete gate sizing procedure can be recapitulated byVe implement the graph pruning technique of [19] to ad-
the following steps: dress the problem of overestimation of variation. As described

However, since we have perfect correlation betwegnand
we, the correlation factorp;y = po; 1. Therefore, the
correlation matrixP is given by:

P

0'% 0102
0102 0'5

= 0

w2,
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in Section IV-D.2, we set the pruning cost of a node asvo. The timing yield of the deterministically sized circuits,
feost = alcon + bAyar + cmax(Monoyym — Monospec,0).  Yieldge, is listed in column four of the table. Since the
For this cost function, we choose= 1.5, b = 1, ¢ = 1. We non-robust gate sizing method does not take into account the
choose different values for the tethfionos,.., that determines effect of variations, the timing yield, as expected, is quite
the maximum number of monomial terms allowed in eadow for these circuits. Our robust sizing method, eliminates
constraint. As described in Section IV-E, we employ small¢hese timing violations by keeping adequate design margins.
sized uncertainty ellipsoids at lower topological levels of th€olumn seven list the timing yield; ield,..;, Of the robustly
circuit, and progressively increase the ellipsoid size at highgeed circuits. It should be noted that a valuexgf= 85%, as
logic levels. The size of the largest ellipsoid employed at tleelower bound on the timing yield, is sufficient to provide an
highest logic levelk, characterized by, is chosen to cor- actual yield of about 99% for all benchmark circuits. The area
respond to the lower bound on the timing yield specificatiooyerhead that the robust circuits have to employ to safeguard
ay. The value ofyy is determined from the tables of theagainst the parameter variations is shown in sixth column of
x2 distribution. The margins at logic levels,---,k — 1, are Table I. At the cost of an area increase of about 8% to 18%, the
determined by using Equation(50) and choosing the fagtorrobustly sized circuits are able to eliminate almost all timing
to be in the interval 0f[0.05,0.10], which corresponds to violations. The runtimes of the deterministically, and robustly
a 5%-10% decrement from the value af,, that specifies sized circuits are listed, respectively, in columns five and eight
the lower bound on the timing yield. The value of eagh of the table. As seen in the table, the robust methods is much
corresponding to the; in Equation (50), is determined fromslower than the deterministic sizing procedure. The steps of
the CDF tables of the Chi-square distribution. employing graph pruning, and the increased problem size of

In the first set of experiments, we compare the gate sizittge robust gate sizing procedure due to the presence of robust
solution obtained by our method with a deterministic gateariables and constraints lead to this relatively higher runtimes.
sizing solution. The deterministic gate sizing is also formulatédowever, the overall runtimes of the gate sizing method are
as a GP, using the formulation of Section 4, but it does not takery reasonable.

into_ account the effect of parameter variations. For our .robUSt\Ne perform another series of experiments to compare our
optimization procedure, we set the lower bound on t'm'ngpproach with a gate sizing methodology employing a conven-
y!eldi Ak :h&r’(?‘;’ andfchoose the Valye.MO”OSP“ :f35' TI\(;I ional worst-case design approach. The worst-case designs are
gg‘rlljoa;ﬁ; esii (\2/8; ?e]%?rf:)n}(heteersc\e/?g?tg?:’s\i,\;ees?(ce)rg?z;ir:e d?rn btained by iteratively solving the standard GP, but for delay
the detern%linis.tic and the robust opt?mization ¥s.  and %rﬁ‘e_uflcatlons tighter than the orlgln_al r_equwed target delay,
X " ’I Using th . drﬁ} 00 until the area _of the worst-case design is the_ same as that _of
Orobl' respe%N? y. UsIng els_e SIZES, We g?nde_ %) . _the robust design. These circuits are thus designed using an in-
?\‘?m}g es elz)ac ' dr?\fm }EWO m; t“ﬁ”atte normzfi Istri gt_:%n%uilt guard-band, determined by the difference of the original
fo}(eaocdﬁt o )thstlanse s2a(m Ofég ’ a)n' q ;chxetﬁ:rn%rmbi? of ti target delay and the tighter delay specification. Furthermore,
the circuit meets the sgecified target delay. The timing yig}g explore the allrea—rqbusyness tradeoff we vary .the size of the
of the tWo obtimizati then det ' d¥iki,, — rgest uncertainty eII|pSO|d_ used, by choosing dlfferent_va_lues
ptmizations are then aetermine det = of the factoray, that determines the lower bound on the timing
ndet X 100/M, andY'ldy.op = 1oy X 100/M , wherenge, is the yield of the robustly sized circuits. For these experiments, as
number of SamP'?S drawn_ from theé, (Xodet.’P) distribution before, we set the values @ onospe, = 35, to define the
that meet the timing requirements, angh; is the number of ., ino cost function of Equation (40). Having sized these
samples drawn from th&/;(Xo,.,,, P°) distribution that meet ircuits, we perform Monte Carlo simulations to determine

