
Accurate Estimation of Global Buffer Delay within a Floorplan
Charles J. Alpert1, Jiang Hu2, Sachin S. Sapatnekar3, and C. N. Sze2

1IBM Corp., 11501 Burnet Road, Austin, TX 78758, alpert@us.ibm.com
2Texas A&M University, EE Department, College Station, TX 77843, {jianghu, cnsze}@ee.tamu.edu

3University of Minnesota, ECE Department, 200 Union St., SE Minneapolis, MN 55455, sachin@ece.umn.edu
Abstract
Closed formed expressions for buffered interconnect delay
approximation have been around for some time. However, pre-
vious approaches assume that buffers are free to be placed
anywhere. In practice, designs frequently have large blocks
that make the ideal buffer insertion solution unrealizable. The
theory of [12] is extended to show how one can model the
blocks into a simple delay estimation technique that applies
both to two-pin and to multi-pin nets. Even though the formula
uses one buffer type, it shows remarkable accuracy in predict-
ing delay when compared to an optimal realizable buffer inser-
tion solution. Potential applications include wire planning,
timing analysis during floorplanning or global routing. Our
experiments show that our approach accurately predicts delay
when compared to constructing an realizable buffer insertion
with multiple buffer types.

1. Introduction
Buffer insertion is becoming an ever critical component of
physical synthesis for timing closure and design planning (see
Cong et al. [4] for a survey). Saxena et al. [13] estimate that the
distance between buffers continues to shrink rapidly. One must
be able to efficiently and accurately assess the impact of buffer
insertion on a design, whether in terms of floorplanning,
resource allocation, timing estimation or within an actual
buffer insertion heuristic.

To this end, several works (e.g., [1][3][6][8][12]) have
explored closed form expressions for buffer insertion on a line.
None of these works model blockages in the layout. Given the
advent of SoC chip design and the trends towards large
memory arrays, IP cores, and hierarchical design, an ever
increasing percentage of the layout is covered by blocks in
which buffers cannot be inserted (though routes may cross
over). A large blockage can cripple a route’s ability to meet
timing since delay is quadratic in length when no buffers are
inserted, but linear in length for optimal buffer insertion.
Blockages are now a first order delay effect and must be taken
into account for any buffer estimation technique to be
sufficiently accurate. Several works, e.g., [7][10][11][14], have
explored the problem of buffer insertion when there are
constraints on the buffer positions, but none of them address
the problem of delay estimation.

*This work is partially supported by the SRC under contract
2003-TJ-1124.

Our work begins from Otten’s theoretical result [12] that in an
optimal buffering, delay is linear in terms of length. With large

blockages and multi-fanout nets, a linear delay solution is not
necessarily realizable. It is not at all immediately obvious how
to overcome these limitations, and whether such an extension
(even if it were possible) would even be valid in a real design
methodology. The primary contribution of this work is to
extend Otten’s theory to predict interconnect delays for multi-
fanout nets in the presence of blockages, and to validate it on
real industrial test-cases. The end result of this work is a fast
and simple formula that is proven on real design scenarios, and
can be of practical use in early design planning.

The following key assumptions actually impose little error
when compared to an actual buffer insertion solution:

1. Smaller blocks ignored: Let Lopt be the spacing between
consecutive buffers that obtains optimal signal propagation
speed. Blocks with width less than Lopt can safely be
ignored. While this may cause buffers to be inserted at dis-
tance less than the optimal spacing, having multiple buffers
in the library allows the optimal linear delay to still be
achievable. An example is shown in Figure 1. As long as
the blocks are smaller than Lopt , the optimal realizable
buffering in (b) will have delay very close to the ideal buff-
ering of (a). Hence we can assume the delay model of (a) to
approximate (b).

2. Single buffer type: A single buffer type that yields the fast-
est point to point delay is sufficient for modeling. It turns
out that the more buffer types that are actually in the library,
the better the single buffer type approximation. As shown
in Figure 1(b) different size buffers may be required to
buffer distances that are less than Lopt . Having additional
buffers in the library allows the situation in (b) better
recover from its perturbation from the ideal buffering in (a).

3. Block locations ignored: whether blocks are closer to the
source or sink has little effect on the actual buffered delay,
so we ignore this effect.

4. Infinitesimal decoupling buffers: Buffers for decoupling
capacitance off the critical path can be modeled to have
zero input capacitance. This may lead to slight underesti-
mation of delay, but the effect is almost negligible.

5. Larger block front-to-back buffering: A block with
width larger than Lopt will cause a linear delay model to
break down. To optimize the delay across such a block, and
optimal buffering will almost assuredly place a buffer right
before and right after the block. Hence the delay across the
large block can be modeled separately from the rest of the
Steiner route.

Despite the inaccuracy it would seem these assumptions
impose, our simple linear time estimation technique shows
1

high accuracy when compared to realizing a buffer insertion
solution with van Ginneken’s algorithm [15].

L
(a)

(b)

Figure 1 Example of (a) an optimally buffered line with equal
spaced buffers and (b) an optimal realizable buffering when block-
ages are present. Note that unequal buffer sizes may be used here.
This approach has several potential applications. For example,
it can assess the timing cost of different block configurations
during floorplanning or assess different Steiner routes during
wire planning. A global router can use this to decide which of
several possible Steiner tree constructions is likely to yield the
best timing result. One may want to do timing analysis of a
floorplan and/or placement without having to actually perform
the buffer insertion for a net. One could embed the formula into
a placement algorithm. Finally, the recent work of applies this
approach in a Steiner tree construction that navigates the
environment as a precursor to buffer insertion.

