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Abstract
Closed formed expressions for buffered interconnect delay 
approximation have been around for some time. However, pre-
vious approaches assume that buffers are free to be placed 
anywhere. In practice, designs frequently have large blocks 
that make the ideal buffer insertion solution unrealizable. The 
theory of [12] is extended to show how one can model the 
blocks into a simple delay estimation technique that applies 
both to two-pin and to multi-pin nets. Even though the formula 
uses one buffer type, it shows remarkable accuracy in predict-
ing delay when compared to an optimal realizable buffer inser-
tion solution. Potential applications include wire planning, 
timing analysis during floorplanning or global routing. Our 
experiments show that our approach accurately predicts delay 
when compared to constructing an realizable buffer insertion 
with multiple buffer types.

1.  Introduction
Buffer insertion is becoming an ever critical component of 
physical synthesis for timing closure and design planning (see 
Cong et al. [4] for a survey). Saxena et al. [13] estimate that the 
distance between buffers continues to shrink rapidly. One must 
be able to efficiently and accurately assess the impact of buffer 
insertion on a design, whether in terms of floorplanning, 
resource allocation, timing estimation or within an actual 
buffer insertion heuristic.

To this end, several works (e.g., [1][3][6][8][12]) have 
explored closed form expressions for buffer insertion on a line. 
None of these works model blockages in the layout. Given the 
advent of SoC chip design and the trends towards large 
memory arrays, IP cores, and hierarchical design, an ever 
increasing percentage of the layout is covered by blocks in 
which buffers cannot be inserted (though routes may cross 
over). A large blockage can cripple a route’s ability to meet 
timing since delay is quadratic in length when no buffers are 
inserted, but linear in length for optimal buffer insertion. 
Blockages are now a first order delay effect and must be taken 
into account for any buffer estimation technique to be 
sufficiently accurate. Several works, e.g., [7][10][11][14], have 
explored the problem of buffer insertion when there are 
constraints on the buffer positions, but none of them address 
the problem of delay estimation. 

*This work is partially supported by the SRC under contract 
2003-TJ-1124. 

Our work begins from Otten’s theoretical result [12] that in an 
optimal buffering, delay is linear in terms of length. With large 

blockages and multi-fanout nets, a linear delay solution is not 
necessarily realizable. It is not at all immediately obvious how 
to overcome these limitations, and whether such an extension 
(even if it were possible) would even be valid in a real design 
methodology. The primary contribution of this work is to 
extend Otten’s theory to predict interconnect delays for multi-
fanout nets in the presence of blockages, and to validate it on 
real industrial test-cases. The end result of this work is a fast 
and simple formula that is proven on real design scenarios, and 
can be of practical use in early design planning.

The following key assumptions actually impose little error 
when compared to an actual buffer insertion solution:

1. Smaller blocks ignored: Let Lopt  be the spacing between 
consecutive buffers that obtains optimal signal propagation 
speed. Blocks with width less than Lopt  can safely be 
ignored. While this may cause buffers to be inserted at dis-
tance less than the optimal spacing, having multiple buffers 
in the library allows the optimal linear delay to still be 
achievable. An example is shown in Figure 1. As long as 
the blocks are smaller than Lopt , the optimal realizable 
buffering in (b) will have delay very close to the ideal buff-
ering of (a). Hence we can assume the delay model of (a) to 
approximate (b).

2. Single buffer type: A single buffer type that yields the fast-
est point to point delay is sufficient for modeling. It turns 
out that the more buffer types that are actually in the library, 
the better the single buffer type approximation. As shown 
in Figure 1(b) different size buffers may be required to 
buffer distances that are less than Lopt . Having additional 
buffers in the library allows the situation in (b) better 
recover from its perturbation from the ideal buffering in (a).

3. Block locations ignored: whether blocks are closer to the 
source or sink has little effect on the actual buffered delay, 
so we ignore this effect.

4. Infinitesimal decoupling buffers: Buffers for decoupling 
capacitance off the critical path can be modeled to have 
zero input capacitance. This may lead to slight underesti-
mation of delay, but the effect is almost negligible.

5. Larger block front-to-back buffering: A block with 
width larger than Lopt  will cause a linear delay model to 
break down. To optimize the delay across such a block, and 
optimal buffering will almost assuredly place a buffer right 
before and right after the block. Hence the delay across the 
large block can be modeled separately from the rest of the 
Steiner route. 

Despite the inaccuracy it would seem these assumptions 
impose, our simple linear time estimation technique shows 
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high accuracy when compared to realizing a buffer insertion 
solution with van Ginneken’s algorithm [15].

L
(a)

(b)

Figure 1  Example of (a) an optimally buffered line with equal 
spaced buffers and (b) an optimal realizable buffering when block-
ages are present. Note that unequal buffer sizes may be used here. 
This approach has several potential applications. For example, 
it can assess the timing cost of different block configurations 
during floorplanning or assess different Steiner routes during 
wire planning. A global router can use this to decide which of 
several possible Steiner tree constructions is likely to yield the 
best timing result. One may want to do timing analysis of a 
floorplan and/or placement without having to actually perform 
the buffer insertion for a net. One could embed the formula into 
a placement algorithm. Finally, the recent work of applies this 
approach in a Steiner tree construction that navigates the 
environment as a precursor to buffer insertion. 

