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Abstract

With the reducing distances between wires in deep sub-micron technologies, coupling capaci-
tances are becoming significant as their magnitude becomes comparable to the area capacitance
and fringing capacitance of a wire. This causes an increasing susceptibility to failure due to inad-
vertent noise, and leads to a requirement for accurate noise estimation. An incorrect estimation of
the noise could lead either to circuit malfunction in case of under-estimation, or to wasted design
resources due to overestimation. This paper presents a new time-efficient method for the precise
estimation of crosstalk noise. While existing fast noise estimation metrics may overestimate the
coupling noise by several orders of magnitude, the proposed metric computes the coupling noise
with a good accuracy as compared to SPICE. !

1 Introduction

In the past, timing and power analysis have been the critical criteria to be optimized in the
design process. With the use of deep sub-micron technologies, shrinking geometries have led to
a reduction in the self-capacitance of wires while increasing coupling capacitances as wires are
brought closer together. In conjunction with increases in operating frequencies, noise analysis and
avoidance is becoming as critical a factor in circuit design as timing or power. For present day
processes, the coupling capacitance can be as high as the sum of the area capacitance and the
fringing capacitance of a wire, and trends indicate that the role of coupling capacitances will be

even more dominant in the future as feature sizes shrink [1, 2].
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One of the important effects of coupling capacitances is that they may induce unwanted voltage
spikes in neighboring nets. A net on which a switching event occurs is termed an aggressor and
the net on which it produces a noise spike is referred to as a victim. Typically, an aggressor net is
physically adjacent to a victim net and they may be modeled as being connected by a distributed
coupling capacitance. Hence, a switching event in the aggressor net while the victim net is silent
can result in the injection of a C % current into the victim net, causing an electrical spike. In
static CMOS circuits, in time, as the aggressor net completes its transition, this electrical spike
dies down to zero. However, a large coupling capacitance relative to the self-capacitance of the
wire can cause a large inadvertent spike on the victim that may cause a spurious switching event,
potentially leading to an unintended state being latched and thereby changing the functionality
of the circuit.

Various transient analysis techniques can be used to estimate noise. Circuit or timing simulation
techniques, such as SPICE [3], may be used, but these are computationally expensive and are not
conducive to use on large systems, particularly when fast noise evaluations for noise optimization
purposes are required. When the system is modeled as a linear circuit, linear model order reduc-
tions such as [4, 5, 6] may be used, and these have been incorporated in a noise evaluation system
[7, 8]. These model order reduction techniques help in reducing the computational cost, but in
several cases, the cost is still unacceptably high for an optimization system that would use a noise
metric to select the circuit parameters for noise-free behavior. Using modern moment matching
methods, it may still require more than a day to compute the noise in a modern microprocessor
[9]. An example of such a situation is in designing a physical design system where optimizations
such as buffer insertion [10], spacing [11] or routing criteria are to be introduced [12, 13, 14];
such systems must, of necessity, use much simpler noise metrics. Most existing physical design
systems for noise optimization use extremely simple noise models such as one where the noise is
computed as being proportional to the overlap between wires [12, 13, 14]. While this is not an
unreasonable first-order model, it fails to capture deeper intricacies such as the effects of the slope
of the aggressor transient waveform, the effects of the ratio of the self-capacitance to the coupling
capacitance, etc. As these simple formulae do not have a concrete electrical and circuit theoretic

formulation, they are liable to be inaccurate.



A fast metric for coupled noise estimation based on model-order reduction techniques was
recently presented in [9]. We will describe this metric in detail in Section 3, and it forms the
foundation for this work. However, while it is an excellent first effort, its limitations lie in the
fact that it computes only an upper bound on the circuit noise, a value that is overly pessimistic.
While we will explicitly list and quantify its other weaknesses later in this paper, it suffices to
observe here that its accuracy is limited to short wires and relatively slow slew rates of more than
100ps. In the near future, when clock frequencies of 1-2 GHz will be common, much faster slew
rates are expected and due to resistive shielding slew rates of 20ps to 100ps can be obtained at
the driver output. Hence, the upper bound is too pessimistic and is liable to predict noise spikes
that exceed the supply voltage, which is impossible in a pure RC circuit. This motivates the need
for a more accurate metric for noise analysis to address these problems. While in [15] a piecewise
linear input and a first order model of the noise is used, we now utilize a third order model of the
noise and an exponential voltage source. This leads to much more accurate results including the
exact modeling of the noise tail.