2. Closed Form Formula for Two-Pin Nets
Consider buffering a line of length L . Assume a given “ideal”
buffer [12] (or inverter) b that is optimal for signal
propagation speed on a wire. Let the intrinsic resistance and
input capacitance of b be given by Rb and Cb , respectively.
Assume the intrinsic buffer delay is zero since this is a first
order approximation. One could also add an intrinsic resistance
term and derive alternative formulae.

The unit wire resistance and capacitance are given by R and
C , respectively. We make the following assumptions:

• The driver of the net has the same driver resistance as b . If
this assumption is incorrect, that may indicate a design
flaw. Too large a resistance means the driver should proba-
bly be powered up until the resistance is close to Rb . Even
if the gate cannot be properly sized, it will likely need a few
buffers (in which the last buffer is of size b) as close as
possible to the driver to power up the signal in order to
drive the line. Similarly, if the resistance is much lower
than b , this indicates that the gate is likely overpowered
and can be powered down.

• The sink of the net has input capacitance Cb . A different
value should not significantly change the value, especially
for a long line. Significantly different input capacitances
also may potentially indicate an ill-sized sink. Overall, we
find that sink capacitance gets overshadowed by wire
capacitance on nets that require buffering.

• The intrinsic buffer delay is zero. This terms tends to be
dominated by the RbCb term. However, an intrinsic delay
term can easily be incorporated if desired.

2.1 Delay Formula with No Blockages
The following result was also derived by Otten [12]. We
present it here for completeness.

Theorem 1: The delay D L() function of an optimally buffered
line of length L with no blockages asymptotically approaches
the linear function of the design and buffer parasitics given by:

D L() L RbC RCb 2RbCbRC+ +()= (1)
Proof: Let k be number of stages (so there are k 1– buffers)
that results in the optimal delay along L , as in Figure 1(a).
Several works have proven that the optimal buffer
configuration spaces the buffers at equal distances. Since the
source and sink have the same parasitics as b , all stages have
the same delay. The length of wire between consecutive stages
is L k⁄ . The delay on the line is given by k times the sum of
the buffer delay and the wire delay.

D L() k Rb
CL
k------- Cb+() RL

k------- CL
2k------- Cb+()+()= (2)

We wish to find the optimal number of buffers k . Taking the
derivative with respect to k , setting the expression to zero, and
solving for k yields the optimal number of buffers

k L RC
2RbCb
----------------= (3)

Obviously, if k is not an integer one may need to try rounding
k up or down and see which yields the best delay. Substituting
Equation (3) into Equation (2) yields the theorem.

The length of a two-pin net in millimeters.

Figure 2 Ratio of Equation (1) to (2) as a function of wirelength.
Observe that D L() is a lower bound on the realizable delay. A
nice property of Theorem 1 is that it is independent of the
number of buffers. Of course, this will introduce some error
because the delay in (1) is not realizable when the optimal
number of stages is not an integer. However, the error is
actually quite small, as illustrated by Figure 2.

The figure presents the ratio of the delay according to the
estimation formula in Equation (1) to the delay of Equation (2).
As L goes to infinity, the ratio goes to one, meaning the error
goes to zero. Note that the maximum error occurs when the
optimum number of buffers k is not an integer. However, the
2

realizable delay will actually be even less than in Equation (2)
if one permits additional buffer sizing. For example, if the
number of buffers k 3.5= , then one may size up the buffer
type until the ideal number is three or size down until it is four,
thereby achieving a slightly better delay. Even without sizing
though, Equation (1) is within 0.5% of Equation (2) when more
than one buffer is required.

This result is perhaps not surprising, given the observations of
Cong et al. [5]. They show that a fairly large “feasible region”
exists for each buffer to be manipulated without suffering
significant degradation in timing. Our example bears this out as
buffers are shifted slightly when k is not an integer in order to
get equal spacing between buffers. This shifting results in close
to the ideal delay of Equation (1).

Corollary 1: The optimum spacing Lopt between buffers is

Lopt
2RbCb

RC----------------= . (4)

2.2 Delay Formula with Blockages
Next we consider inserting a block of width w somewhere on
the line L . This notion can be generalized to include jogs and
bends as in Figure 3. Let l u v,() be the length on the route
from u to v . In the figure, we consider L to be l s0 s1,() and
w to be l x0 x1,() . We wish to derive a delay formula that is a
function solely of L and w . Our strategy is as follows:

• For w Lopt< , we assume that buffers can be placed (and
potentially sized) in such a way as to avoid the blockage
while only suffering a nominal delay penalty. Hence, we
ignore w and just use Theorem 1.

• For w Lopt≥ , we try placing a buffer immediately before
and after a blockage. This minimizes the quadratic effect on
delay that the width of the blockage has. For the rest of the
line, we simply invoke Theorem 1, again accepting the
potential error from the inability to have the optimal num-
ber of buffers be a non-integer.

x0

x1

s0
s1

Figure 3 Buffering scheme on a route of length L l s0 s1,()=
with a single blockage spanning length w l x0 x1,()= .

For the second scenario (w Lopt≥), the buffered delay is given
by the buffered delays of the unblocked wires plus the delay
needed to cross the blockage. The latter term is given by the
Elmore delay:

ED w() Rb Cw Cb+() Rw Cw
2-------- Cb+()+= (5)

Given a set of blockages W with crossing width w Lopt≥ ,
then one can assume the existence of a single buffer before and

after each blockage and summing the pieces together. We
overload the D function so that D L() is the formula in
Equation (1) for no blockages and D L W,() is the following
delay for a set of blockages W .

Blockage Buffered Delay Formula:

D L W,() D L LW–() ED w() where LW w
w W∈
∑=

w W∈
∑+=

 (6)
Unlike Theorem 1, this formula is not a lower bound on the
actual achievable delay. It could conceivably over-estimate
delay since inserting buffers right after one blockage and right
before another may result in overly tight buffer spacing.
However, the delay from optimal buffered solution is rarely
smaller than that from Equation (6) when w Lopt≥ , as we
demonstrate in the next section.