2.  Closed Form Formula for Two-Pin Nets
Consider buffering a line of length L . Assume a given “ideal” 
buffer [12] (or inverter) b  that is optimal for signal 
propagation speed on a wire. Let the intrinsic resistance and 
input capacitance of b  be given by Rb  and Cb , respectively. 
Assume the intrinsic buffer delay is zero since this is a first 
order approximation. One could also add an intrinsic resistance 
term and derive alternative formulae.

The unit wire resistance and capacitance are given by R  and 
C , respectively. We make the following assumptions:

• The driver of the net has the same driver resistance as b . If 
this assumption is incorrect, that may indicate a design 
flaw. Too large a resistance means the driver should proba-
bly be powered up until the resistance is close to Rb . Even 
if the gate cannot be properly sized, it will likely need a few 
buffers (in which the last buffer is of size b ) as close as 
possible to the driver to power up the signal in order to 
drive the line. Similarly, if the resistance is much lower 
than b , this indicates that the gate is likely overpowered 
and can be powered down.

• The sink of the net has input capacitance Cb . A different 
value should not significantly change the value, especially 
for a long line. Significantly different input capacitances 
also may potentially indicate an ill-sized sink. Overall, we 
find that sink capacitance gets overshadowed by wire 
capacitance on nets that require buffering.

• The intrinsic buffer delay is zero. This terms tends to be 
dominated by the RbCb  term. However, an intrinsic delay 
term can easily be incorporated if desired.

2.1  Delay Formula with No Blockages
The following result was also derived by Otten [12]. We 
present it here for completeness. 

Theorem 1: The delay D L( )  function of an optimally buffered 
line of length L  with no blockages asymptotically approaches 
the linear function of the design and buffer parasitics given by:

D L( ) L RbC RCb 2RbCbRC+ +( )= (1)
Proof: Let k  be number of stages (so there are k 1–  buffers) 
that results in the optimal delay along L , as in Figure 1(a). 
Several works have proven that the optimal buffer 
configuration spaces the buffers at equal distances. Since the 
source and sink have the same parasitics as b , all stages have 
the same delay. The length of wire between consecutive stages 
is L k⁄ . The delay on the line is given by k  times the sum of 
the buffer delay and the wire delay.

D L( ) k Rb
CL
k------- Cb+( ) RL

k------- CL
2k------- Cb+( )+( )= (2)

We wish to find the optimal number of buffers k . Taking the 
derivative with respect to k , setting the expression to zero, and 
solving for k  yields the optimal number of buffers

k L RC
2RbCb
----------------= (3)

Obviously, if k  is not an integer one may need to try rounding 
k  up or down and see which yields the best delay. Substituting 
Equation (3) into Equation (2) yields the theorem.

The length of a two-pin net in millimeters. 

Figure 2  Ratio of Equation (1) to (2) as a function of wirelength. 
Observe that D L( )  is a lower bound on the realizable delay. A 
nice property of Theorem 1 is that it is independent of the 
number of buffers. Of course, this will introduce some error 
because the delay in (1) is not realizable when the optimal 
number of stages is not an integer. However, the error is 
actually quite small, as illustrated by Figure 2.

The figure presents the ratio of the delay according to the 
estimation formula in Equation (1) to the delay of Equation (2). 
As L  goes to infinity, the ratio goes to one, meaning the error 
goes to zero. Note that the maximum error occurs when the 
optimum number of buffers k  is not an integer. However, the 
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realizable delay will actually be even less than in Equation (2)
if one permits additional buffer sizing. For example, if the 
number of buffers k 3.5= , then one may size up the buffer 
type until the ideal number is three or size down until it is four, 
thereby achieving a slightly better delay. Even without sizing 
though, Equation (1) is within 0.5% of Equation (2) when more 
than one buffer is required.

This result is perhaps not surprising, given the observations of 
Cong et al. [5]. They show that a fairly large “feasible region” 
exists for each buffer to be manipulated without suffering 
significant degradation in timing. Our example bears this out as 
buffers are shifted slightly when k  is not an integer in order to 
get equal spacing between buffers. This shifting results in close 
to the ideal delay of Equation (1).

Corollary 1: The optimum spacing Lopt  between buffers is

Lopt
2RbCb

RC----------------= . (4)

2.2  Delay Formula with Blockages
Next we consider inserting a block of width w  somewhere on 
the line L . This notion can be generalized to include jogs and 
bends as in Figure 3. Let l u v,( )  be the length on the route 
from u  to v . In the figure, we consider L  to be l s0 s1,( )  and 
w  to be l x0 x1,( ) . We wish to derive a delay formula that is a 
function solely of L  and w . Our strategy is as follows:

• For w Lopt< , we assume that buffers can be placed (and 
potentially sized) in such a way as to avoid the blockage 
while only suffering a nominal delay penalty. Hence, we 
ignore w  and just use Theorem 1.

