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Abstract 

In this paper, a precorrected-FFT approach for fast and highly accurate simulation of circuits with on-chip 

inductance is proposed. This work is motivated by the fact that circuit analysis and optimization methods based on 

the partial element equivalent circuit (PEEC) model require the solution of a subproblem in which a dense 

inductance matrix must be multiplied by a given vector, an operation with a high computational cost. Unlike 

traditional inductance extraction approaches, the precorrected-FFT method does not attempt to compute the 

inductance matrix explicitly, but assumes the entries in the given vector to be the fictitious currents in inductors and 

enables the accurate and quick computation of this matrix-vector product by exploiting the properties of the 

inductance calculation procedure.  The effects of all of the inductors are implicitly considered in the calculation: 

faraway inductor effects are captured by representing the conductor currents as point currents on a grid, while 

nearby inductive interactions are modeled through direct calculation. The grid representation enables the use of the 

discrete Fast Fourier Transform (FFT) for fast magnetic vector potential calculation. The precorrected-FFT method 

has been applied to accurately simulate large industrial circuits with up to 121,000 inductors and over 7 billion 

mutual inductive couplings in about 20 minutes. Techniques for trading off CPU time with accuracy using different 

approximation orders and grid constructions are also illustrated. Comparisons with a block diagonal sparsification 

method are used to illustrate the accuracy and effectiveness of this method. In terms of accuracy, memory and 

speed, it is shown that the precorrected-FFT method is an excellent approach for simulating on-chip inductance in a 

large circuit. 

 

1. Introduction 

The fast and accurate simulation of circuits with on-chip inductance is a growing problem, and future trends show 

that the relative contribution of inductive effects on circuit behavior will continue to increase as technologies shrink 

further and low-k dielectrics are used to diminish capacitive effects.  Inductive effects have become important in 

determining power supply integrity, timing and noise analysis, especially for global clock networks, signal buses 

and supply grids for high-performance microprocessors.  

One of the major problems in determining inductance has been associated with the fact that wire inductances 

are defined over current loops, and that the current loops are dependent on the circuit context of the switching 

wires.  This leads to a chicken-and-egg problem where the inductance cannot be extracted until the current return 
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paths are known, which, in turn, can only be determined after some knowledge of the inductance.  Fortunately, an 

elegant way around this was found using the PEEC model [1], which does not require the current return paths to be 

predetermined.  The PEEC approach introduces the concept of partial inductance of a wire or a wire segment, 

corresponding to a return path at infinity.  The partial self-inductance is defined as the inductance of a wire segment 

that is in its own magnetic field, while the partial mutual inductance is defined between two wire segments, each of 

which is in the magnetic field produced by the current in the other. For two wire segments k  and m, the partial 

mutual inductance is given by  
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where ak is the cross section area of segment k , 
kl

v
is the length vector along segment k  and kmA

v
is the magnetic 

vector potential along segment k  due to the current Im in segment m, given by: 
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Here, rkm is the distance between any two points on segment k  and m. Simplified closed form formulae for partial 

self and mutual inductances of typical wire topologies that are useful in current-day integrated circuit environments 

have been calculated in [2].   

One drawback of using the PEEC method directly is that it requires the calculation of nonzero mutual 

inductances between every pair of nonperpendicular wire segments in a layout. This results in a dense inductance 

matrix that causes a high computational overhead for a simulator.  Although many entries in this matrix are small 

and have negligible effects, zeroing them out may cause the resulting inductance matrix to lose its desirable 

positive definiteness property [3], which is a necessary condition for the matrix to represent a physically realizable 

inductor system. Consequently, several efforts have been made to develop algorithms to sparsify the dense 

inductance matrix while maintaining this property.  

The shift and truncate method [4] finds a sparse matrix approximation by assuming that the current return of 

each wire segment is not at infinity, but is distributed on a shell of finite radius R0, which must be constant for the 

analysis of the entire chip. Under this assumption, the inductance formula (1) is altered by subtracting a factor, 

which is inversely proportional to R0, from the partial inductance, and setting the value to zero if the result is 

negative.  Although this method succeeds in removing faraway inductive interactions from consideration and 

maintains the positive definiteness of the matrix, the subtractive factor can cause errors in calculating nearby 

inductive interactions if the radius is not large enough.  Moreover, finding a reliable global value of R0 is a 

nontrivial problem: a high accuracy demands a large R0, which, in turn, can result in low sparsification.  Although 

efforts in the direction of determining R0 have been made in [3], this is not a solved problem.  

An alternative approach that uses return-limited inductances [5] is a shape-based method for sparsifying the 

inductance matrix using “halo rules”. This method is good as a first order approximation. Another approach [6] 
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introduces a block diagonal method that is a heuristic sparsification technique based on a simple  partition of the 

circuit topology. This approach also maintains the positive definiteness of the matrix, but neglects mutual 

inductances between partitions. In [7], the circuit element K, defined as the inverse of the traditional PEEC 

inductance matrix, was introduced as an alternative element for representing an inductance system. The K matrix is 

shown in [8] to have better properties than the inductance matrix in that it is symmetric, positive semidefinite and 

diagonally dominant. Similar to a capacitance matrix, the K matrix can be easily sparsified and can obtain a higher 

accuracy than an inductance matrix for the same sparsification. However, as in the case of the shift and truncate 

method, the algorithm provided in [7] uses a fixed window size within which local interactions are modeled. 

Moreover, it requires that existing simulators are extended such that they handle the new circuit element K.  

The shortcomings common to all of these methods are twofold. First, it is difficult to determine how to set the 

radius or partition size outside which couplings may be ignored. The principal problem is that it is difficult to 

definitively demarcate a region such that an aggressor wire segment outside this local interaction region is too weak 

to have a significant effect on a victim wire segment within it. Some of the heuristics proposed to overcome this 

limitation entail simulation, which may require large CPU times for large circuits. Second, although the individual 

couplings that are ignored may be small, it is difficult to determine the cumulative effect of ignoring a larger set of 

such couplings without detailed knowledge of the current distributions. 

FastHenry [9] is a multipole-accelerated method for inductance extraction. However, it works in frequency 

domain and ignores the effects of capacitance on the estimation of current return path. In order to obtain the time 

domain simulation, an accurate compact model has to be constructed, which is not an easy procedure.   

Recently, a number of methods for circuit and layout analysis and optimization for on-chip inductance have 

been proposed [10, 11, 12, 13, 14]. However these methods have typically used either RL inductance formulations 

or analytical models, which have limited accuracy for large circuit structures. 

In this paper, we propose a precorrected-FFT method that, instead of entirely dropping long-range couplings, 

approximates these couplings, thereby overcoming the above two shortcomings. The main idea of this method is to 

represent the long-range part of the vector potential by point currents on a uniform grid and nearby interactions by 

direct calculations. The grid representation permits the use of the discrete Fast Fourier Transform (FFT) for fast 

potential calculations. Because of the decoupling of the short and long-range parts of the potentials, this algorithm 

can be applied to problems with irregular discretizations. Other techniques similar to the precorrected-FFT method, 

such as the adaptive integral method (AIM) [15], have been proposed; the advantages of the former over the latter 

are discussed in [16]. 