the specified target delay. The total number of Monte Car, P ; ) P
samples is given by — 10000. Table | contains the relevant Re timing yield of the worst-case and the robust circuits.

data for this comparison. Table Il lists the results of _th_ese _expe_riments. As seen
from the table, the number of timing violations reduces with
okt Deterministic Design Robust Design increase in area, for both the worst-case and the robust circuits.
Gates | Ar | Yldg.% | Time | Ar | Yid.;% | Time However, in all cases, our robust design has a better timing
o e —sssm e yield than the worst-case design having the same area. On an
C499 | 1262 | 1.00 | 30.34% 7 | 1.8 | 99.94% 73 average, the robust design has a_lbout 12% greater timing yield
C880 | 854 | 1.00 | 28.46% 8 | 110 | 99.92% 18 than the worst-case design having the same area. The better
o T S CO S 5B S performance of our robust sizing solution is not surprising
o670 2072 T 100 | 39.91% 30 117 9983% | 189 becaus_e of the fac'g th_at the spatial corrglation information,
C3540 | 2882 | 1.00 | 33.31% | 25 | 1.08 | 98.82% | 212 stored in theP matrix, is used by the optimization scheme.
gggég gg}‘g i-gg gg-jgz;z ;‘g ﬁi gg;gzﬁ gzg The worst-case circuit is expected to have a large overhead,
7555 6554 | 100 3478% 90 117 99.13% | 845 since designing by setting tighter delay specifications results

in rendering critical some of the earlier non-critical paths.
Therefore, the optimizer now has to aggressively size the
gates on these paths, which results in greater transistor area
SIZING SOLUTIONS than actually required. Since, the runtimes for our robust gate
sizing solutions are not prohibitively high, the user can run the
optimization for different values ofy;, to select the amount
The first column in Table I lists the benchmark circuitpf robustness required against the process uncertainties, at the
and the number of gates in each circuit is shown in colunuost of additional chip area.

TABLE |
A TIMING YIELD COMPARISON OF DETERMINISTIC AND ROBUST GATE
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Timing Yield for the Same Area Worst-Case (WC) and RobustjRdesigns
ap = 0.55 ap = 0.65 ap = 0.75 o = 0.85

Ckt
wC Rob Ar wcC Rob Ar wC Rob Ar wcC Rob Ar

C432 | 45.63% | 68.65% | 1.05 | 86.78% | 97.03% | 1.08 | 91.62% | 98.14% | 1.10 | 93.12% | 99.91% | 1.12
C499 | 51.45% | 63.45% | 1.08 | 67.12% | 74.28% | 1.11 | 85.12% | 97.01% | 1.14 | 94.20% | 99.94% | 1.18
C880 | 52.36% | 67.52% | 1.03 | 77.38% | 88.50% | 1.06 | 88.42% | 97.34% | 1.08 | 92.38% | 99.92% | 1.10
C1355 | 55.78% | 75.21% | 1.08 | 66.17% | 84.89% | 1.11 | 82.66% | 98.11% | 1.13 | 91.43% | 98.89% | 1.15
C1908 | 50.67% | 72.76% | 1.06 | 70.69% | 87.14% | 1.10 | 84.53% | 96.67% | 1.12 | 93.89% | 99.56% | 1.14
C2670 | 56.32% | 73.68% | 1.08 | 72.86% | 88.21% | 1.11 | 89.23% | 95.33% | 1.14 | 92.34% | 99.83% | 1.17
C3540 | 60.22% | 78.14% | 1.02 | 76.15% | 89.12% | 1.04 | 89.32% | 95.56% | 1.06 | 94.14% | 98.82% | 1.08
C5315 | 55.81% | 74.98% | 1.05 | 75.50% | 87.67% | 1.08 | 90.56% | 96.89% | 1.10 | 93.45% | 98.76% | 1.12
C6288 | 55.39% | 77.16% | 1.07 | 69.79% | 88.12% | 1.10 | 85.78% | 95.78% | 1.12 | 91.91% | 99.22% | 1.14
C7552 | 49.08% | 70.48% | 1.08 | 66.21% | 85.56% | 1.12 | 83.89% | 94.54% | 1.15 | 90.11% | 99.13% | 1.17