3. Two-Pin Experiments
We use the following parameters from 100 nanometer
technology [6]: R 0.184 Ω µm⁄= , C 0.0715= ff µm⁄ ,
Rb 246.3 Ω= , and Cb 7.2= ff . For these values, Equation
(4) yields Lopt 519µm= . Assume that the sink and source are
both buffers b . We first illustrate the accuracy of Equation (6)
is accurate, even though it is independent of the blockage
location. For each possible blockage location, we compute
D L W,() and the optimal delay according to van Ginneken’s
algorithm (using only buffer type b).

Figure 4 Comparison of the blockage buffered delay formula with
van Ginneken’s algorithm for the case of a single blockage on a 2-

pin net with length ten mm .
Figure 4 shows this for a ten mm wire for blockages with
widths 0.5, 2.0, 3.0, and 4.0 mm . The horizontal axis give the
location of the blockage in terms of the distance from the
3

source. We observe the following. First, for all examples, the
closed form of Equation (6) is a tight lower bound. Next, the
error is less than 1% for all blockage widths and blockage
placement. Finally, the maximum error occurs at the tail ends
because this is where one may have to either insert two buffers
that are too close together or drive a distance that is actually
longer than the blockage. With a library of multiple buffer
types for van Ginneken’s algorithm, this small error is reduced
even further. Thus, for a single blockage the error is
insignificant.

Next, consider the scenario when multiple blockages cover a
significant part of the wire. We generated ten different
instances with either 3 or 4 blockages, covering a large
percentage of a 12 mm wire. The ten cases are shown in Table
1, where the second column gives the blockage widths and the
third column gives the corresponding distances from the
source). For each case, we report the Blockage Buffered Delay
formula and the optimal delay according to van Ginneken’s
algorithm in columns four and five. From the last error column
we see that our formula is well within one percent of optimal
for all ten cases.

test
case

Block widths
(mm)

Positions
(mm)

Eq. (6)
(ps)

van Gin
delay (ps)

Error
(%)

1 1.8/4.0/2.9 0.1/2.2/6.7 437.0 438.5 0.35
2 2.5/4.0/2.9 0.3/3.2/8.7 451.9 452.5 0.11
3 0.5/4.7/2.1 1.3/2.2/9.7 440.6 441.5 0.21
4 3.5/4.7/2.0 0.0/4.2/9.7 497.0 497.8 0.14
5 4.5/0.7/3.0 0.5/6.2/8.7 454.1 454.7 0.12
6 2.5/2.1/2.9/1.1 0.3/3.2/6.7/10.0 390.9 391.6 0.16
7 2.5/1.1/5.9/0.5 0.0/3.2/4.7/11.0 527.7 528.1 0.08
8 2.6/4.4/0.9/1.8 0.3/3.2/8.7/10.2 448.5 449.2 0.15
9 1.5/3.3/0.9/4.2 0.3/2.2/5.7/7.3 456.5 457.8 0.28
10 1.5/3.3/3.9/2.2 0.0/2.2/5.7/9.8 456.5 461.7 0.11

Table 1 Comparison of the blockage buffered delay formula with
van Ginneken’s algorithm for multiple blockages on a 2-pin net

with length 12 mm .
We have effectively shown that for single and multiple
blockages, the error from our formula is insignificant.

4. Linear Time Estimation for Trees
We now show how to extend the two-pin formulae to trees in
the presence of blockages. Two convenient properties of the
following estimation technique are that:

• It can be decomposed into a summation of piecewise com-
ponents, just like the Elmore delay, thereby enabling effi-
cient optimization algorithms.

• The delay can be broken into the sum of the delays on a
given path, allowing one to compute the worst slack of the
tree in a single bottom-up traversal.

Let T V E,() be a Steiner tree with n nodes and source node s0
and sinks s1 … sk, , . Let RAT si() be the required arrival time
for sink si and let p v() be the parent of node v V s0{ }–∈ .

The quality of a given buffer solution is typically measured by
the slack at the source node, which is given by

q s0() min1 i k≤ ≤ RAT si() Delay s0 si,()–{ }= (7)
where Delay s0 si,() is the buffered delay from the s0 to si .

The key idea is to assume that if a path from s0 to si is the
most critical, that all sub-trees off the critical path will be
decoupled. To achieve the lowest delay to the critical sink, the
decoupling buffer should have the minimum possible input
capacitance; we assume input capacitance zero. We show in
Section 5, that this is a second order effects, as compared to the
first order blockage effect.

s0

s1

s3

s2

s4

s5

s6 x2
x1x3

x5

x4

Figure 5 Multi-sink tree with only unblocked Steiner points.

4.1 Case 1: Unblocked Steiner Points
Consider the case where all Steiner points are unblocked, as in
the four-sink example of Figure 5. Here, all decoupling of
branches can be accomplished by placing the buffer right near
the Steiner point. Hence, the delay to a given sink can be
broken piecewise into the sum of its sub-paths. For example,
the delays in Figure 5 are given by:

Delay s0 s1,() D l s0 s1,() l x3 x2,() l x1 s1,(),{ },()=

Delay s0 s2,() D l s0 s2,() l x3 x2,(){ },()=

Delay s0 s3,() D l s0 s3,() l x3 x2,(){ },()=

Delay s0 s4,() D l s0 s4,() l x5 x4,(){ },()= (8)
where D L W,() is given by Equation (6).