The idea of using a precorrected-FFT approach for accelerated electromagnetic calculations has been used in 

the past to accelerate the coulomb potential calculation for solving electromagnetic boundary integral equations for 

three-dimensional geometries. During the capacitance extraction technique introduced in [17, 18], each iteration of 

the algorithm computes the product of a dense matrix with a charge vector to calculate electrical potential on each 
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conductor.  The basic precorrected-FFT method presented in this paper is inspired by the method in [17, 18] for 

capacitance extraction, which also demonstrates that for many realistic structures, the precorrected-FFT method is 

faster and uses less memory compared with the multipole-accelerated method. In our work, the precorrected-FFT 

method is adapted to the specific requirements of simulation of on-chip inductance.  Unlike [17, 18], we do not 

focus on extracting a matrix describing the parasitics (namely, the inductance matrix M in our case), but rather, 

directly consider how the inductance matrix is used in fast simulation algorithms. As described in Section 2, many 

simulators do not require M to be explicitly determined, but instead, require the computation of the product of M 

with a vector I.  The approach developed in this paper accelerates the procedure that is used to directly determine 

the M × I product without explicitly finding M.  It proceeds by first assuming that the entries in I are fictitious 

currents in inductors and then transforming the calculation of the M × I product to the calculation of the integration 

of the magnetic vector potential A
v

 over the volume of the inductors, as depicted in equation (5) in Section 2. The 

long-range magnetic interactions are represented by point currents on a discretized grid, while short-range 

contributions to the M × I product are directly calculated. Several considerations are incorporated to make the 

algorithm efficient and applicable  to large circuits and complex layouts.  First, since mutually perpendicular 

segments do not have any inductive interactions, it is possible to apply the precorrected-FFT method to wire 

segments in the two perpendicular directions separately. This simplification is applicable to inductance systems and 

not to capacitance systems. Second, since IC chips typically have much larger sizes in the two planar dimensions 

than in the third (i.e., they tend to be “flat”), we show that a two-dimensional grid may be used instead of a three-

dimensional grid.   

A comprehensive PEEC model, as described in [6], is used in this paper. We demonstrate the application of the 

precorrected-FFT method within a simulation flow based on PRIMA [19], on circuits of up to 121,000 inductors 

and nearly 7 billion mutual inductive couplings. These experiments demonstrate the speed, memory consumption 

and accuracy of the precorrected-FFT method as compared to the block diagonal method [6]. We also illustrate how 

tradeoffs may be made in order to obtain higher speed implementations with a small reduction in accuracy. 

The remainder of this paper is organized as follows. In Section 2, the motivation for calculating the M × I 

product is presented, and a description of the problem formulation is provided.  This is followed by a detailed 

description of the precorrected-FFT algorithm as applied to the inductance problems in Section 3. Experimental 

results and an analysis of the relation between the accuracy and speed are performed in Section 4, including a 

comparison with the block diagonal method in terms of speed, memory cost and accuracy. Concluding remarks are 

presented in Section 5. 

 

2. Motivation and problem formulation   

It is well known that a direct application of the PEEC model results in dense inductance matrices. The partial 

inductances of an n-wire segment system can be written as an n×n symmetric, positive semidefinite matrix M ∈ 
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Rnxn. Once this inductance matrix has been calculated, it may be incorporated into a circuit model that captures the 

interactions of R, L, C and active elements in the circuit.  If the circuit is linear, it can be solved efficiently using 

model order reduction techniques such as PRIMA or using a SPICE-like transient simulation flow. 

 

2.1. Model order reduction techniques 

To understand how the inductance matrix is used within a model order reduction method, let us use PRIMA as a 

representative model order reduction engine (the application to AWE is very similar) and consider a circuit that is 

represented by the modified nodal equation 

            (G + s C) X = B                 (3a) 

where (G+sC) is the admittance matrix, G is a conductance matrix, C is a matrix that represents the capacitive and 

inductive elements, X is a vector of unknown node voltages and unknown currents of inductors and voltage sources, 

and B is a vector of independent time-varying voltage and current sources.  Specifically, 
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where N, Q and M are, respectively, the submatrices representing conductances, capacitances and inductances in the 

network.  E consists of ones, minus ones and zeros, and N, Q, and M must be symmetric and positive definite to 

guarantee passivity. The submatrix of capacitances, Q, is typically sparse, while the submatrix M of inductances is 

dense.  

Our objective is to reduce the large conductance and capacitance matrices into smaller reduced matrices, so 

that the reduced linear system may be simulated exactly in conjunction with nonlinear transistor models in a circuit 

simulator. The vectors of moments, mi, of X can be calculated by solving the equations 

                     G m0 = b                   (4a) 

            G mi = - C mi-1                   (4b) 

These are orthonormalized in each step to obtain an orthonormal X matrix. Note that the right hand side of Equation 

(4b) involves the multiplication of C by a constant vector. The matrix for the reduced order system can be 

calculated as follows: 

Using these reduced matrices and the transistor models, a netlist for the reduced order system may be constructed 

and simulated using SPICE. 

 

2.2. SPICE-like transient simulation flow 

The time-domain modified nodal equation is given by: 

CXXCGXXG TT == ~~

BXCGX =+ &
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where the definition and formation of G, C, X and B are the same as in (3). Such equations can be solved using the 

backward-Euler method under a given time step, h, as follows: 

Rearranging the above equation, we obtain: 

Where P = (G + C/h) and q = (B + C/h Xn). Given the values of X at the nth time step, we can solve the above equation 

for X at (n+1)th time step. This equation can be solved by direct methods such as LU factorization, or using an 

iterative solver such as GMRES [20]. For very large circuits and a dense M matrix in C, LU factorization of G+C/h 

matrix could become computationally expensive, and therefore the use of iterative methods becomes attractive.  

The GMRES procedure requires the evaluation of the product of P by a vector, and therefore it is seen that this 

procedure, as well as the procedure of determining q, require the multiplication of the C matrix by a constant 

vector. 

 

2.3. Problem formulation  

Regardless of whether model order reduction techniques or transient simulations using an iterative solver are 

employed, we face the problem of the multiplication of C matrix with a constant vector. The product of M with a 

known vector I ∈ Rnx1 for these wire segments can be written as: 
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Here, we assume that mI is the fictitious current in wire segment m and kmA
r

is the magnetic vector potential on wire 

segment k  due to mI . kmA
r

is in the same direction as that of mI  and can be determined by the expressions in (2). 

Each entry kmM in matrix M is the partial inductance between wire segment k  and m, given by: 
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where il and ia  (i=k or m) are the length and cross section area of wire segment i. The kth  entry in the M × I 

product, corresponding to the victim wire segment k , is ∑ ∫∑
==
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of the integration of the magnetic vector potential over wire segment k  caused by the current in each aggressor wire 

segment. The expression (6) can be calculated using approximate formulae available in [2] or using accurate closed 

form formulae provided in [21]. 

If the dense inductance matrix M is used, the computational cost for the matrix-vector product is very high: for 

a system with n variables, this is O(n2). The larger the circuit, the larger is the number of moments and ports, and 

the heavier is the overhead of calculating the dense matrix-vector product. Therefore, methods for sparsifying the M 

matrix have been widely understood as being vital to solving systems with inductances in an efficient manner.  

On closer examination, however, we observe that in order to solve the circuit, it is not the dense inductance 

submatrix M that needs to be determined, but rather, the product of M with a given vector.  This is the motivation 

for this work, and we present a technique that efficiently finds the product of M with a given vector using the 

precorrected-FFT approach that accelerates the computation of this matrix-vector product. 

Therefore, the proposed method is general in that it can be applied whenever the circuit analyzer relies on the 

computation of the product of the inductance matrix with a given vector, such as PRIMA and SPICE-like transient 

analysis in the case where an iterative method is used for the equation solution, although it is not especially useful 

for an LU-factorization method since the latter requires the elements of the M matrix to be listed explicitly.  In this 

work, we use PRIMA as the simulation engine to test the results of the algorithm. 

 

3. Precorrected-FFT method 

The precorrected-FFT method presented here provides an efficient method for estimating the dense M × I matrix-

vector product accurately, and is based on dividing the region under analysis into a grid.  In the description of this 

algorithm, we will begin by using a three-dimensional grid, although we will show in the next section that in 

practice, a two-dimensional grid can also work well in an integrated circuit environment. 