This paper presents an improved metric for a more precise estimation of crosstalk noise. Its com-
putational complexity is comparable to the Devgan metric and its derivation is, indeed, inspired
by the techniques used in that metric. Our experimental results show the improved accuracy of
the method.

The paper is organized as follows. Section 2 presents the basics of crosstalk estimation, followed
by a brief presentation of Devgan’s metric in Section 3. Section 4 and 5 present the new efficient
noise estimation method for pure capacitive coupled nets and for capacitive and inductive coupled
nets. Procedures for efficient computation and an analysis of the computational complexity are
provided in Section 6. Experimental results are listed in Section 7 and a set of concluding remarks

round up the paper in Section 8.

2 Basics of Crosstalk Estimation

The work in [9] introduced a method for computing an estimate of the coupling noise between
wires using the final value theorem [16]. The method was elegant in its simplicity in that it

permitted the noise estimate to be calculated in a similar manner to the Elmore delay [17]. This



led to its adoption for use in physical design in [10, 11], using an extension of Elmore delay
optimization methods for this purpose.

The method proposed in this work begins with the same equations as [9], but performs a different
analysis for noise estimation. While Devgan’s metric is guaranteed to be an upper bound on the
noise, we will show that it may be too pessimistic, and that it may be wiser not to employ the
final value theorem to develop a metric based on this approach for systems with fast switching
transitions at gate outputs. To illustrate this, we show the difference between the two methods
in Figure 1. In [9], the aggressor net is assumed to be excited by a forcing function that is similar
to a step function, but with a nonzero transition time and a finite slope. This slope leads to a
noise spike in the victim net of the type shown by graph 2 in the figure. However, to ease the
computation, it was assumed in [9] that the increasing ramp is infinite, leading to the response
shown by graph 1 in the figure. This is easily proven to be an upper bound on the noise shown

in graph 2.
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Figure 1. Different model for analyzing the noise. 1 shows final value theorem method, 2
shows real noise signal used for the proposed method

However, this upper bound is not necessarily tight, and we will show instances in our exper-
imental results where the bound leads to meaningless results since the obtained value is larger
than V3. As shown in Figure 1, the noise reaches its maximum value at some time after the
aggressor net switches, after which it again decreases towards zero. Nevertheless, it is certainly
true that in order to approximate the noise, the slew rate of the aggressor plays an important

role since it influences the C ‘3—: current injected into the victim through the coupling capacitance.



This current causes the voltage to drop along the wire resistance of the victim net. Assuming the
victim net to be at zero potential initially, the voltage at a node on the victim net first increases
due to this injection. As the transient on the aggressor net settles, the magnitude of the injected

current reduces, and the noise on the victim net dies down to zero.
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Figure 2. Circuit schematic with aggressor and victim net for coupled noise. For the sake of
simplicity, only two of the n distributed RC elements have been shown.

Victim net

We will now soon reproduce the essentials of Devgan’s approach to formulating the problem,
and we will utilize the same basic notation to express our solution to the problem. The basic set
of equations for a circuit of the type shown in Figure 2, with net 1 being the aggressor and net 2

being the victim net, initially at ground potential, can be written as follows:

e 1 R e T RS v 0

where v; is a vector of node voltages in the aggressor net, vy is a vector of node voltages in the
victim net, and v is the input to the aggressor net. In (1), the zeros in the conductance matrix
indicate the fact that there is no resistive path between net 1 and net 2. The zero on the right
hand side is due to the fact that the excitation is applied only to net 1 and net 2 is connected to
ground. Although this example illustrates a two-segment net, the equations for nets with larger
numbers of segments can be written similarly: the capacitances and the A values, which are
scalars here, will be replaced by capacitance matrices, and vectors will be used to represent the

voltages and the input excitations. This matrix system can be rewritten in the Laplace domain



as

sCiVi —sCIVy = —ApVi+ BV,
SCch — SCQVYQ = AQQ‘/Q. (2)

Note that the diagonal entries of capacitance matrices C; and Cs correspond to the sum of ground

and coupling capacitances, while diagonal entries of the matrix C, have a positive value.