• For w Lopt≥ , we try placing a buffer immediately before 
and after a blockage. This minimizes the quadratic effect on 
delay that the width of the blockage has. For the rest of the 
line, we simply invoke Theorem 1, again accepting the 
potential error from the inability to have the optimal num-
ber of buffers be a non-integer.

x0

x1

s0
s1

Figure 3  Buffering scheme on a route of length L l s0 s1,( )=  
with a single blockage spanning length w l x0 x1,( )= .

For the second scenario (w Lopt≥ ), the buffered delay is given 
by the buffered delays of the unblocked wires plus the delay 
needed to cross the blockage. The latter term is given by the 
Elmore delay:

ED w( ) Rb Cw Cb+( ) Rw Cw
2-------- Cb+( )+= (5)

Given a set of blockages W  with crossing width w Lopt≥ , 
then one can assume the existence of a single buffer before and 

after each blockage and summing the pieces together. We 
overload the D  function so that D L( )  is the formula in 
Equation (1) for no blockages and D L W,( )  is the following 
delay for a set of blockages W .

Blockage Buffered Delay Formula: 

D L W,( ) D L LW–( ) ED w( )  where  LW w
w W∈
∑=

w W∈
∑+=

 (6)
Unlike Theorem 1, this formula is not a lower bound on the 
actual achievable delay. It could conceivably over-estimate 
delay since inserting buffers right after one blockage and right 
before another may result in overly tight buffer spacing. 
However, the delay from optimal buffered solution is rarely 
smaller than that from Equation (6) when w Lopt≥ , as we 
demonstrate in the next section.

3.  Two-Pin Experiments 
We use the following parameters from 100 nanometer 
technology [6]: R 0.184 Ω µm⁄= , C 0.0715=  ff µm⁄ , 
Rb 246.3 Ω= , and Cb 7.2=  ff . For these values, Equation 
(4) yields Lopt 519µm= . Assume that the sink and source are 
both buffers b . We first illustrate the accuracy of Equation (6)
is accurate, even though it is independent of the blockage 
location. For each possible blockage location, we compute 
D L W,( )  and the optimal delay according to van Ginneken’s 
algorithm (using only buffer type b ).

Figure 4  Comparison of the blockage buffered delay formula with 
van Ginneken’s algorithm for the case of a single blockage on a 2-

pin net with length ten mm .
Figure 4 shows this for a ten mm  wire for blockages with 
widths 0.5, 2.0, 3.0, and 4.0 mm . The horizontal axis give the 
location of the blockage in terms of the distance from the 
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source. We observe the following. First, for all examples, the 
closed form of Equation (6) is a tight lower bound. Next, the 
error is less than 1% for all blockage widths and blockage 
placement. Finally, the maximum error occurs at the tail ends 
because this is where one may have to either insert two buffers 
that are too close together or drive a distance that is actually 
longer than the blockage. With a library of multiple buffer 
types for van Ginneken’s algorithm, this small error is reduced 
even further. Thus, for a single blockage the error is 
insignificant.

Next, consider the scenario when multiple blockages cover a 
significant part of the wire. We generated ten different 
instances with either 3 or 4 blockages, covering a large 
percentage of a 12 mm  wire. The ten cases are shown in Table 
1, where the second column gives the blockage widths and the 
third column gives the corresponding distances from the 
source). For each case, we report the Blockage Buffered Delay 
formula and the optimal delay according to van Ginneken’s 
algorithm in columns four and five. From the last error column 
we see that our formula is well within one percent of optimal 
for all ten cases.

test
case

Block widths
(mm)

Positions
(mm)

Eq. (6)
(ps)

van Gin
delay (ps)

Error 
(%)

1 1.8/4.0/2.9 0.1/2.2/6.7 437.0 438.5 0.35
2 2.5/4.0/2.9 0.3/3.2/8.7 451.9 452.5 0.11
3 0.5/4.7/2.1 1.3/2.2/9.7 440.6 441.5 0.21
4 3.5/4.7/2.0 0.0/4.2/9.7 497.0 497.8 0.14
5 4.5/0.7/3.0 0.5/6.2/8.7 454.1 454.7 0.12
6 2.5/2.1/2.9/1.1 0.3/3.2/6.7/10.0 390.9 391.6 0.16
7 2.5/1.1/5.9/0.5 0.0/3.2/4.7/11.0 527.7 528.1 0.08
8 2.6/4.4/0.9/1.8 0.3/3.2/8.7/10.2 448.5 449.2 0.15
9 1.5/3.3/0.9/4.2 0.3/2.2/5.7/7.3 456.5 457.8 0.28
10 1.5/3.3/3.9/2.2 0.0/2.2/5.7/9.8 456.5 461.7 0.11

Table 1  Comparison of the blockage buffered delay formula with 
van Ginneken’s algorithm for multiple blockages on a 2-pin net 

with length 12 mm . 
We have effectively shown that for single and multiple 
blockages, the error from our formula is insignificant.