Consider the three-dimensional topology of wires that represents the circuit under consideration. After the 

wires have been cut into wire segments to be represented using the PEEC model, the circuit can be subdivided into 

a mlk ×× array of cells, with each cell containing a set of wire segments. The contribution to the values of 
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 of wire segments within a cell under consideration (which we will call the “victim cell”) 

that is caused by wires in other cells (referred to as “aggressor cells”) can be classified into two categories: long-

range interactions and short-range interactions. The central idea of the precorrected-FFT approach is to represent 

the current distribution in wire segments in the aggressor cell by using a small number of point currents on the grid 
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that can accurately approximate the vector potential for faraway victim cells. After this, the potential at grid points 

caused by the grid currents is found by a discrete convolution that can be easily performed using the FFT. Figure 1 

shows a schematic diagram of a multiconductor system subdivided into a grid of 3×3×1 cells. The current 

distributions of wires in each cell are represented by a 2×2×2 grid of point currents, using an approach that will be 

described later. 

 

 

 

 

 

 

 

 

 

 

Figure 1: A multiconductor system discretized into wire segments and subdivided into a 3×3×1 cell array with 

superimposed 2×2×2 grid current representation for each cell. Ig and Ir are currents on grid points and real 

conductors respectively. 

  

 

 

 

 

 

 

 

 

 

Figure 2: Four steps in precorrected-FFT algorithm. (1) Projection to grid points (2) FFT computation 

(3) Interpolation within the grid points and (4) Precorrection for accurate computation of nearby interactions.  Here, 

Ig and Ir represent the currents on the grid points and on the real conductors, respectively; Ag and Vr are magnetic 

vector potential on the grid points, and the values of ∑ ∫
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 of real conductors, respectively; Rc is 

the radius of the collocation sphere, to be defined in section 3.1. 
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There are four steps in the precorrected-FFT approach to calculate the product of M and I, as illustrated in Figure 2: 

1. Projection: The currents carried by the wire segments that lie in each cell are projected onto a uniform grid of 

point currents in the same direction as the currents in the wires.  Here, the grid is only required to have a 

constant grid spacing in each dimension, so that for a three-dimensional grid, the grid spacing can be different 

in each of the three perpendicular directions. The boundary condition that is maintained during projection is 

that the vector potentials at a set of test points on a collocation sphere surrounding the cell should match the 

vector potentials due to the actual wires.   

2. FFT: A multi-dimensional FFT computation is carried out to calculate the grid potentials at the “victim” grid 

points caused by these “aggressor” grid currents.  This computation proceeds by automatically considering all 

pairs of aggressor-victim combinations within the grid. 

3. Interpolation: The grid potentials, calculated by the FFT computation, are interpolated onto wire segments in 

each “victim” cell. 

4. Precorrection: The projection of wire segments to the uniform grid in step 1 inherently introduces errors into 

the computation.  While these errors are minimal for faraway grid points, they may be more serious in 

modeling interactions between nearby grid cells.  Therefore, the precorrection step directly computes nearby 

inductive interactions accurately, and “precorrects” to remove the significant errors that could have been 

introduced as a result of projection. 

A detailed description of the four steps is provided in the following subsections. 

 

3.1 Projection 

The first step in the precorrected-FFT algorithm is projection, which constructs the grid projection operator W.  

Using W, the long-range part of the magnetic vector potential due to the current distribution in a given cell can be 

represented by a small number of currents lying on grid points throughout the volume of the cell. In other words, 

the current distribution in wire segments can be replaced by a set of grid point currents that are used to calculate the 

long-range part of the magnetic vector potential. An example of the top view of such a grid representation is shown 

in Figure 1, where the current distribution in each cell is represented by a 2×2×2 array of grid currents. Since the 

grid currents are only a substitution for the current distribution in wire segments, the grid can be coarser or finer 

than the actual problem discretization.  

The scheme for representing the current distribution in a cell by a set of grid currents throughout the cell can be 

illustrated using the first uniqueness theorem in electromagnetic fields [22]. Suppose the current (charge) 

distribution is contained within some small volume S0 with radius R0, as shown in Figure 3, and we are interested in 

finding the induced magnetic field (electric field) outside of region contained within a surface S.  In order to find 

the magnetic field of a given stationary current distribution (electric field of a given stationary charge distribution) 

we solve Laplace’s equation: 
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02 =∇ A
r

  (For electric field, it is 02 =∇ V )        (7) 

with the boundary condition Vs, which is the known potential distribution on the boundary surface S. The first 

uniqueness theorem is related to the solution of Laplace’s equation, and can be stated as follows: 

First uniqueness theorem: The solution of Laplace’s equation in some region is uniquely determined if the value of 

the potential is a specified function on all boundaries of the region.  

 

 

 

 

 

 

Figure 3: Problem region of Laplace’s equation and uniqueness theorem. 

 

This theorem tells us that in order to solve the Laplace’s equation, it is not necessary to know the detailed 

distribution of current sources (charge sources), but that it is sufficient to know the potential distribution on the 

boundary surface S of the problem region.  This suggests a scheme where one current distribution can be replaced 

by another current distribution provided the two distributions result in the same potential on the boundary surface of 

the solution of Laplace’s equation. For convenience of calculation, we choose the boundary surface as a sphere 

surface, called the collocation sphere as shown in Figure 2, and point currents lying on a grid as a current 

distribution that substitutes the original one.  

The radius of the current distribution region R0 is a little larger than the cell size and the small volume S0 

contains the cell. Suppose there are p grid points on each edge of a cell and a ppp ×× grid of currents is used to 

represent m currents in wire segments in cell k . A set of Nt test points is chosen on a collocation sphere that has 

radius Rc>R0, and whose center is coincident with the center of cell k . The problem region is outside of the 

collocation sphere. Then the potentials on these Nt test points due to the grid currents are forced to match those 

induced by the current distribution in wire segments by solving the linear equation:  
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g
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r RkI are, respectively, the grid current vector and current vector for wire 

segments in cell k . 
3pNgt tRP ×∈ and mNrt tRP ×∈ represent the mapping between the grid currents to the potential 

at the test points and currents in wire segments to the potential at the test points, respectively. Rc is chosen 

according to the accuracy of the projection, as described in Section 3.7. The entry gt
ijP , which is the potential at the 

ith test point induced by the unit point current at the j th grid point, is given by: 

S0 S 
• 

R0 

Rc 

02 =∇ A
r

Problem 
region 



11 

g
j

t
i

gt
ij

rr
P rr

−
=

1
4

0

π
µ

  (9) 

where t
ir

r
and g

jr
r

are the coordinates of ith test point and j th grid point, respectively. The entry rt
ilP is the potential at 

the ith test point induced by the unit current in lth wire segment, given by: 
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where r
lr

r
is the coordinate of lth real wire segment and al is the cross section area of that wire segment. Solving 

equation (8) gives us the grid current vector Ig(k): 

)()()(][)( kIkWkIPPkI rr
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where ↑][ gtP is the pseudo-inverse of Pgt [23] and can be calculated by singular value decomposition. There are 

two reasons to use the pseudo-inverse here: first, the number of test points may be larger than the number of grid 

points for cell k , and second, the possible symmetric positions of the test points on the collocation sphere may cause 

the Pgt matrix to be nearly singular and introduce inaccuracies if the normal matrix inverse is used. This procedure 

provides us with W(k), the part of the projection operator associated with cell k ; the j th column of W(k) is the 

contribution of the j th wire segment in cell k  to the p3 grid currents. Since Pgt is small and is taken to be the same for 

all of the cells, ↑][ gtP can be calculated once in the setup step with a very small computational cost, and is directly 

used in each step of the precorrected-FFT that requires its value. Note that the grid currents obtained from cell k  

constitute only a part of the currents on these grid points if they are shared with neighboring cells. The grid current 

on a grid point shared by multiple cells is calculated as the sum of the contribution from all of the wire segments 

which reside in those cells. 