4.2 Case 2: Blocked Steiner Points
Now consider when Steiner points may lie inside blockages, as
in Figure 6. In this case, decoupling may only occur outside of
the blockage after incurring potentially significant wirelength.
This is modeled by keeping track of the off-path capacitance
and multiplying it by the upstream resistance inside the
blockage. Also, we need to add the delay from the extra
capacitance loading on the (imaginary) driving buffer. Define
the function OD lr lc,() to be the delay from the off-path
capacitance inside a blockage as:

OD lr lc,() R lr⋅ Rb+() C lc⋅()= (9)
For example, some of the delays in Figure 6 are given by:
4

Delay s0 s1,() D l s0 s1,() l x6 x5,() l x1 s1,(),{ },()=

OD l x6 s5,() l s5 x2,() l s5 x3,()+,()+

OD l x6 s6,() l s6 x4,(),()+

Delay s0 s4,() D l s0 s4,() l x6 x4,(){ },()=

OD l x6 s6,() l s6 x5,() l s5 x2,() l s5 x3,()+ +,()+

s0

s1

s3

s2

s4

s5s6 x2

x1

x3x4

x5x6

(10)

Figure 6 Multi-sink tree example with blocked Steiner points.

4.3 Linear Time Estimation Algorithm
The examples of Figure 5 and Figure 6 show that the
estimation can be expressed as a formula to find the delay to
any sink. It is not as clear how to compute the slack at the
source without having to compute the delay to each individual
sink. We now present a linear time algorithm to compute the
slack at the source in a single bottom-up tree traversal. The key
component is to recognize that at any given Steiner point, the
most critical downstream path can be determined because any
upstream delay will be the same for all sinks downstream from
the Steiner point.

For each node v , let q v() denote the slack at node v , and let
C v() denote the sub-tree capacitance downstream from v that
is in the same blockage as v . In Figure 6,

 C s5() C l s5 x3,() l s5 x5,() l s5 x2,()+ +()= and

C s6() C s5() C l s6 x4,() l s6 s5,()+()⋅+= (11)
Note that the input buffer capacitance Cb is not stored in
C v() , but is only invoked when making a delay calculation.
We only want to consider this additional capacitance on the
critical path, but not for the whole sub-tree, since the non-
critical paths can be decoupled with much smaller buffers.

We assume the edges in the tree are segmented such that
whenever a blockage in W intersects a tree edge, the edge is
broken into two edges incident to an intermediate boundary
node (as the xi ‘s are in Figure 5 and Figure 6). So each edge

u v,() lies either completely inside or outside a blockage in W .
Boundary nodes lie outside W . A node lies inside W only if it
is completely inside a block in W , e.g., in Figure 6 only s5 and

s6 lie inside W .

Inputs: T V E,() Given Steiner tree
 R , C resistance/ capacitance per unit length
 Rb , Cb resistance/ input capacitance of buffer b
 RAT v() for each sink v
 W set of blockages

Variables: q v() slack at node v
 qi v() slack at node v on path to child ui
 C v() in-blockage capacitance downstream from v

Let: α RbC RCb 2RbCbRC+ +=

1. for each v V∈ (in bottom-up order) do
 set C v() 0=
2. if v is a sink,
 set q v() RAT v()= .
3. if v has children u1 … uk, , for k 1≥ , then
 for i 1= to k do
4. if ui v,() W∉ then
 qi v() q ui() α l v ui,()⋅–=
 if ui v,() W∈ , then
 ED R l ui v,()⋅ C l v ui,()⋅ 2⁄ C ui() Cb+ +()=
 set qi v() q ui() ED–=
 set C v() C v() C l v ui,()⋅+= C ui()+
5. let j be such that qj v() min1 i k≤ ≤ qi v(){ }=
 set q v() qj v()=
 if v W∉ and there exists uj s.t. v uj,() W∈ then
 set q v() q v() Rb C v() Cb+()–=
 set C v() 0=
6. if v is the source, then return q v()

Figure 7 Linear time estimation algorithm for trees.
The algorithm is shown in Figure 7. Instead of using the
formulae from Section 2, the delay is computed piecewise
since this affords the simplest direct implementation. Step 1
visits each node v in a bottom-up tree traversal, initializing the
downstream capacitance C v() to zero. Step 2 handles the case
where v is a sink, initializing the slack to the required arrival
time. Step 3 handles multiple children and iterates through the
children u1 … uk, , of v . Step 4 updates upstream information
when going from node ui to v via the intermediate variable
qi v() . If the edge ui v,() is not in a blockage, the downstream
in-blockage length is zero and the slack is updated by the linear
delay from v to ui . The slack is updated to include the Elmore
delay from v to the critical node downstream from ui that is
just outside the blockage containing v . Finally, for edges

ui v,() that lie within blockages, all downstream capacitance is
summed in C v() .

Step 5 then identifies the child uj of v that is the ancestor of
the most critical sink, and the slack at v is then set. Finally, if
v is not in a blockage, but the edge uj v,() is, then one must
incorporate into the slack the additional delay required for a
buffer just outside the blockage to drive. Since v is not outside
the blockage, its downstream capacitance is then set to zero.
Finally, Step 6 returns the slack at the source. The time
complexity is linear in the number of nodes.
5

5. Experiments for Multi-Sink Nets
We call our estimation algorithm in Figure 7 BELT for
Blockage Estimation in Linear Time. We consider three other
buffered slack calculations.

1. One can compute the estimation formula while ignoring
blockages. This in effect reduces to the estimations of
[5][12], whereby one just looks at the length of each path
and performs an optimal buffering as if it were a 2-pin net.
Since this is essentially the BELT estimation without the
blockages, we call this formula ELT.

2. As in Section 3, we run van Ginneken’s algorithm using the
single buffer type b , and call this VG1 since there is one
buffer type.