4.  Linear Time Estimation for Trees
We now show how to extend the two-pin formulae to trees in 
the presence of blockages. Two convenient properties of the 
following estimation technique are that:

• It can be decomposed into a summation of piecewise com-
ponents, just like the Elmore delay, thereby enabling effi-
cient optimization algorithms.

• The delay can be broken into the sum of the delays on a 
given path, allowing one to compute the worst slack of the 
tree in a single bottom-up traversal.

Let T V E,( )  be a Steiner tree with n  nodes and source node s0  
and sinks s1 … sk, , . Let RAT si( )  be the required arrival time 
for sink si  and let p v( )  be the parent of node v V s0{ }–∈ . 

The quality of a given buffer solution is typically measured by 
the slack at the source node, which is given by

q s0( ) min1 i k≤ ≤ RAT si( ) Delay s0 si,( )–{ }= (7)
where Delay s0 si,( )  is the buffered delay from the s0  to si . 

The key idea is to assume that if a path from s0  to si  is the 
most critical, that all sub-trees off the critical path will be 
decoupled. To achieve the lowest delay to the critical sink, the 
decoupling buffer should have the minimum possible input 
capacitance; we assume input capacitance zero. We show in 
Section 5, that this is a second order effects, as compared to the 
first order blockage effect.

s0

s1

s3

s2

s4

s5

s6 x2
x1x3

x5

x4

Figure 5  Multi-sink tree with only unblocked Steiner points.

4.1  Case 1: Unblocked Steiner Points
Consider the case where all Steiner points are unblocked, as in 
the four-sink example of Figure 5. Here, all decoupling of 
branches can be accomplished by placing the buffer right near 
the Steiner point. Hence, the delay to a given sink can be 
broken piecewise into the sum of its sub-paths. For example, 
the delays in Figure 5 are given by:

Delay s0 s1,( ) D l s0 s1,( ) l x3 x2,( ) l x1 s1,( ),{ },( )=

Delay s0 s2,( ) D l s0 s2,( ) l x3 x2,( ){ },( )=

Delay s0 s3,( ) D l s0 s3,( ) l x3 x2,( ){ },( )=

Delay s0 s4,( ) D l s0 s4,( ) l x5 x4,( ){ },( )= (8)
where D L W,( )  is given by Equation (6).

4.2  Case 2: Blocked Steiner Points
Now consider when Steiner points may lie inside blockages, as 
in Figure 6. In this case, decoupling may only occur outside of 
the blockage after incurring potentially significant wirelength. 
This is modeled by keeping track of the off-path capacitance 
and multiplying it by the upstream resistance inside the 
blockage. Also, we need to add the delay from the extra 
capacitance loading on the (imaginary) driving buffer. Define 
the function OD lr lc,( )  to be the delay from the off-path 
capacitance inside a blockage as:

OD lr lc,( ) R lr⋅ Rb+( ) C lc⋅( )= (9)
For example, some of the delays in Figure 6 are given by:
4



Delay s0 s1,( ) D l s0 s1,( ) l x6 x5,( ) l x1 s1,( ),{ },( )=

OD l x6 s5,( ) l s5 x2,( ) l s5 x3,( )+,( )+

OD l x6 s6,( ) l s6 x4,( ),( )+

Delay s0 s4,( ) D l s0 s4,( ) l x6 x4,( ){ },( )=

OD l x6 s6,( ) l s6 x5,( ) l s5 x2,( ) l s5 x3,( )+ +,( )+

s0

s1

s3

s2

s4

s5s6 x2

x1

x3x4

x5x6

(10)

Figure 6  Multi-sink tree example with blocked Steiner points.

4.3  Linear Time Estimation Algorithm
The examples of Figure 5 and Figure 6 show that the 
estimation can be expressed as a formula to find the delay to 
any sink. It is not as clear how to compute the slack at the 
source without having to compute the delay to each individual 
sink. We now present a linear time algorithm to compute the 
slack at the source in a single bottom-up tree traversal. The key 
component is to recognize that at any given Steiner point, the 
most critical downstream path can be determined because any 
upstream delay will be the same for all sinks downstream from 
the Steiner point.

For each node v , let q v( )  denote the slack at node v , and let 
C v( )  denote the sub-tree capacitance downstream from v  that 
is in the same blockage as v . In Figure 6,

 C s5( ) C l s5 x3,( ) l s5 x5,( ) l s5 x2,( )+ +( )=  and 

C s6( ) C s5( ) C l s6 x4,( ) l s6 s5,( )+( )⋅+= (11)
Note that the input buffer capacitance Cb  is not stored in 
C v( ) , but is only invoked when making a delay calculation. 
We only want to consider this additional capacitance on the 
critical path, but not for the whole sub-tree, since the non-
critical paths can be decoupled with much smaller buffers.