TABLE Il
A COMPARISON OF THE ROBUST AND WORST CASE GATE SIZING DESIGNSSING THE SAME AREA

Deterministic Design Rob; Design Rob> Design
Ckt Gates | Ar Yidge:% | Time Ar Yidyob, % | Time Ar Yid,oby% | Time
(sec) (sec) (sec)
C432 616 1.00 22.31% 3 1.08 97.03% 15 1.15 98.32% 14
C499 1262 | 1.00 30.34% 2 1.11 74.28% 23 1.17 76.78% 21
C880 854 1.00 28.46% 8 1.06 88.50% 18 1.14 90.23% 16

C1355 | 1202 | 1.00 32.34% 12 1.11 84.89% 31 1.20 85.34% 27
C1908 | 1636 | 1.00 35.14% 18 1.10 87.14% 159 1.22 89.12% 123
C2670 | 2072 | 1.00 39.91% 30 1.11 88.21% 189 1.24 89.03% 158
C3540 | 2882 | 1.00 33.31% 25 1.04 89.12% 212 1.17 90.32% 181
C5315 | 4514 | 1.00 38.46% 43 1.08 87.67% 579 1.23 89.32% 398
C6288 | 5548 | 1.00 37.45% 58 1.10 88.12% 742 1.24 90.45% 587
C7552 | 6524 | 1.00 34.78% 90 1.12 85.56% 845 1.27 87.29% 693

TABLE Il
A COMPARISON OF ROBUST GATE SIZING SOLUTIONSVITH AND WITHOUT USING GRAPH PRUNING AND VARIABLE SIZE ELLIPSOIDS.

In the next set of experiments, we investigate the usefulneggimization formulation, without a significant loss in the
of the graph pruning method, and employing different sizedning yield of the circuit. The runtimes for thBob, designs
ellipsoids, in reducing the pessimism in our robust formulare smaller compared tBob, designs. This is due to the fact
tion. We first employ graph pruning, and use variable sizede robust constraints of (27) and (28) have fewer monomial
ellipsoids to optimize the benchmark circuits. At the highestrms for the procedure not employing any pruning compared
topological circuit level, we use the largest ellipsoid corrde the one that prunes some intermediate nodes. As a result,
sponding to a value ofy, = 0.65. At the lower topological the constraint functions are sparser for the former method,
levels, we progressive decrease the ellipsoid size by choosimgich helps in speeding up the optimization. The absence of
a lower «, as given by Equation (50). We use a value dhe graph pruning step also makes the procedurekiar,
Monogpe. = 35 to set the pruning cost according to Equatiodesign run faster.

(40). Thgse circuits are fEfe!fed. o &b, designs. Next, |n the last set of experiments, we explore the tradeoff
we optimize the benchmark circuits without any pruning, aNghtained by tuning the pruning cost function by changing the
using the same sized eII|pSO|d§ qt all nqdes, determined by Sue of the Monosy.. term, which regulates the maximum

values ofay, = 0.65. These optimized circuits are referred tQ,, e of monomials allowed in a constraint. This term in the
as lob, designs. pruning cost of Equation (40) helps in preventing the constraint