3. In practice, we have the ability to run actual buffer insertion
with additional buffers types. We generated three additional
smaller buffers (since b is already a larger buffer) to use
with van Ginneken framework. We call this algorithm VG4.

All codes were written in C++, and compiled using g++
version 2.95 on a Sun Ultra-4 running SunOS 5.7.

For the following experiments, the required arrival times were
chosen to be the same for each sink since this actually increases
the likelihood of error in the delay estimation formula. If one
sink is substantially more critical, then this sink will have all
off-path branches decoupled, making it an easier problem.
Consequently, instead of reporting slack, we report the
maximum path delay (which also makes interpreting results
more intuitive).

5.1 Results on Random Nets
Our first experiment examines randomly generated nets. First
we created a simple artificial floorplan. The plan has 16 high
level square blocks, each five millimeters on a side. The block
are arranged in a regular pattern on a square layout that is 21
millimeters on a side. Thus, there is sufficient space in the
alleys (0.25mm wide) between blocks to allow buffer
insertion. This type of layout loosely corresponds to the kind of
behavior one might expect from a large chunky hierarchical
design.

Next, we generated nine nets each of size three through ten
pins. We ran the four different algorithms, ELT, BELT, VG1
6

Table 2 Experiments on randomly generated nets. Each row represents the average of nine different nets.

Table 3 Experiments for 13 nets from an industry design.

net
sinks

WL
()

 %
Blk ELT %ELT/

BELT BELT %BELT/
VG4

BELT
ln2

%BELT_ln2/
VG4_SPICE VG1 VG4 VG4

SPICE
3 29104 88.5 552.8 45.0 1225.9 99.4 849.7 93.7 1235.0 1232.8 906.9
4 41983 93.3 617.0 43.5 1416.6 99.6 981.9 92.6 1428.7 1422.1 1060.6
5 39904 90.2 512.8 42.1 1216.6 99.2 843.3 93.2 1230.2 1225.9 904.5
6 46559 90.2 569.8 43.9 1295.6 99.4 898.1 93.0 1308.0 1303.7 965.5
7 50373 88.9 548.6 42.2 1299.3 99.2 900.6 93.5 1314.2 1309.4 963.0
8 59190 91.1 663.0 43.0 1541.7 98.9 1068.6 95.7 1558.0 1551.2 1117.0
9 54659 90.5 539.0 39.8 1353.0 99.4 937.8 94.0 1375.3 1368.2 997.7

10 65350 94.0 595.1 41.7 1426.4 98.9 988.7 95.1 1449.1 1441.8 1040.2

net
name

WL
() Sinks %

Blk ELT BELT %BELT/
VG4

BELT
ln2

%BELT_ln2/
VG4_SPICE VG1 VG4 VG4

SPICE
mcu0 50540 18 89.9 380 822 95.1 569.9 88.6 872 864 643.4
mcu1 41780 19 96.2 492 1052 97.4 729.3 92.6 1084 1080 787.3
n107 14870 17 97.6 257 361 91.4 250.2 85.8 396 395 291.7
n189 64700 29 83.8 573 1486 96.9 1029.8 91.9 1556 1532 1120.9
n313 69430 19 96.6 587 1821 99.0 1262.3 95.6 1850 1840 1319.7
n786 53110 32 96.4 1126 3574 92.3 2477.2 85.1 3880 3873 2911.3
n869 42180 21 96.6 1042 2605 92.6 1805.3 85.1 2816 2813 2122.5
n870 45230 21 97.3 972 2326 93.1 1612.4 85.4 2498 2498 1887.3
n873 49290 43 78.0 527 1363 99.1 944.6 92.1 1381 1375 1026.1
poi3 63600 20 96.8 1256 3746 97.4 2596.6 89.6 3854 3847 2898.1
big1 195300 88 85.8 1143 5920 97.6 4103.6 99.8 6115 6063 4111.0
big2 122500 79 93.1 545 1577 96.0 1093.1 95.9 1657 1643 1139.9
big3 95320 63 94.1 403 1415 96.8 980.5 96.7 1478 1460 1014.0

µm

µm

and VG4, on each net and summarize the results in Table 2. In
each case we set the driver strength and the sink size to be
equal to buffer b . The Steiner topology was generated using
the C-Tree algorithm which ignores blockages [2]. Delay
calculations are for 0.10 micron technology [6].

The table presents a single row summarizing the average of
nine different nets each having the specified number of sinks.
For each net, we report the average wirelength and percent of
the net that was blocked. For the four algorithms we present the
average maximum delay for the net. The solutions of VG4 are
also evaluated by SPICE model and the results are shown in the
rightmost column. The SPICE results are based on 50% Vdd
signal delay. Column 5 gives the ratio of ELT to BELT delay
as a percentage. Note that by definition ELT will always be
less than BELT. The percentage ratio of BELT to VG4 delay is
listed in column 7 for each case. It is well known that the
Elmore delay is an upper bound of real delay and people often
multiply ln2 with the Elmore delay to reflect 50% Vdd signal
delay. When comparing the timing performance of two Steiner
trees for a same net, the scaling of ln2 does not affect the
conclusion of the comparison. In order to have more fair
comparison with the SPICE results, we report the ratio of the
BELT results scaled by ln2 to the SPICE based VG4 results in
column 9. We observe the following:

• By comparing the ratio of ELT to BELT in column 5,
observe if one ignores blockage, the errors are typically off
by over a factor of two. Of course the degree of the error
will depend on the size of the blocks. Clearly, ignoring
blocks causes gross underestimation of the achievable
delay.

• Comparing BELT to VG1, we see that the delay estimation
is quite accurate, and tends to underestimate the achievable
delay by 1.1% on average.

• Comparing BELT to VG4, we see that the error is reduced
even further, to 0.8% on average.