We assume the edges in the tree are segmented such that 
whenever a blockage in W  intersects a tree edge, the edge is 
broken into two edges incident to an intermediate boundary 
node (as the xi ‘s are in Figure 5 and Figure 6). So each edge 

u v,( )  lies either completely inside or outside a blockage in W . 
Boundary nodes lie outside W . A node lies inside W  only if it 
is completely inside a block in W , e.g., in Figure 6 only s5  and 

s6  lie inside W . 

Inputs: T V E,( )  Given Steiner tree 
           R , C  resistance/ capacitance per unit length
           Rb , Cb  resistance/ input capacitance of buffer b
           RAT v( ) for each sink v
           W  set of blockages

Variables: q v( )  slack at node v
                qi v( )  slack at node v  on path to child ui
                C v( )  in-blockage capacitance downstream from v

Let: α RbC RCb 2RbCbRC+ +=  

1. for each v V∈  (in bottom-up order) do
      set C v( ) 0=
2.   if v  is a sink, 
          set q v( ) RAT v( )= .
3.   if v  has children u1 … uk, ,  for k 1≥ , then
          for i 1=  to k  do
4.           if ui v,( ) W∉  then
                   qi v( ) q ui( ) α l v ui,( )⋅–=         
              if ui v,( ) W∈ , then 
                  ED R l ui v,( )⋅ C l v ui,( )⋅ 2⁄ C ui( ) Cb+ +( )=
                  set qi v( ) q ui( ) ED–=
                  set C v( ) C v( ) C l v ui,( )⋅+= C ui( )+
5.       let j  be such that qj v( ) min1 i k≤ ≤ qi v( ){ }=
          set q v( ) qj v( )=             
          if v W∉  and there exists uj  s.t. v uj,( ) W∈  then 
              set q v( ) q v( ) Rb C v( ) Cb+( )–=
              set C v( ) 0=
6.   if v  is the source, then return q v( )

Figure 7  Linear time estimation algorithm for trees. 
The algorithm is shown in Figure 7. Instead of using the 
formulae from Section 2, the delay is computed piecewise 
since this affords the simplest direct implementation. Step 1 
visits each node v  in a bottom-up tree traversal, initializing the 
downstream capacitance C v( )  to zero. Step 2 handles the case 
where v  is a sink, initializing the slack to the required arrival 
time. Step 3 handles multiple children and iterates through the 
children u1 … uk, ,  of v . Step 4 updates upstream information 
when going from node ui  to v  via the intermediate variable 
qi v( ) . If the edge ui v,( )  is not in a blockage, the downstream 
in-blockage length is zero and the slack is updated by the linear 
delay from v  to ui . The slack is updated to include the Elmore 
delay from v  to the critical node downstream from ui  that is 
just outside the blockage containing v . Finally, for edges 

ui v,( )  that lie within blockages, all downstream capacitance is 
summed in C v( ) . 

Step 5 then identifies the child uj  of v  that is the ancestor of 
the most critical sink, and the slack at v  is then set. Finally, if 
v  is not in a blockage, but the edge uj v,( )  is, then one must 
incorporate into the slack the additional delay required for a 
buffer just outside the blockage to drive. Since v  is not outside 
the blockage, its downstream capacitance is then set to zero. 
Finally, Step 6 returns the slack at the source. The time 
complexity is linear in the number of nodes.
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5.  Experiments for Multi-Sink Nets
We call our estimation algorithm in Figure 7 BELT for 
Blockage Estimation in Linear Time. We consider three other 
buffered slack calculations.

1. One can compute the estimation formula while ignoring 
blockages. This in effect reduces to the estimations of 
[5][12], whereby one just looks at the length of each path 
and performs an optimal buffering as if it were a 2-pin net. 
Since this is essentially the BELT estimation without the 
blockages, we call this formula ELT.

2. As in Section 3, we run van Ginneken’s algorithm using the 
single buffer type b , and call this VG1 since there is one 
buffer type.

3. In practice, we have the ability to run actual buffer insertion 
with additional buffers types. We generated three additional 
smaller buffers (since b  is already a larger buffer) to use 
with van Ginneken framework. We call this algorithm VG4.

All codes were written in C++, and compiled using g++ 
version 2.95 on a Sun Ultra-4 running SunOS 5.7.

For the following experiments, the required arrival times were 
chosen to be the same for each sink since this actually increases 
the likelihood of error in the delay estimation formula. If one 
sink is substantially more critical, then this sink will have all 
off-path branches decoupled, making it an easier problem. 
Consequently, instead of reporting slack, we report the 
maximum path delay (which also makes interpreting results 
more intuitive).