 

3.2 Calculation of grid potentials by FFT 

Once the currents in wire segments are projected to the grid, the grid potentials due to the grid currents are 

computed through a multi-dimensional convolution, given by:   

∑==
',','

)',','()',,',,',(),,(
kji

ggg kjiIkkjjiiHHIkjiA    (12) 

where ),,( kjiAg is the grid potential at the grid point whose index in three dimensions is (i,j,k) and each entry of H 

is given by: 







≠
−=

otherwise

kjikjiif
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0

π
µ

  (13) 
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which is the contribution to the grid potential at grid point (i,j,k) induced by unit point current at grid point (i’,j’,k’). 

It can be seen easily that (12) has the form of a convolution operation, and the discrete Fast Fourier Transform 

(FFT) can be exploited to rapidly implement this convolution. On a practical front, we observe that the matrix H 

needs to be computed only once during this computation. Moreover, the number of grid points in each dimension is 

best chosen as a power of two, or as a value with only small values of prime factors, so that the implementation of 

the FFT is efficient. For further efficiency, the sparsity properties of Ig and H can be exploited. 

 

3.3 Interpolation 

After the grid potential is calculated using the FFT, the values of ∑ ∫
=

•
n

m
kkkm

k

daldA
a1

)
1

(
rr

 over victim conductors 

can be obtained through interpolation of the potentials on grid points throughout the cell that the victim conductor 

lies in. This step is basically the inverse process of the projection step, and the interpolation operator can be 

obtained by the following theorem [17, 18]: 

Theorem: If 1~ ×∈ mRV is an operator that projects a current onto m grid points, TV
~

may be interpreted as an 

operator which interpolates potential at m grid points onto a current coordinate; conversely, if mT RV ×∈ 1~
is an 

operator that interpolates the potential at m grid points onto a current coordinate, V
~

may be interpreted as an 

operator that projects a current onto the m grid points. In either case, V
~

and TV
~

have comparable accuracy. 

The proof of this theorem is provided in [17, 18]. However, whether the interpolation operator is the transpose 

of the projection operator or not depends on the discretization scheme used in the discretization of the integral 

equation [24]. As described in [24], if a Galerkin scheme is used, so that the entries of the dense matrix include the 

integration about both the aggressor discrete element as well as the victim discrete element, the dense matrix will be 

symmetric and positive definite. In this case, the transpose of the projection operator can be used as the 

interpolation operator. If (1) and (2) are applied to calculate inductance values, the inductance matrix, M, is just the 

dense matrix resulting from the discretization under the Galerkin scheme, so that the interpolation operator is WT.   

 

3.4 Precorrection 

The grid representation of the current distribution in a cell is only accurate for potential calculations that correspond 

to long-range interactions. In practice, nearby interactions have the largest contribution to the total induced 

potentials, and therefore, they must be treated directly and accurately.  Since the nearby interactions have already 

been included in the potential calculation after the above three steps, it is necessary to subtract this inaccurate part 

from the result of the interpolation step before the accurate measure of nearby interactions is added in. 
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This is easily done: the part of the value of ∑ ∫
=

•
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m
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 of a wire segment in cell k  due to the 

currents in wire segments in cell l is M(k,l)I(l), where I(l) is the current vector for cell l and M(k,l) is the part of the 

inductance matrix M corresponding to the mutual inductance terms between the victim wire segments in cell k  and 

the aggressor wire segments in cell l. )(kVG  corresponds to the values of ∑ ∫
=

•
n

m
kkkm

k

daldA
a1

)
1

(
rr

 of wire 

segments in cell k , computed from the projection, FFT and interpolation steps.  The part of this calculation related 

to the currents in cell l is: 

)()(),()(),( lIlWlkHkWlkV T
G =  (14) 

where W(l) and W(k)T are the projection operator in cell l and interpolation operator in cell k , respectively. H(k,l) is 

the part of the multi-dimensional convolution step that calculates the grid potential throughout cell k  due to the grid 

currents throughout cell l. The precorrection step subtracts ),( lkVG  from )(kVG and then adds the accurate direct 

interaction M(k,l)I(l): 

)(),(
~

)()(),(),()()( lIlkMkVlIlkMlkVkVkV GGG +=+−=   (15) 

where ),(~ lkM  is a precorrection operator for cell k corresponding to cell l and is given by: 

)(),()(),(),(~ lWlkHkWlkMlkM T−=  (16) 

Although the M × I product may be calculated many times (for example, in the loop of calculating moments in 

PRIMA), the expense of computing ),(~ lkM is incurred only once in the initial setup step, and can thence be 

reused. After precorrection, V(k) is a good approximation to the real result of ∑
l

lIlkM )(),( , because it includes 

long-range contribution to the potential through the grid representation and short-range contribution through the 

direct calculation. 

 

3.5 Complete precorrected-FFT algorithm 

Combining the above steps leads to the complete application of precorrected-FFT algorithm on the dense 

inductance matrix and vector product problem. The final solution of the induced voltages is: 

IHWWMMIV T )~( +==  (17) 

where W is the sparse projection operator, of which each nonzero entry Wij is the contribution of jth entry in the I 

vector on to the grid current at the ith grid point. H can also be constructed as a sparse matrix for an efficient 

implementation of FFT. M~ is a sparse matrix because the number of cells included in the calculation of nearby 

interactions is small, and each nonzero entry ),(~ jiM is the error caused by the grid representation during the 
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calculation of the value of jIjiM ),(  for wire segment i due to the current in wire segment j in a nearby cell. The 

complete algorithm, including the setup step, is illustrated in pseudo code as follows: 

Precorrected-FFT approach to compute M × I: 
1. Setup step: 

1.1  Construct ↑][ gtP  
1.2  Construct W for the whole circuit 

  For each cell k = 1 to K 
  { 
   Construct )(kP rt  
  Calculate the projection operator for cell k  as 

   )(][)( kPPkW rtgt ↑=  
          Accumulate the entries in W(k) into W 

         } 
1.3  Construct H for all of the grid points, calculate the FFT of H and store the results: 

                          )(~ HFFTH =  

1.4  Construct M~ for the whole circuit 
  For each cell k = 1 to K 
  {  
   For each nearby cell l = 1 to N(k) 
   { 

    Calculate )(),()( lWlkHkW T  
   Calculate the mutual inductance terms associated  
    with the aggressor cell l and the victim cell k : M(k,l) 

   Calculate precorrection operator: )(),()(),(),(~ lWlkHkWlkMlkM T−=  
    for cells k  and l 