• When compared to SPICE based VG4, the error of BELT is
always less than 8%.

Clearly, the accuracy of BELT is sufficient while the accuracy
of an estimation technique that is not blockage aware begins to
suffer fairly significant underestimation. This effect becomes
magnified when the blockage map has large blocks that may
correspond to IP cores or memory.

5.2 Results on Large Real Nets
Our next experiments use the Steiner trees for a set of the
industrial nets reported in [2] and [11]. We perform the same
set of experiments as in Section 5.1 and report the results in
Table 3. This time the nets are listed on an individual basis.

We observe the following:

• On average, the ELT/BELT percentage is 36.2%, which
means that blockage has on average about a 64% impact for
these nets.

• For some cases, the impact of blockage is not that signifi-
cant, e.g., for net n107 ELT is a reasonable estimate. For
others, it is quite large, e.g., netbig1 has an ELT/BELT per-
centage of 19.3%. In this case, we see that ELT underesti-
mates the (realizable) VG4 delay by 81%, while BELT
underestimates the VG4 delay by 3%.

• On average the error of BELT compared to VG4 is 5.2%,
while on average the VG4 delay is almost a factor of three
higher than that predicted by ELT.

• Compared to SPICE based VG4, the error of BELT is 9%
on average.

These experiments illustrates that our estimation technique is
sufficiently accurate for design planning, while ignoring
blockages is prohibitively costly.

Finally, note how efficient the estimation technique is. The
total runtime in seconds for running the above 13 test cases was
0.24, 23.0 and 29.0 for BELT, VG1 and VG4, respectively. In
other words, BELT is about 100 times faster than running an
actual buffer insertion algorithm. For medium sized nets, such
as n786 and n869, the runtime of VG4 plus SPICE simulation
is over 10000 times slower than the runtime of BELT.

6. Conclusions
We presented closed form formulae for estimating the
achievable buffered delay when buffering restrictions exist in
the layout. We demonstrate that adding blockages to the layout
can cause significant error in estimation techniques that ignore
the blockage terrain. We also showed that our technique is a
lower bound, has an error of less than one percent for two-pin
nets, and has only a few percent error for multi-sink nets.

References
[1] C. J. Alpert and A. Devgan, “Wire segmenting for improved

buffer insertion”, ACM/IEEE DAC pp. 588-593, 1997.
[2] C.J. Alpert, G. Gandham, M. Hrkic, J. Hu, A.B. Kahng, J. Lillis,

B. Liu, S.T. Quay, S.S. Sapatnekar and A.J. Sullivan, “Buffered
Steiner trees for difficult instances”, IEEE Transactions on CAD,
21(1):3-14, January 2002.

[3] C. C. N. Chu and D. F. Wong, “Closed form solution to simulta-
neous buffer insertion/sizing and wire sizing”, ACM/IEEE Intl.
Symposium on Physical Design, pp. 192-197, 1997.

[4] J. Cong, L. He, C.-K. Koh, and P. H. Madden, “Performance
Optimization of VLSI Interconnect Layout”, Integration: the
VLSI Journal, 21, 1996, pp. 1-94.

[5] J. Cong, T. Kong, and D. Z. Pan, “Buffer block planning for
interconnect-driven floorplanning”, IEEE/ACM Conf. on Com-
puter-Aided Design, pp. 358-363, 1999.

[6] J. Cong and D. Z. Pan, “Interconnect performance estimation
models for design planning” IEEE Transactions on CAD,
20(6):739-752, June 2001.

[7] J. Cong and X. Yuan, “Routing tree construction under fixed
buffer locations”, ACM/IEEE DAC, pp. 379-384, 2000.

[8] S. Dhar and M. A. Franklin, “Optimum buffer circuits for driving
long uniform lines”, IEEE Journal of Solid State Circuits,
7

26(1):33-38, January 1991.
[9] W. C. Elmore, “The Transient Response of Damped Linear Net-

work with Particular Regard to Wideband Amplifiers”, J. Applied
Physics, 19, 1948, pp. 55-63.

[10] M. Hrkic and J. Lillis, “Buffer tree synthesis with consideration
of temporal locality, sink polarity requirements, solution cost and
blockages”, ACM/IEEE ISPD, pp. 98-103, 2002.

[11] J. Hu, C.J. Alpert, S.T. Quay and G. Gandham, “Buffer insertion
with adaptive blockage avoidance”, ACM/IEEE International
Symposium on Physical Design, pp. 92-97, 2002.

[12] R. H. J. M. Otten, “Global Wires Harmful?”, ACM/IEEE Intl.
Symposium on Physical Design, pp. 104-109, 1998.

[13] P. Saxena, N. Menezes, P. Cocchini and D. A. Kirkpatrick, “The
scaling challenge: can correct-by-construction design help?”,
ACM/IEEE ISPD, pp. 51-58, 2003.

[14] X. Tang, R. Tian, H. Xiang and D.F. Wong, “A new algorithm for
routing tree construction with buffer insertion and wire sizing
under obstacle constraints”, IEEE/ACM International Conf. on
Computer-Aided Design, pp. 49-56, 2001.

[15] L. P. P. P. van Ginneken, “Buffer Placement in Distributed RC-
Tree Network for Minimal Elmore Delay”, Intl Symp. on Circuits
and Systems, pp. 865-868, 1990.