5.1  Results on Random Nets
Our first experiment examines randomly generated nets. First 
we created a simple artificial floorplan. The plan has 16 high 
level square blocks, each five millimeters on a side. The block 
are arranged in a regular pattern on a square layout that is 21 
millimeters on a side. Thus, there is sufficient space in the 
alleys (0.25mm  wide) between blocks to allow buffer 
insertion. This type of layout loosely corresponds to the kind of 
behavior one might expect from a large chunky hierarchical 
design.

Next, we generated nine nets each of size three through ten 
pins. We ran the four different algorithms, ELT, BELT, VG1 
6

Table 2   Experiments on randomly generated nets. Each row represents the average of nine different nets.
 

Table 3  Experiments for 13 nets from an industry design.

net
sinks

WL
( )

 %
Blk ELT %ELT/

BELT BELT %BELT/
VG4

BELT
ln2

%BELT_ln2/
VG4_SPICE VG1 VG4 VG4

SPICE
3 29104 88.5 552.8 45.0 1225.9 99.4 849.7 93.7 1235.0 1232.8 906.9
4 41983 93.3 617.0 43.5 1416.6 99.6 981.9 92.6 1428.7 1422.1 1060.6
5 39904 90.2 512.8 42.1 1216.6 99.2 843.3 93.2 1230.2 1225.9 904.5
6 46559 90.2 569.8 43.9 1295.6 99.4 898.1 93.0 1308.0 1303.7 965.5
7 50373 88.9 548.6 42.2 1299.3 99.2 900.6 93.5 1314.2 1309.4 963.0
8 59190 91.1 663.0 43.0 1541.7 98.9 1068.6 95.7 1558.0 1551.2 1117.0
9 54659 90.5 539.0 39.8 1353.0 99.4 937.8 94.0 1375.3 1368.2 997.7

10 65350 94.0 595.1 41.7 1426.4 98.9 988.7 95.1 1449.1 1441.8 1040.2

net
name

WL
( ) Sinks %

Blk ELT BELT %BELT/
VG4

BELT
ln2

%BELT_ln2/
VG4_SPICE VG1 VG4 VG4

SPICE
mcu0 50540 18 89.9 380 822 95.1 569.9 88.6 872 864 643.4
mcu1 41780 19 96.2 492 1052 97.4 729.3 92.6 1084 1080 787.3
n107 14870 17 97.6 257 361 91.4 250.2 85.8 396 395 291.7
n189 64700 29 83.8 573 1486 96.9 1029.8 91.9 1556 1532 1120.9
n313 69430 19 96.6 587 1821 99.0 1262.3 95.6 1850 1840 1319.7
n786 53110 32 96.4 1126 3574 92.3 2477.2 85.1 3880 3873 2911.3
n869 42180 21 96.6 1042 2605 92.6 1805.3 85.1 2816 2813 2122.5
n870 45230 21 97.3 972 2326 93.1 1612.4 85.4 2498 2498 1887.3
n873 49290 43 78.0 527 1363 99.1 944.6 92.1 1381 1375 1026.1
poi3 63600 20 96.8 1256 3746 97.4 2596.6 89.6 3854 3847 2898.1
big1 195300 88 85.8 1143 5920 97.6 4103.6 99.8 6115 6063 4111.0
big2 122500 79 93.1 545 1577 96.0 1093.1 95.9 1657 1643 1139.9
big3 95320 63 94.1 403 1415 96.8 980.5 96.7 1478 1460 1014.0

µm

µm



and VG4, on each net and summarize the results in Table 2. In 
each case we set the driver strength and the sink size to be 
equal to buffer b . The Steiner topology was generated using 
the C-Tree algorithm which ignores blockages [2]. Delay 
calculations are for 0.10 micron technology [6].

The table presents a single row summarizing the average of 
nine different nets each having the specified number of sinks. 
For each net, we report the average wirelength and percent of 
the net that was blocked. For the four algorithms we present the 
average maximum delay for the net. The solutions of VG4 are 
also evaluated by SPICE model and the results are shown in the 
rightmost column. The SPICE results are based on 50% Vdd 
signal delay. Column 5 gives the ratio of ELT to BELT delay 
as a percentage. Note that by definition ELT will always be 
less than BELT. The percentage ratio of BELT to VG4 delay is 
listed in column 7 for each case. It is well known that the 
Elmore delay is an upper bound of real delay and people often 
multiply ln2 with the Elmore delay to reflect 50% Vdd signal 
delay. When comparing the timing performance of two Steiner 
trees for a same net, the scaling of ln2 does not affect the 
conclusion of the comparison. In order to have more fair 
comparison with the SPICE results, we report the ratio of the 
BELT results scaled by ln2 to the SPICE based VG4 results in 
column 9. We observe the following:

• By comparing the ratio of ELT to BELT in column 5, 
observe if one ignores blockage, the errors are typically off 
by over a factor of two. Of course the degree of the error 
will depend on the size of the blocks. Clearly, ignoring 
blocks causes gross underestimation of the achievable 
delay.

• Comparing BELT to VG1, we see that the delay estimation 
is quite accurate, and tends to underestimate the achievable 
delay by 1.1% on average.