3 Description of Devgan’s Metric

Using Equation (2), Devgan computes the transfer function

= [ (5O + Au) + € (sCy + )™ 5]
sC, (sCy + Ap) ™' By 3)

Applying an input voltage, V;, to the aggressor net in the form of a finite ramp leads to a solution
to the circuit. However, since this could lead to a messy solution procedure, Devgan applies an
input of the form k/s?. This corresponds to an infinite ramp of slope k, the response to which,
as observed earlier, is a monotone increasing waveform on the victim whose final value provides

an upper bound on the noise. Applying the final value theorem leads to the result
Vé,maa: = _AQ_QICcAﬁlBlk (4)

To simplify the process of calculating this, a circuit interpretation was provided. Equation (4)
can be rewritten as
Vé,mam = _AQ_QICC‘./l,ssa (5)
where
Vies = A7 Bik. (6)

The circuit interpretation of this implies that (6) may be solved by applying an excitation of Bk
to the aggressor net 1 while open-circuiting all capacitances connected to it. This implies that for

an RC aggressor line with no path to ground, the value of ‘./1,55 = k at all nodes. Considering the



circuit interpretation of CCVLSS in Equation (5), each coupling capacitance can be replaced by a
current source of value k£ times the coupling capacitance at the node; any capacitances to ground
are removed. Let us represent this vector of current sources be I.. Then solving (5) amounts to
solving

‘/Q,mam = _AQ_QIIc- (7)

Thus, the value of V5,4, can be obtained by solving net 2 with the above transformation on all

capacitances. This may be carried out by means of a tree traversal.
3.1 Limitations of this Metric

The metric described above has several limitations:

e The noise voltage in the victim net is proportional to the slope of the transient of the input
voltage ramp. In case of fast slew rates, the noise of the victim increases in an unbounded
manner. In the extreme situation where the input is a step function, the noise in the victim
net goes to co. This is clearly impossible since the supply voltage limits the maximum noise

that can be induced.

e The magnitude of the induced noise has no dependence whatsoever on the capacitances
to ground of either the aggressor or the victim. This is clearly incorrect, since a coupling
capacitance that is negligible in comparison with the capacitance to ground would lead to
a negligible crosstalk value. Moreover, there is no dependence on the resistances in the
aggressor net, implying that the length of the aggressor net is irrelevant to the value of the

noise spike.

In Tables 1 and 2, we support the two arguments above by explicit verification. The results
in the two tables show the noise spike in Volts using parameters for a 0.25um technology and
for a 0.18um technology, respectively. For the length of the victim net, four different lengths,
varying from 0.5mm to 5mm, have been assumed. Additionally, four different slew rates have
been used. The “x” in the Tables 1 and 2 represents the independence of the noise to the length
of the aggressor net. It is seen from the tables that the predicted noise spike greatly exceeds the

Vaa value. According to our HSPICE simulations, the magnitude of the crosstalk spike on a victim



Table 1. Noise simulation results in Volt of Devgan’s metric using a 0.25um CMOS tech-
nology and Vg4q=2.5V. The wires have been spaced at twice the minimum distance leading
to a resistance, a ground and coupling capacitance per mm of 146 €2, 70.8 fF and 71 fF,
respectively.

wire length, aggressor-victim | 20ps 50ps 100ps  250ps
xX-bmm 64.9V 2577V 1947V 7.74
X-2.5mm 16.54V  6.56V  4.96V  1.98
x-1mm 2.8V 1.11V. 0.84V  0.334
x-0.5mm 0.76V 0.3V 0.22V  0.091

Table 2. Noise simulation results in Volt of Devgan’s metric using a 0.18uum CMOS tech-
nology and V4q9=1.8V. The wires have been spaced at twice the minimum distance leading
to a resistance, a ground and coupling capacitance per mm of 250 €2, 51.4 fF and 58.3 fF,
respectively.