   Accumulate the entries of ),(~ lkM to build M~ for the whole circuit 
   } 
  } 

2. Precorrected-FFT step: 
Given the vector I 
2.1  Projection  

  Calculate grid currents: WII g =  
2.2  Convolution   

  Compute )(
~

gg IFFTI =  

  Compute gg IHA
~~~

=  

  Compute )
~

(1
gg AFFTA −=  

2.3  Interpolation  

   g
T

G AWV =  
2.4  Precorrection 

  IMVV G
~

+=
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The concept of the precorrected-FFT method lies in the representation of far away interactions by grid potentials, 

while the nearby interaction are taken into account by direct calculations. This concept can be used for both the 

electric field and the magnetic field, and therefore for both capacitance and inductance extraction. The kernel of the 

calculation of both field potentials is 1/r, where r is the point-to-point distance or the point-to-origin distance. 

Although the above description of the precorrected-FFT method is superficially similar to that in [17], the 

implementation and the application of precorrected-FFT in this paper differs from that for the capacitance 

extraction in several ways. These differences, which constitute the contributions of this paper, are: 

1. The computation of the projection operator W for capacitance extraction involves a two-dimensional 

integration, while for the magnetic field, it is a much more complicated three-dimensional integration.  

2. Our objective is to solve V=MI fast and accurately, rather than calculating M exactly. Here I is treated as the a 

set of fictitious inductor currents and V is the summation of the integration of the magnetic vector potential over 

wire segments caused by the current in each aggressor wire segment. The magnetic field induced by I as well as 

V are not real world quantities, unlike capacitance extraction, where the method is used to solve V=PQ for a 

real physical electric field.  We show how the calculated MI product can be used in various simulation schemes, 

including PRIMA and in circuit simulation using iterative solvers. 

 

3.6 Computational cost and grid selection 

Since VLSI chips are thin and flat, one option is to use only one cell in ẑ  (thickness) direction. In addition, there 

are three parameters that need to be determined before the precorrected-FFT algorithm is applied to a circuit: p, q 

and d. Parameter p is the number of grid points on each edge of a cell, so that each cell is approximated by p3 grid 

points in three-dimensional grid.  For example in Figure 1, there are 23 grid points throughout the volume of the 

three-dimensional cell.  

Parameter q is the number of nearby cells that are considered in the precorrection step. For example, if we only 

consider the first nearest neighbors to each cell (defined as all cells that have a vertex in common with the 

considered cell, including the cell itself), the value of q is 9. Parameter d is the cell size, defined as the length of a 

cell’s edge in the x̂  and ŷ  directions, which we will take to be equal. For a given chip size, the number of cells Nc 

is inversely proportional to d2. We reiterate that in order to implement the FFT efficiently, it is convenient to choose 

the number of grid points as a power of two, or as a number whose prime factors are small.  

As the interpolation operator WT is only the transpose of the projection operator W, the construction of WT has 

virtually no overhead, so that we only consider the projection, the FFT and the precorrection steps in the analysis of 

the computational cost. The complexity of each of these steps can be analyzed as follows: 

• In the projection step, if n wire segments and p3 test points are used to construct W, then the 

computational cost is )( 3npO ∼ )(nO .  
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• The cost of FFT is ))ˆlog(ˆ( nnO , where n̂ is the number of grid points and is related with the number 

of cells by the relation nNpn c ∝∝ 3ˆ .  

• In the precorrection step, there are approximately cNn / wire segments per cell on average, and for 

each wire segment, cNqn / mutual inductance terms need to be calculated. Since the on-chip wire segments are in 

practice nearly homogenously distributed, the value of cNn / is independent of n.  The computational cost in this 

step is therefore O(q( cNn / )2Nc) ~ O(Nc) ∼ O(n) over all cells.  

From the above analysis, it is easily seen that the computational complexity of the entire precorrected-FFT 

procedure is ))log(( nnO .  

It is clear that increasing the values of p and q will both increase the computational cost of the algorithm and its 

accuracy. Of the three parameters, if p and q are fixed, then a larger value of the cell size will result in a smaller 

number of cells, so that the computational cost of precorrection is increased. On the other hand, if the cell size is 

decreased and the number of cells is increased, the cost of performing the FFT will increase. This suggests that 

there is an optimal cell size that yields a minimum value of cost. To search for this optimum, it is possible to 

perform a search that starts with a larger cell size and a smaller number of grid points, and then decreases the cell 

size until the minimum run time is reached. The worst-case accuracy is a function of q; in most of the experiments 

in this paper, only the first nearest neighbors are included in the precorrection step and p is chosen as a small value, 

so that the cell size is easily selected. In this sense, the method for choosing the cell size is somewhat easier and 

more reliable than the methods used in [4][6] to find the local interaction region, since in the precorrected-FFT 

approach we only need to look for a minimum value of CPU or memory cost with some consideration of accuracy.  

 

3.7 Accuracy of the projection step 

As stated in the earlier description, the precorrected-FFT method uses a grid representation for a current 

distribution. An analysis of each of the steps for sources of errors is as follows: 

• The principal source of errors in the precorrected-FFT method lies in the projection step, where grid 

currents are used to replace currents in wire segments.  

• The interpolation step results in the same theoretical error as the projection step, so that it is not necessary 

to separately consider this step in the analysis of accuracy.  

• The FFT step, which is applied to calculate grid potentials, is an efficient implementation of the discrete 

convolution and does not introduce any theoretical error.  

• The direct calculation of nearby interactions introduces no theoretical error.  

Therefore, in order to maintain the accuracy of the precorrected-FFT method, it is critical to ensure the accuracy of 

the projection step. 
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Figure 4: Side view (left) and top view (right) of the experimental setup in the examination of the accuracy of the 

projection step. 

 

A small circuit, shown in Figure 4, is used to examine the accuracy of the projection step. The setup consists of 

six 50µm wires lying on two metal layers, with three on the upper layer ( 0>z ) and three on the lower layer 

( 0<z ). Each wire is divided into two wire segments of equal length, so that there are 12 segments in all. The 

width, thickness and spacing of wires are all 1µm. The currents flowing in each wire segment are 100mA in the y 

direction, and the cell size is chosen to be 50µm. The wire segments are off-centered in the y direction by 1µm, 

while the centers of the wire system in x and z direction are at the origin. 

A series of experiments is carried out with different values of the radius Rc of the collocation sphere1 and of p, 

where p is set to be 2 or 3 or 4 and Rc is chosen from 1.5, 2.5, 3.5 and 5.5 times the cell size. Theoretically, the grid 

current representation is only accurate for the magnetic field outside of the collocation sphere. For those neighbor 

cells that are included in the collocation sphere, the accurate potential calculation should be adjusted by the 

precorrection step. Since normally at least the nearest neighbor cells are included in the precorrection step, the 

smallest value of Rc is set to be 1.5 times of the cell size. For a fixed combination of p and Rc, numerous evaluation 

points (which are different from the evaluation points on the collocation sphere) in three directions are chosen to 

evaluate the difference between the magnetic potential induced by the current distribution in wire segments and by 

the p3 grid currents. A cylindrical coordinate representation is employed so that the coordinates of an evaluation 

point is expressed as (Rt, θ, ϕ).  Rt is the distance of the evaluation point from the origin. The unit of Rt is in terms 

of the size of a cell. The values of the logarithm of Rt are shown in order to accommodate the large range of Rt 

values. The directions of evaluation points in cylindrical coordinates, θ, are set to be 0°, 45° and 90° relative to the 

x̂+  direction. For each angle, a set of evaluation points is chosen in the z = 0 plane, such that their distance from 

the origin varies between 1.5 to 25 times the cell size. Plots of the relative error at these evaluation points are shown 