[16] C. J. Alpert, M. Hrkic, J. Hu, and S. T. Quay, “Fast and Flexible
Buffer Trees that Navigate the Layout Environment”, IEEE/ACM
DAC, pp. 24-29, 2004.
8

	Accurate Estimation of Global Buffer Delay within a Floorplan
	Charles J. Alpert1, Jiang Hu2, Sachin S. Sapatnekar3, and C. N. Sze2
	1IBM Corp., 11501 Burnet Road, Austin, TX 78758, alpert@us.ibm.com
	2Texas A&M University, EE Department, College Station, TX 77843, {jianghu, cnsze}@ee.tamu.edu
	3University of Minnesota, ECE Department, 200 Union St., SE Minneapolis, MN 55455, sachin@ece.umn.edu
	net
	sinks
	WL
	()
	%
	Blk
	ELT
	%ELT/
	BELT
	BELT
	%BELT/
	VG4
	BELT
	ln2
	%BELT_ln2/
	VG4_SPICE
	VG1
	VG4
	VG4
	SPICE
	3
	29104
	88.5
	552.8
	45.0
	1225.9
	99.4
	849.7
	93.7
	1235.0
	1232.8
	906.9
	4
	41983
	93.3
	617.0
	43.5
	1416.6
	99.6
	981.9
	92.6
	1428.7
	1422.1
	1060.6
	5
	39904
	90.2
	512.8
	42.1
	1216.6
	99.2
	843.3
	93.2
	1230.2
	1225.9
	904.5
	6
	46559
	90.2
	569.8
	43.9
	1295.6
	99.4
	898.1
	93.0
	1308.0
	1303.7
	965.5
	7
	50373
	88.9
	548.6
	42.2
	1299.3
	99.2
	900.6
	93.5
	1314.2
	1309.4
	963.0
	8
	59190
	91.1
	663.0
	43.0
	1541.7
	98.9
	1068.6
	95.7
	1558.0
	1551.2
	1117.0
	9
	54659
	90.5
	539.0
	39.8
	1353.0
	99.4
	937.8
	94.0
	1375.3
	1368.2
	997.7
	10
	65350
	94.0
	595.1
	41.7
	1426.4
	98.9
	988.7
	95.1
	1449.1
	1441.8
	1040.2
	Table 2 Experiments on randomly generated nets. Each row represents the average of nine different nets.

	net
	name
	WL
	()
	Sinks
	%
	Blk
	ELT
	BELT
	%BELT/
	VG4
	BELT
	ln2
	%BELT_ln2/
	VG4_SPICE
	VG1
	VG4
	VG4
	SPICE
	mcu0
	50540
	18
	89.9
	380
	822
	95.1
	569.9
	88.6
	872
	864
	643.4
	mcu1
	41780
	19
	96.2
	492
	1052
	97.4
	729.3
	92.6
	1084
	1080
	787.3
	n107
	14870
	17
	97.6
	257
	361
	91.4
	250.2
	85.8
	396
	395
	291.7
	n189
	64700
	29
	83.8
	573
	1486
	96.9
	1029.8
	91.9
	1556
	1532
	1120.9
	n313
	69430
	19
	96.6
	587
	1821
	99.0
	1262.3
	95.6
	1850
	1840
	1319.7
	n786
	53110
	32
	96.4
	1126
	3574
	92.3
	2477.2
	85.1
	3880
	3873
	2911.3
	n869
	42180
	21
	96.6
	1042
	2605
	92.6
	1805.3
	85.1
	2816
	2813
	2122.5
	n870
	45230
	21
	97.3
	972
	2326
	93.1
	1612.4
	85.4
	2498
	2498
	1887.3
	n873
	49290
	43
	78.0
	527
	1363
	99.1
	944.6
	92.1
	1381
	1375
	1026.1
	poi3
	63600
	20
	96.8
	1256
	3746
	97.4
	2596.6
	89.6
	3854
	3847
	2898.1
	big1
	195300
	88
	85.8
	1143
	5920
	97.6
	4103.6
	99.8
	6115
	6063
	4111.0
	big2
	122500
	79
	93.1
	545
	1577
	96.0
	1093.1
	95.9
	1657
	1643
	1139.9
	big3
	95320
	63
	94.1
	403
	1415
	96.8
	980.5
	96.7
	1478
	1460
	1014.0
	Table 3 Experiments for 13 nets from an industry design.
	Abstract
	Closed formed expressions for buffered interconnect delay approximation have been around for some time. However, previous approa...

	1. Introduction
	1. Smaller blocks ignored: Let be the spacing between consecutive buffers that obtains optimal signal propagation speed. Blocks ...
	2. Single buffer type: A single buffer type that yields the fastest point to point delay is sufficient for modeling. It turns ou...
	3. Block locations ignored: whether blocks are closer to the source or sink has little effect on the actual buffered delay, so we ignore this effect.
	4. Infinitesimal decoupling buffers: Buffers for decoupling capacitance off the critical path can be modeled to have zero input capacitance. This may lead to slight underestimation of delay, but the effect is almost negligible.
	5. Larger block front-to-back buffering: A block with width larger than will cause a linear delay model to break down. To optimi...
	Figure 1 Example of (a) an optimally buffered line with equal spaced buffers and (b) an optimal realizable buffering when blockages are present. Note that unequal buffer sizes may be used here.

	2. Closed Form Formula for Two-Pin Nets
	2.1 Delay Formula with No Blockages
	(1)
	(2)
	(3)
	Figure 2 Ratio of Equation (1) to (2) as a function of wirelength.