Table 11l contains the results of these experiments. TRacobian matrix from becoming immoderately dense. Table
yields of the two designsYld,.;, andYld,.,, are listed, IV contains the results of these experiments. As seen in the
respectively, in columns seven and ten of the table. Thable, as the value a¥/onosy.. term is increases, the runtime
area employed by th&kob; and Rob, designs are shown, of the procedure increases. For the larger benchmark circuits,
respectively, in columns six and nine of the table. As sedhe slow down of the optimizer is significant, e.g., for C6288
from this data in Table Ill, the designs employing the heuristircuit, the runtime increases by almost 40% by increasing the
techniques of graph pruning, and using variable size ellipsoislue of theM onosp.. term from 20 to 50. This is due to the
use about 7% to 15% lesser circuit area compared to the dedagt that for larger circuits, with thousands of constraints, the
without any pruning, and using a constant size ellipsoid. Tisparsity of the large constraint matrix has a greater impact
timing yields of Rob, designs are only slightly bettes; 2% on the speed of the convex optimization tool. Although, the
for all circuits, compared to the timing yields &b, design. runtime of the robust optimization method increases, for higher
This indicates that employing the graph pruning method, andlues ofMonos,.. term, there is also a greater reduction of
the strategy of keeping variable guard-bands for the timinmessimism in the formulation, due to more aggressive pruning.
constraints, leads to considerable pessimism reduction in dinis results in lesser use of the circuit area for a higher valuer
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of Monospe. term. For example, for C6288 circuit, there is[6] D. Sinha, N. V. Shenoy, and H. Zhou. Statistical Gate rgjzfor
a 5% reduction in area by increasing the valuel®dnogpe.
from 20 to 50. The timing yield is not significantly impacted 7]
by changing the value of th&/onos,.. term. Based on this
runtime and reduction in circuit area tradeoff, the user caR3
appropriately set the value aff onoy.. term to be employed ]
in the pruning cost function of Equation (40).

Monospec = 20 Monospec = 35 Monospec = 50
cit Ar Yld Time Ar Yld Time Ar Yld Time
(sec) (sec) (sec)
C432 1.09 97.58% 15 1.08 97.03% 15 1.07 96.89% 17
C499 1.11 74.89% 22 1.11 74.28% 23 1.10 74.10% 25
C880 1.07 88.91% 18 1.06 88.50% 18 1.05 87.78% 20
C1355 1.12 85.12% 29 1.11 84.89% 31 1.10 83.67% 33
C1908 1.10 87.89% 147 1.10 87.14% 159 1.09 86.57% 172
C2670 1.13 88.95% 176 1.11 88.21% 189 1.10 87.34% 231
C3540 1.06 90.05% 200 1.04 89.12% 212 1.04 88.78% 294
C5315 1.09 88.34% 504 1.08 87.67% 579 1.07 86.89% 681
C6288 1.13 89.57% 657 1.10 88.12% 742 1.08 87.34% 920
C7552 1.14 86.78% 784 1.12 85.56% 845 1.10 84.12% 1027
TABLE IV

A COMPARISON OF THE ROBUST GATE SIZING DESIGNS OBTAINED BY

: . 16
In this paper were present a gate sizing procedure ad'd

CHANGING THE PRUNING COST FUNCTION OFEQUATION (40).

VI. CONCLUSION

El

[20]

[11]

[12]

[13]

[14]

(18]

worst-casing methodology that attempts to keep smart design

margins to safeguard against the effect of variations. Assum
a multivariate normal distribution for the process-driven p
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rameter variations, an uncertainty ellipsoid set is employed as a

bounded model for these variations. This uncertainty ellipsoi

defined by the appropriate covariance matrix of the varyi
parameters, incorporates the effect of spatial correlations in
the optimization set up. The multivariate Gaussian assumpti
for parameter distributions allows the use of Chi-square C
tables to specify a lower bound on the timing yield of the
circuit. Using posynomial delay models, the optimizatio
formulation for the gate sizing procedure is relaxed to
geometric program, that is solved using convex optimizatigi]
tools. To reduce the pessimism associated with the no

based formulation, we employ the techniques of graph prunihg

8]
g9

|

and heuristically choosing variable sized ellipsoids at different
topological levels of the circuit. Experimental results show th&S]
for the same transistor area, the circuits sized by of our robust
optimization approach have, have fewer timing violations
as compared to the gate sizing solutions obtained via the
traditional, deterministically based guard-banding method.
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