• Comparing BELT to VG4, we see that the error is reduced 
even further, to 0.8% on average. 

• When compared to SPICE based VG4, the error of BELT is 
always less than 8%.

Clearly, the accuracy of BELT is sufficient while the accuracy 
of an estimation technique that is not blockage aware begins to 
suffer fairly significant underestimation. This effect becomes 
magnified when the blockage map has large blocks that may 
correspond to IP cores or memory.

5.2  Results on Large Real Nets
Our next experiments use the Steiner trees for a set of the 
industrial nets reported in [2] and [11]. We perform the same 
set of experiments as in Section 5.1 and report the results in 
Table 3. This time the nets are listed on an individual basis. 

We observe the following:

• On average, the ELT/BELT percentage is 36.2%, which 
means that blockage has on average about a 64% impact for 
these nets. 

• For some cases, the impact of blockage is not that signifi-
cant, e.g., for net n107 ELT is a reasonable estimate. For 
others, it is quite large, e.g., netbig1 has an ELT/BELT per-
centage of 19.3%. In this case, we see that ELT underesti-
mates the (realizable) VG4 delay by 81%, while BELT 
underestimates the VG4 delay by 3%.

• On average the error of BELT compared to VG4 is 5.2%, 
while on average the VG4 delay is almost a factor of three 
higher than that predicted by ELT.

• Compared to SPICE based VG4, the error of BELT is 9% 
on average.

These experiments illustrates that our estimation technique is 
sufficiently accurate for design planning, while ignoring 
blockages is prohibitively costly.

Finally, note how efficient the estimation technique is. The 
total runtime in seconds for running the above 13 test cases was 
0.24, 23.0 and 29.0 for BELT, VG1 and VG4, respectively. In 
other words, BELT is about 100 times faster than running an 
actual buffer insertion algorithm. For medium sized nets, such 
as n786 and n869, the runtime of VG4 plus SPICE simulation 
is over 10000 times slower than the runtime of BELT.  

6.  Conclusions
We presented closed form formulae for estimating the 
achievable buffered delay when buffering restrictions exist in 
the layout. We demonstrate that adding blockages to the layout 
can cause significant error in estimation techniques that ignore 
the blockage terrain. We also showed that our technique is a 
lower bound, has an error of less than one percent for two-pin 
nets, and has only a few percent error for multi-sink nets.
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	Table 2 Experiments on randomly generated nets. Each row represents the average of nine different nets.
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	Table 3 Experiments for 13 nets from an industry design.
	Abstract
	Closed formed expressions for buffered interconnect delay approximation have been around for some time. However, previous approa...

	1. Introduction
	1. Smaller blocks ignored: Let be the spacing between consecutive buffers that obtains optimal signal propagation speed. Blocks ...
	2. Single buffer type: A single buffer type that yields the fastest point to point delay is sufficient for modeling. It turns ou...
	3. Block locations ignored: whether blocks are closer to the source or sink has little effect on the actual buffered delay, so we ignore this effect.
	4. Infinitesimal decoupling buffers: Buffers for decoupling capacitance off the critical path can be modeled to have zero input capacitance. This may lead to slight underestimation of delay, but the effect is almost negligible.
	5. Larger block front-to-back buffering: A block with width larger than will cause a linear delay model to break down. To optimi...
	Figure 1 Example of (a) an optimally buffered line with equal spaced buffers and (b) an optimal realizable buffering when blockages are present. Note that unequal buffer sizes may be used here.


	2. Closed Form Formula for Two-Pin Nets
	2.1 Delay Formula with No Blockages
	(1)
	(2)
	(3)
	Figure 2 Ratio of Equation (1) to (2) as a function of wirelength.

	. (4)

	2.2 Delay Formula with Blockages
	Figure 3 Buffering scheme on a route of length with a single blockage spanning length .
	(5)
	(6)


	3. Two-Pin Experiments
	Figure 4 Comparison of the blockage buffered delay formula with van Ginneken’s algorithm for the case of a single blockage on a 2- pin net with length ten .


	test
	case
	Block widths
	(mm)
	Positions
	(mm)
	Eq. (6)
	(ps)
	van Gin
	delay (ps)
	Error
	(%)
	1
	1.8/4.0/2.9
	0.1/2.2/6.7
	437.0
	438.5
	0.35
	2
	2.5/4.0/2.9
	0.3/3.2/8.7
	451.9
	452.5
	0.11
	3
	0.5/4.7/2.1
	1.3/2.2/9.7
	440.6
	441.5
	0.21
	4
	3.5/4.7/2.0
	0.0/4.2/9.7
	497.0
	497.8
	0.14
	5
	4.5/0.7/3.0
	0.5/6.2/8.7
	454.1
	454.7
	0.12
	6
	2.5/2.1/2.9/1.1
	0.3/3.2/6.7/10.0
	390.9
	391.6
	0.16
	7
	2.5/1.1/5.9/0.5
	0.0/3.2/4.7/11.0
	527.7
	528.1
	0.08
	8
	2.6/4.4/0.9/1.8
	0.3/3.2/8.7/10.2
	448.5
	449.2
	0.15
	9
	1.5/3.3/0.9/4.2
	0.3/2.2/5.7/7.3
	456.5
	457.8
	0.28
	10
	1.5/3.3/3.9/2.2
	0.0/2.2/5.7/9.8
	456.5
	461.7
	0.11
	Table 1 Comparison of the blockage buffered delay formula with van Ginneken’s algorithm for multiple blockages on a 2-pin net with length 12 .
	4. Linear Time Estimation for Trees
	(7)
	Figure 5 Multi-sink tree with only unblocked Steiner points.