in Figure 5. 

                                                                 
1 One reason why we choose a spherical collocation surface is that the spherical surface has the minimum surface area, over shapes with the same volume as. 
For the same number of the collocation points, the smaller surface area of the spherical collocation surface relative to any other surface results in a larger 
density of the collocation points, which accordingly produces a larger accuracy with the same computational cost. 
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Figure 5: Relative error caused by grid representation with p=2, 3 and 4 and Rc=1.5, 2.5, 3.5, 5.5 times the cell size. 

Here, theta is the direction of evaluation points, Rc is the radius of the collocation sphere, and Rt is the distance of 

the evaluation points from the origin in the unit of cell size. The solid line, dashed line and the dash-dot line 

correspond to p=2, 3 and 4, respectively. 

 

In cases where Rc is small, such as 1.5× the cell size, the error decays slowly with the distance of the evaluation 

point from the current distribution, and falls off sharply when the evaluation points are near the collocation sphere. 

It can also be seen that the error decays faster if the radius of the collocation sphere is larger. For example, when Rc 

is 5.5 cell sizes and p equals 4, the error decreases from 310−  at the first evaluation point to 810− at the evaluation 

point that is 25 cell sizes away from the current distribution. When Rc is 1.5 cell sizes and p equals 4, the error is 

nearly level at 410− after a sharp change at the collocation sphere. For an Rc value of 2.5×, 3.5× or 5.5× the cell size, 

the worst error is the same. It is also observed that no matter what the radius of the collation sphere is, the accuracy 

from a higher order approximation is also higher than that of a lower order approximation when the evaluation 

point is far away from the collocation sphere. These results are seen to be largely consistent for three values of θ. 
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(a)                                                                     (b) 

Figure 6: Top view (a) and cross sectional view (b) of the test chip with three parallel signal lines on M8. M9 is 

ignored in the cross sectional view for better clarity (not to scale). The dark background (a) represents the dense 

supply lines' distribution through out the four metal layers. Only a few grid supply lines are shown in (b) and the 

uniformity of the pattern is indicated by the dots to the far sides of the signal lines. 

 

4. Experimental results 

A set of experiments was carried out on a 400MHz Sun UltraSparc-II computer server to test the accuracy of the 

response from the precorrected-FFT method, and to compare the results with those of the block diagonal method 

[6] in terms of accuracy, speed and memory cost. The test circuit is a four metal layer conductor structure on layers 

M6, M7, M8 and M9 of a nine-layer chip, as illustrated in Figure 6, which shows the top view and the cross 

sectional view of the structure.  It lies within an area whose width is 330µm and thickness is 5µm. The circuit 

consists of three parallel signal wires, each with 0.8µm width, 0.8µm spacing and 0.5µm thickness. The 

power/ground wires are distributed densely in the four layers and the signal wires are on M8. The width of the test 

circuit is fixed throughout the experiments and the length changes as the length of the signal is varied in different 

experiments. The driver sizes for the three signal wires are identical and are altered with the wire length in order to 

maintain a slope of 40ps at the near end of the signal wires. The drivers are made to switch at the same time so that 

the inductance effect is maximized and the error incurred by the precorrected-FFT method can be determined for a 

worst case condition. In the last part of this section, the experiments on a large industrial clock net are carried out 

the test the efficiency of the precorrected-FFT method in on-chip inductance simulation. 
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4.1 Accuracy of the precorrected-FFT method 

In the accuracy experiments, the value of p is set to 4, and the nearest neighbors and the next nearest neighbors are 

included in the direct interaction region. The cell sizes in the x and y direction are each chosen to be 15µm, while in 

the thickness direction, it is set to 7µm, such that the test structure is at the center of the cell. The radius of the 

collocation sphere is chosen to be 2.5 times the cell size. The cell size is chosen in the following way: 

As explained in Section 3, if p and q are fixed, then a larger value of the cell size will result in a smaller number 

of cells, so that the computational cost of precorrection is increased while that of the FFT will decrease. On the 

other hand, if the cell size is decreased and the number of cells is increased, the cost of the FFT will increase, but 

the cost for precorrection will decrease. Of the three matrices W, H and P to be constructed, the run time for 

constructing W is not affected by the change of cell size. If the cell size is larger, the cost for constructing H and the 

run time of the FFT will decrease, but the cost for P increases. On the contrary, if the cell size is smaller, the cost 

for P decreases while that for H and for the FFT computation increase. In all the experiments in Section 4.1 and 4.2, 

there are 13 ports and the number of moments per port in PRIMA implementation is 5, as in [6], and it has been 

demonstrated that the response from the reduced order model converges here even if more moments are used in the 

simulation. Therefore the FFT have to be carried out 65 times because there are multiple ports and moments. The 

run time for constructing H and P, the run time for all of the FFT calculations, as well as the total run time for the 

three are listed in Table 1. The cell size is chosen to be the one that results in the lowest run time.  

 

Cell size (µm) 30 22.5 15 7.5 
Construction time of P (sec) 750 450 132 44 

Construction time of H +  
65 computations of the FFT 

(sec) 
160 265 520 2050 

Total run time (sec) 910 715 652 2094 
 

Table 1: The change of run time with the cell size with fixed p=4 and q=9. 

 

A simulation for the same circuit is also carried out with the block diagonal approximation [6]. The partition 

size in the block diagonal approach is 180µm×150µm, which is much larger than the direct interaction region of 

75µm×75µm. Figure 7 shows a comparison of the results from the precorrected-FFT and block diagonal methods 

with the accurate waveforms for 900µm long wires, with waveforms at both the driver and receiver sides of the 

middle wire being shown. The accurate waveforms are obtained by using the full inductance matrix in PRIMA 

without any approximation while the approximate waveforms come from the same PRIMA simulator but using the 

precorrected-FFT or block diagonal method. There are six waveforms in Figure 7, although only four are clearly 
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visible since the waveforms from the precorrected-FFT almost completely overlap with those from the accurate 

simulation. The largest error in the response from precorrected-FFT is less than 1mV. With about 100mV 

oscillation magnitude induced by inductance, the relative error of the oscillation magnitude is 0.1%. The relative 

error in the 50% delay for the response from precorrected-FFT is even smaller. Although for a victim line segment, 

more aggressor line segments are considered in the direct interaction region in the block diagonal method than in 

precorrected-FFT, the error in the response from the block diagonal procedure is still larger than that of 

precorrected-FFT. The accumulated errors caused by the dropped mutual inductance terms could too large to be 

ignored if an accurate simulation is desired.  

                                                 

 

 

 

 

 

 

 

 

 

Figure 7: Comparison of waveforms from the precorrected-FFT and the accurate simulation at the driver and 

receiver sides of the middle wire. Waveforms from the precorrected-FFT and the accurate simulation are 

indistinguishable.  

 

Because of the high accuracy that can be obtained by the precorrected-FFT method for this example, we 

observe that we can sacrifice some of the accuracy for higher speed. Different orders of approximation are tested to 

study the relation between speed, memory requirements and accuracy. The layout tested is similar to the above 

experiment but the length of the signal wires is extended to 5400µm, which is the largest tested wire length, so as to 

show the largest reduction in accuracy with the coarsening of the grid. Since there are more than 31,000 inductors 

in this circuit, including all of the inductors of signal wires and supply wires, a total of nearly one billion mutual 

inductances is required for accurate simulation. It is therefore impossible to simulate for the accurate waveforms 

even in PRIMA, let alone in time domain simulation. To simulate the response most accurately, p is set to 4, the 