	. (4)

	2.2 Delay Formula with Blockages
	Figure 3 Buffering scheme on a route of length with a single blockage spanning length .
	(5)
	(6)

	3. Two-Pin Experiments
	Figure 4 Comparison of the blockage buffered delay formula with van Ginneken’s algorithm for the case of a single blockage on a 2- pin net with length ten .

	test
	case
	Block widths
	(mm)
	Positions
	(mm)
	Eq. (6)
	(ps)
	van Gin
	delay (ps)
	Error
	(%)
	1
	1.8/4.0/2.9
	0.1/2.2/6.7
	437.0
	438.5
	0.35
	2
	2.5/4.0/2.9
	0.3/3.2/8.7
	451.9
	452.5
	0.11
	3
	0.5/4.7/2.1
	1.3/2.2/9.7
	440.6
	441.5
	0.21
	4
	3.5/4.7/2.0
	0.0/4.2/9.7
	497.0
	497.8
	0.14
	5
	4.5/0.7/3.0
	0.5/6.2/8.7
	454.1
	454.7
	0.12
	6
	2.5/2.1/2.9/1.1
	0.3/3.2/6.7/10.0
	390.9
	391.6
	0.16
	7
	2.5/1.1/5.9/0.5
	0.0/3.2/4.7/11.0
	527.7
	528.1
	0.08
	8
	2.6/4.4/0.9/1.8
	0.3/3.2/8.7/10.2
	448.5
	449.2
	0.15
	9
	1.5/3.3/0.9/4.2
	0.3/2.2/5.7/7.3
	456.5
	457.8
	0.28
	10
	1.5/3.3/3.9/2.2
	0.0/2.2/5.7/9.8
	456.5
	461.7
	0.11
	Table 1 Comparison of the blockage buffered delay formula with van Ginneken’s algorithm for multiple blockages on a 2-pin net with length 12 .
	4. Linear Time Estimation for Trees
	(7)
	Figure 5 Multi-sink tree with only unblocked Steiner points.

	4.1 Case 1: Unblocked Steiner Points
	(8)

	4.2 Case 2: Blocked Steiner Points
	(9)
	(10)
	Figure 6 Multi-sink tree example with blocked Steiner points.

	4.3 Linear Time Estimation Algorithm
	and (11)
	Figure 7 Linear time estimation algorithm for trees.

	5. Experiments for Multi-Sink Nets
	1. One can compute the estimation formula while ignoring blockages. This in effect reduces to the estimations of [5][12], whereb...
	2. As in Section 3, we run van Ginneken’s algorithm using the single buffer type , and call this VG1 since there is one buffer type.
	3. In practice, we have the ability to run actual buffer insertion with additional buffers types. We generated three additional smaller buffers (since is already a larger buffer) to use with van Ginneken framework. We call this algorithm VG4.
	5.1 Results on Random Nets
	5.2 Results on Large Real Nets

	6. Conclusions
	References
	[1] C. J. Alpert and A. Devgan, “Wire segmenting for improved buffer insertion”, ACM/IEEE DAC pp. 588-593, 1997.
	[2] C.J. Alpert, G. Gandham, M. Hrkic, J. Hu, A.B. Kahng, J. Lillis, B. Liu, S.T. Quay, S.S. Sapatnekar and A.J. Sullivan, “Buffered Steiner trees for difficult instances”, IEEE Transactions on CAD, 21(1):3-14, January 2002.
	[3] C. C. N. Chu and D. F. Wong, “Closed form solution to simultaneous buffer insertion/sizing and wire sizing”, ACM/IEEE Intl. Symposium on Physical Design, pp. 192-197, 1997.
	[4] J. Cong, L. He, C.-K. Koh, and P. H. Madden, “Performance Optimization of VLSI Interconnect Layout”, Integration: the VLSI Journal, 21, 1996, pp. 1-94.
	[5] J. Cong, T. Kong, and D. Z. Pan, “Buffer block planning for interconnect-driven floorplanning”, IEEE/ACM Conf. on Computer-Aided Design, pp. 358-363, 1999.
	[6] J. Cong and D. Z. Pan, “Interconnect performance estimation models for design planning” IEEE Transactions on CAD, 20(6):739-752, June 2001.
	[7] J. Cong and X. Yuan, “Routing tree construction under fixed buffer locations”, ACM/IEEE DAC, pp. 379-384, 2000.
	[8] S. Dhar and M. A. Franklin, “Optimum buffer circuits for driving long uniform lines”, IEEE Journal of Solid State Circuits, 26(1):33-38, January 1991.
	[9] W. C. Elmore, “The Transient Response of Damped Linear Network with Particular Regard to Wideband Amplifiers”, J. Applied Physics, 19, 1948, pp. 55-63.
	[10] M. Hrkic and J. Lillis, “Buffer tree synthesis with consideration of temporal locality, sink polarity requirements, solution cost and blockages”, ACM/IEEE ISPD, pp. 98-103, 2002.
	[11] J. Hu, C.J. Alpert, S.T. Quay and G. Gandham, “Buffer insertion with adaptive blockage avoidance”, ACM/IEEE International Symposium on Physical Design, pp. 92-97, 2002.
	[12] R. H. J. M. Otten, “Global Wires Harmful?”, ACM/IEEE Intl. Symposium on Physical Design, pp. 104-109, 1998.
	[13] P. Saxena, N. Menezes, P. Cocchini and D. A. Kirkpatrick, “The scaling challenge: can correct-by-construction design help?”, ACM/IEEE ISPD, pp. 51-58, 2003.
	[14] X. Tang, R. Tian, H. Xiang and D.F. Wong, “A new algorithm for routing tree construction with buffer insertion and wire sizing under obstacle constraints”, IEEE/ACM International Conf. on Computer-Aided Design, pp. 49-56, 2001.
	[15] L. P. P. P. van Ginneken, “Buffer Placement in Distributed RC- Tree Network for Minimal Elmore Delay”, Intl Symp. on Circuits and Systems, pp. 865-868, 1990.
	[16] C. J. Alpert, M. Hrkic, J. Hu, and S. T. Quay, “Fast and Flexible Buffer Trees that Navigate the Layout Environment”, IEEE/ACM DAC, pp. 24-29, 2004.