	4.1 Case 1: Unblocked Steiner Points
	(8)

	4.2 Case 2: Blocked Steiner Points
	(9)
	(10)
	Figure 6 Multi-sink tree example with blocked Steiner points.


	4.3 Linear Time Estimation Algorithm
	and (11)
	Figure 7 Linear time estimation algorithm for trees.



	5. Experiments for Multi-Sink Nets
	1. One can compute the estimation formula while ignoring blockages. This in effect reduces to the estimations of [5][12], whereb...
	2. As in Section 3, we run van Ginneken’s algorithm using the single buffer type , and call this VG1 since there is one buffer type.
	3. In practice, we have the ability to run actual buffer insertion with additional buffers types. We generated three additional smaller buffers (since is already a larger buffer) to use with van Ginneken framework. We call this algorithm VG4.
	5.1 Results on Random Nets
	5.2 Results on Large Real Nets

	6. Conclusions
	References
	[1] C. J. Alpert and A. Devgan, “Wire segmenting for improved buffer insertion”, ACM/IEEE DAC pp. 588-593, 1997.
	[2] C.J. Alpert, G. Gandham, M. Hrkic, J. Hu, A.B. Kahng, J. Lillis, B. Liu, S.T. Quay, S.S. Sapatnekar and A.J. Sullivan, “Buffered Steiner trees for difficult instances”, IEEE Transactions on CAD, 21(1):3-14, January 2002.
	[3] C. C. N. Chu and D. F. Wong, “Closed form solution to simultaneous buffer insertion/sizing and wire sizing”, ACM/IEEE Intl. Symposium on Physical Design, pp. 192-197, 1997.
	[4] J. Cong, L. He, C.-K. Koh, and P. H. Madden, “Performance Optimization of VLSI Interconnect Layout”, Integration: the VLSI Journal, 21, 1996, pp. 1-94.
	[5] J. Cong, T. Kong, and D. Z. Pan, “Buffer block planning for interconnect-driven floorplanning”, IEEE/ACM Conf. on Computer-Aided Design, pp. 358-363, 1999.
	[6] J. Cong and D. Z. Pan, “Interconnect performance estimation models for design planning” IEEE Transactions on CAD, 20(6):739-752, June 2001.
	[7] J. Cong and X. Yuan, “Routing tree construction under fixed buffer locations”, ACM/IEEE DAC, pp. 379-384, 2000.
	[8] S. Dhar and M. A. Franklin, “Optimum buffer circuits for driving long uniform lines”, IEEE Journal of Solid State Circuits, 26(1):33-38, January 1991.
	[9] W. C. Elmore, “The Transient Response of Damped Linear Network with Particular Regard to Wideband Amplifiers”, J. Applied Physics, 19, 1948, pp. 55-63.
	[10] M. Hrkic and J. Lillis, “Buffer tree synthesis with consideration of temporal locality, sink polarity requirements, solution cost and blockages”, ACM/IEEE ISPD, pp. 98-103, 2002.
	[11] J. Hu, C.J. Alpert, S.T. Quay and G. Gandham, “Buffer insertion with adaptive blockage avoidance”, ACM/IEEE International Symposium on Physical Design, pp. 92-97, 2002.
	[12] R. H. J. M. Otten, “Global Wires Harmful?”, ACM/IEEE Intl. Symposium on Physical Design, pp. 104-109, 1998.
	[13] P. Saxena, N. Menezes, P. Cocchini and D. A. Kirkpatrick, “The scaling challenge: can correct-by-construction design help?”, ACM/IEEE ISPD, pp. 51-58, 2003.
	[14] X. Tang, R. Tian, H. Xiang and D.F. Wong, “A new algorithm for routing tree construction with buffer insertion and wire sizing under obstacle constraints”, IEEE/ACM International Conf. on Computer-Aided Design, pp. 49-56, 2001.
	[15] L. P. P. P. van Ginneken, “Buffer Placement in Distributed RC- Tree Network for Minimal Elmore Delay”, Intl Symp. on Circuits and Systems, pp. 865-868, 1990.
	[16] C. J. Alpert, M. Hrkic, J. Hu, and S. T. Quay, “Fast and Flexible Buffer Trees that Navigate the Layout Environment”, IEEE/ACM DAC, pp. 24-29, 2004.