cell size is set to be 15µm, and the first, second and third nearest neighbors are considered in the precorrection step. 

The response obtained from this setup is used as the accurate waveform for comparison purposes. 

Other precorrected-FFT simulations are carried out with lower accuracy and a coarser grid, where only the 

nearest neighbors are considered in the direct interaction region and the cell size is 30µm, which doubles the cell 
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size in the above experiment. The cell size and the size of the direct interaction region are fixed in these 

experiments. The grids are variously chosen to be three-dimensional with p=4, p=3, p=2, and two-dimensional with 

p=4, p=3, p=2. The two-dimensional grid is in the plane that is parallel to the x-y plane and lies at the mid-point of 

the thickness of the test structure. In the two-dimensional case, the collocation sphere reduces to a collocation circle 

in the x-y plane, as shown in Figure 8. Reduction of the problem to a two-dimensional grid will increase the 

efficiency of the computation at some cost in accuracy. 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 8: Top view (left) and side view (right) of a two-dimensional grid and the collocation circle. 

 

It is expected that larger cell sizes, smaller values of p, and reduction in the size of the direct interaction region 

will each contribute to a loss in accuracy, but with an accompanying increase in the speed of the computation and a 

reduction in the memory requirements. The waveforms at the driver and receiver sides of the middle wire are 

shown with different levels of accuracy, corresponding to p=2, 3 and 4, are virtually indistinguishable. Closer 

examination reveals that the error in the 50% delay is insignificant for the three cases, but the relative error 

corresponding to the overshoot/undershoot is discernible, and is listed in the last column of Table 2. This table also 

lists the accuracy, memory requirements and speed for each level of approximation. 
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Setup time (s) 
 Total CPU 

time (s) Inductance 
values 

W, H , M~  
matrices  

Memory 
requirements 

(Mb) 

Relative error of 
overshoot/undershoot 

2D 2917 1060 148 110 13% p=2 
3D 3094 1060 302 113 12% 
2D 3118 1060 312 113 1.3% p=3 
3D 3682 1060 858 156 <1% 
2D 3175 1060 354 117 <1% p=4 
3D 4090 1060 1196 172 <1% 

 

Table 2: A comparison of the accuracy, memory requirements and CPU time for different parameter settings for the 

precorrected-FFT in the simulation of three 5400µm long signal wires. Here, “2D” and “3D” correspond to the two-

dimensional and three-dimensional cases, respectively. The total CPU time corresponds to the time required for the 

entire simulation, including the time required by the precorrected-FFT computations. 

 

The setup time is the most time-consuming step in the entire algorithm, and is further divided into two parts. 

The first part corresponds to the calculation of the inductance values needed for the construction of the 

precorrection matrix, which is equal for each order of approximation, while the second relates to the time required 

for the calculation of the W, H and M~  matrices. For p=3, under a three-dimensional grid, the error at the peak is 

less than 1mV. The relative error in the oscillation magnitude at that point is 1%, while the speed is increased by 

45% as compared with the accurate result. If p is further reduced to 2 under a three dimensional grid, the error is 

9mV but the speed is improved by an additional 16% compared to the p=3 case. The two-dimensional grid 

representation with p=2 results in the largest error of about 10mV and a similar relative error, but the speed is 

increased only by 6% as compared to its three-dimensional counterpart. The reason for this relatively low speed 

improvement is that in the case that p=2, the precorrected-FFT is rather fast and the time consumed in the 

calculation of W, H and M~  matrices is only a small part of the total setup time. Therefore, even a large increase in 

the speed of calcula tion of W, H and M~  matrices will not yield a significant reduction of the total run time. 

Another reason is that the number of grid points per cell is only reduced by half by going from the three dimensions 

to two. On the other hand, if we reduce the three-dimensional grid to two dimensions with p=4, the speed can be 

increased by 22% because the number of grid points per cell is reduced from 43=64 to 42=16, and the time required 

for the calculation of W, H and M~  matrices plays a more important role in the total setup time. In this case, the 

accuracy is still high even under a two-dimensional grid. The memory requirements show a similar trend as the run 

time: for p=4 and p=3, the memory requirements are reduced by 27.5% and 32%, respectively, as we go from the 

three-dimensional grid to a two-dimensional grid.  
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Figure 9: Simulation results at the receiver side of the middle wire from the precorrected-FFT and block diagonal 

methods for different wire lengths. (a) 900µm, precorrected-FFT (b) 900µm, block diagonal (c) 5400µm, 

precorrected-FFT (d) 5400µm, block diagonal.  

 

4.2 Comparison of the precorrected-FFT method with the block diagonal method 

The comparison in terms of accuracy between the precorrected-FFT and block diagonal methods has been 

described in Section 4.1. In this section, comparisons in terms of memory consumption and speed between the 

precorrected-FFT and the block diagonal methods using a Matlab implementation are carried out for structures of 

different wire lengths. Performance results using an optimized C++ implementation are reported in Section 4.3. The 

lengths of the signal wires in different experiments are set to 900µm, 1800µm, 3600µm, 4500µm and 5400µm. In 

the block diagonal method, the partition size is chosen to be 180µm ×150µm (180µm in the x direction and 150µm 

in the y direction).  For the precorrected-FFT method, a two-dimensional grid is imposed with p=2, and the first 

nearest neighbors are considered for the precorrection step. The cell size is set to 30µm. Figure 9 shows the 

waveforms computed by the two methods at the receiver end of the middle wire for wire lengths of 900µm and 

5400µm. The accuracy, memory requirements and speed for different wire lengths for the block diagonal and 

precorrected-FFT methods are listed in Table 3. For the wire lengths of 900µm and 1800µm, the results of the 

precorrected-FFT and block diagonal methods are similar to each other, and the block diagonal method is faster. 

However, as the wire length increases, the differences in the 50% delay and oscillation magnitude become larger. 

For example, the 50% delays calculated by the precorrected-FFT and block diagonal methods are 95ps and 100ps 

respectively for a wire length of 3600µm, which is a difference of about 5%. The difference increases to 8% when 

the wire length is 4500µm and 12.5% when the wire length is 5400µm. For wire lengths that exceed 1800µm, the 

precorrected-FFT and block diagonal methods perform their computations at approximately the same speed, but the 

 

(c) 

(d) 

(a) 

(b) 
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former has nearly half the memory requirements as the latter since the partition size for the block diagonal method 

is much larger than the direct interaction region in the precorrected-FFT, i.e., the number of inductances per wire 

segment to be calculated by the block diagonal method is much larger than that for the precorrected-FFT approach. 

Moreover, as the circuit size increases, the setup time and memory consumption are seen to increase at a faster rate 

for the block diagonal method.  

 

Total CPU time (s) Setup time (s) Memory 
consumption (Mb) Relative differences   

BD PCFFT BD PCFFT BD PCFFT 50% delay Over/Undershoot 
900µm 578 683 334 450 66 43 <0.1% 14% 
1800µm 1056 1097 571 630 95 56 1% 0.5% 
3600µm 1993 1991 1042 1010 153 89 5% 10% 
4500µm 2516 2555 1285 1150 184 97 8% 19% 
5400µm 3235 2917 1522 1220 210 110 12.5% >50% 

 

Table 3: A tabulation of the accuracy, memory requirements and CPU time for different circuit sizes using the 

block diagonal (BD) and precorrected-FFT (PCFFT) methods. The total CPU time corresponds to the time for the 

entire simulation, including the time required by the block diagonal or precorrected-FFT methods. 

  

Similar trends are seen for the differences in the oscillation magnitude as for 50% delay. For example , if the 

wire length is 4500µm with a 210mV overshoot, the difference is 40mV.  If the wire length is increased to 5400µm, 

the block diagonal method calculates a larger overshoot of about 300mV, which is about 150mV different from that 

computed by the precorrected-FFT approach. The precorrected-FFT predicts a more reasonable trend in the 

overshoot magnitude for different wire lengths: the overshoot increases as the wire length is increased from 900µm 

to 1800µm, and then decreases gradually as the wires grow longer. When the wire length reaches 5400µm, the 

output has a smaller overshoot compared with the cases when wires are 4500µm, 3600µm and 1800µm long. 

However, the trend predicted by the block diagonal method is different: the overshoot magnitude increases from 

900µm to 1800µm long wires, and then decreases if the wire length increases from 1800µm to 4500µm, as in the 

case of the precorrected-FFT method. However, when the wire length increases from 4500µm to the largest tested 

length of 5400µm, the overshoot is not reduced but is increased in the block diagonal method, which is clearly 

inconsistent. We observe that the difference between the results from the block diagonal method and those from the 

precorrected-FFT is larger for longer wires.  

Table 4 lists the overshoots and the run time of the responses at the receiver side of the 5400µm wire 

calculated by the precorrected-FFT and block diagonal methods, with different partition sizes of 30µm×30µm, 
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180µm×150µm, 330µm×150µm, 330µm×300µm, 330µm×600µm and 330µm×900µm. It is clear that the 

overshoots given by the block diagonal method do not easy to converge.  

 

BD 
 PCFFT 30µm×

30µm 
180µm×
150µm 

330µm×
150µm 

330µm×
300µm 

330µm×
600µm 

330µm×
900µm 

Overshoot 151mV 120mV 300mV 120mV 123mV 142mV 161mV 
Run time 2917s 681s 3235s 5032s 9700s 6hrs. 12hrs. 

 

Table 4: Overshoots and run times at the receiver side of the middle wire with the length of 5400µm from the 

precorrected-FFT method (PCFFT) and the block diagonal method (BD) with different partition sizes: 

30µm×30µm, 180µm×150µm, 330µm×150µm, 330µm×300µm, 330µm×600µm, 330µm×900µm. 

 

When the partition width increases from 180µm to 330µm, the 300mV bump disappears: the reason may be 

that more power/ground wires are included in each partition, and the inductance effect is greatly reduced. If the 

partition length is increased from 150µm to 300µm and then to 600µm and 900µm, with a 330µm partition width, 

the overshoot increases and nears the result from the precorrected-FFT method. It is impractical to increase the 

partition size further because the simulation time for 330µm×600µm partition is 6hrs, and includes 26.6M mutual 

inductances, while the simulation time for 330µm×900µm partition is 12hrs, and uses up about 3Gb memory. On 

the contrary, the precorrected-FFT method produces a similar overshoot within an hour and only 110Mb memory. 

We also test the same circuit with a higher level of accuracy in the precorrected-FFT method with the fifth nearest 

cells included in the precorrection step and the overshoot is only 2mV different. The trends in the overshoots and 

run time from the precorrected-FFT and block diagonal methods indicate that the precorrected-FFT converges 

easily, and therefore is a better candidate for fast simulation of large inductive circuits for higher accuracy. 

The problem faced here by the block-diagonal method is common to most of the existing algorithms in on-

chip inductance extraction. As the circuit size is increased, the local interaction region should be larger to maintain 

the same accuracy in the simulation. However, it is hard to predict this interaction region a priori, and for large 

circuits, increasing the interaction region gradually is impractical as it could result in very long simulation times. 

The precorrected-FFT method, on the other hand, overcomes this difficulty by including the calculation of far away 

inductance interactions using the grid representation. 

 

4.3. Application of precorrected-FFT with optimized implementation on signal lines and a large clock net. 

In addition to a Matlab-based implementation of the precorrected-FFT method, an optimized version using C++ 

was also implemented. To demonstrate the efficiency of the precorrected-FFT method, layout structures with 
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different length of signal wires, as depicted in Section 4.2, and a la rge global clock net of an industrial giga-hertz 

microprocessor are simulated using this optimized implementation of the precorrected-FFT method. 

For layout structures with different length of signal wires, the number of resistances, capacitances and 

inductors in circuits and the total CPU times of the simulations in the precorrected-FFT method are listed in Table 

5. A three-dimensional grid is imposed with p=3, and the first nearest neighbors are considered for the 

precorrection step. The cell size is set to 30µm. The simulations in the precorrected-FFT method can be very fast. 

For the circuit with 5400µm signal wire, which includes 32.3K resistances, 64.5K capacitances and 32.3K 

inductors, the total CPU time is about 6 mins. 

Length of 
signal wires 

No. of 
resistances 

No. of 
capacitances 

No. of 
inductors 

Total CPU 
time (s) 

900µm 7.3K 14.7K 7.3K ~ 60 
1800µm 12.3K 24.7K 12.3K 137 
3600µm 22.3K 44.6K 22.3K 261 
4500µm 27.3K 54.6K 27.3K 306 
5400µm 32.3K 64.5K 32.3K 358 

 

Table 5: Circuit parameters and run times for layouts with different length of signal wires from the precorrected-

FFT method. 

The layout of the clock net is shown in Figure 10 and has 4 ports, 12 sinks and 121,065 inductors, which 

corresponds to 7.3G inductance terms. With the optimized implementation of the precorrected-FFT algorithm, the 

run time for generating the reduced order model was 21 minutes, using a three-dimensional grid. The signal 

responses from simulation of the RC model, the ROM generated using precorrected-FFT and block diagonal 

methods are shown in Figure 11 and the layout and experimental parameters are listed in Table 6. On-chip 

inductance has a strong effect on the clock net responses. The 50% interconnect delay with the precorrected-FFT 

method is 130ps, compared with 86ps for the response with the RC model. Relative to the 0.5 Vdd point at the far 

end response under an RC-only model, the corresponding point with the precorrected-FFT model has a shift of 

17ps, while the shift with the block diagonal method is only 6ps. In addition, the 10%-90% transition time at the 

near and far with the precorrected-FFT model differ from those with the RC-only model by 53ps and 70ps, 

respectively, while the block diagonal model results in a difference of 20ps and 90ps. In this example, the block 

diagonal method therefore underestimates the inductance effect on the slope at the near end by 62% and 

overestimates the effect on the slope at the far end by 28.5%. The partition size in the block diagonal method and 

the direct interaction region in the precorrected-FFT procedure are both 150µm×150µm. The errors in the responses 

calculated by the block diagonal method arise from elimination of a large number of far away mutual inductance 

terms.
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Figure 10: Top view of the layout structure of a global clock net.  

(A: driver input, B: driver output, C: receiver input)  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Responses from simulation with an RC-only model, the precorrected-FFT method and the block 

diagonal method for the near and far ends. A: driver input waveform, B and C: driver output and receiver input, 

waveform, respectively, under an RC-only model, D and E: driver output and receiver input waveform, 

respectively, calculated using the precorrected-FFT method, F and G: driver output and receiver input waveform, 

respectively, calculated by the block diagonal method. 
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No. of sinks 12 
No. of ports 4 
No. of inductors 121K 
No. of resistances 160K 
No. of capacitances 400K 
No. of mutual inductance terms 7.3G 
Run time 21mins 
No. of nodes 245,780 
No. of moments per port 10 
X/Y/Z dimension (µm) 4798/4768/4.14 
Cell size in X/Y/Z 74.97/74.50/4.968 
No.of grid points in X/Y/Z per cell 3/3/2 
Grid pitch in X/Y/Z 37.485/37.25/4.968 
No. of grid points in X/Y/Z 129/129/2 
Relative radius of collocation sphere 1.2 
No. of collocation points 144 
No. of cells in direct interaction region 9 

 

Table 6: Layout and experimental parameters (X, Y, Z: x, y and z directions in Figure 10) 

 

5. Conclusions  

A precorrected-FFT algorithm for fast and accurate simulation of inductive systems is proposed in this paper, in 

which long-range components of the magnetic vector potential are approximated by grid currents, while nearby 

interactions are calculated directly. All inductance interactions are considered in computing the product of the 

inductance matrix with a given vector, so that the waveforms at the nodes of interest are calculated accurately. A 

comparison with the block diagonal algorithm showed that the precorrected-FFT method results in more accurate 

waveforms and less run time with much smaller memory consumption. Different approximations in the 

precorrected-FFT method, including using a two-dimensional grid structure, were tested and showed that the lower 

order of approximation greatly increases the speed and reduces the memory consumption without much loss in 

accuracy. Experiments carried out on large industrial circuits demonstrate that the precorrected-FFT method is a 

fast and highly accurate approach for on-chip inductance simulation in large circuits. 
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