wires 20ps 90ps 100ps  250ps
x-omm | 50.27V  19.96V 15.08V 6V
x-2.0mm | 12.82V  5.08V  3.84V 1.53V
x-lmm | 2.16V  0.86V  0.65V 0.25V
x-0.5mm | 0.59V  0.23V  0.17V  0.07V




net of constant length can vary by as much as 64 % with variations in the length of the aggressor.
This has been obtained by assuming a victim length of 0.5mm and a variable aggressor length
either Imm and 5mm, respectively. Due to the larger capacitive load on the aggressor, the slew of
the aggressor is degraded and induces less current into the victim. In our simulations, we placed
the victim and aggressor driver always adjacent to eachother. However, this is no limitation of

the new metric.

4 A New Metric for Precise Crosstalk Estimation

We will persist with the notation introduced above, as far as possible, and model the input

voltage as an exponential function according to
s (t) = Vag(1 — e P)u(t) (8)

where p corresponds to the time constant of the driver of the aggressor. This time constant can
be computed by using effective wire capacitance Cess and the driver impedance.

For an exponential input, we may expand V;(s) using the series:
Vi(8) = vios™ + w11 + vigs + vi3s® + ... 9)
Similarly, the voltage V5(s) can be represented as
Va(8) = vag + V218 + V98 + Vg3 + ... (10)

These specific forms for the series have been chosen to be consistent with the final value theorem.
If an exponential input with amplitude Vy, is applied to the aggressor, the response v (t) on the
aggressor net will converge towards Vy; as t — oco. This is captured by ensuring a nonzero value
for vyp. Similarly, for the latter equation, ve(t) approaches 0 as its final value, consistent with the
observation that the response on the victim net is limited in time.

Using the series expansions for the voltages V4 and V5 and substituting them in Equation (2)

leads to:

(801 + Au)(vlosil + v11 + V128 + U1382 + )—

1 1
SC;F(’UQO —+ V918 + ’1)2282 + ’U2383 + ) = B1(— — ), (11)

s Ss+p




(sCa + Agg)(vgg + v215 + V2% + Ug3s® + )=

SCC(Ul()Sil “+ V11 + V128 + ’U1382 =+ ) = 0. (12)

As in AWE [4], we may conclude that these equations are satisfied if the coefficients of all s* on

the left hand side are the same as those on the right hand side. Hence, we obtain from (11):

s Aviop = Bip,
st pApvng + (pCy + A11)vie =0,
s> 1 pApvie + Civg + (pCi + A1q)vin — pCCTU20 =0,

s'2% 1 pAyvy + Crvig—e) + (PC1 + A1) vi—1) — PCT va(i—2) — Clugi—s) = 0. (13)

Solving this for vy; leads to

% vy = AL B,
st oon = —AR (pC1 + A11)vie/p,
$°t v = —Ap (Croie + (pCi + Arr)vn — pClus) /p,
SRR _A1_11(Clvl(i—2) + (pC1 + A1)vigim) — pCcTUQ(i—Q) - C(;Tvz(i—z;))/p- (14)

Similarly, from (12), the following results can be obtained for vs;:

SO I Uy = A;;Ccvlo,
s': wer = Ay (Cevir — Cava),
Si22 LoV = A2_21 (CC’UU — 02’1)2(1;1)). (15)

In order to obtain a closed form for the voltage vy(t), let us consider its response to an exponential

input (see Figure 1, graph 2). For t — 0, vy(t) is 0 and for ¢ — oo, vy(t) is 0. Using the initial

and final value theorems, the following form of voltage function is appropriate:

_ agFais+ ..t ay_os"?
14+bis+ ...+ by_18" L +b,s"

Va(s) (16)

In particular, for computational efficiency, we will focus on the approximation of the following

form:
ayg + a;s

‘/2(8) - 1+ b18 + b282 + b383

(17)




which has the inverse Laplace transform
t t t
vo(t) =ci-€e B +cy-e P2 +c3-€ Fa, (18)

where 1/k1,1/ks and 1/k3 are the poles of the voltage function. In case AWE encounters stability

problems, a second order model of the following form is applied:

(4%}

Va(s) = ———— 19
2(8) 1+ b18 + b282 ( )

which has the inverse Laplace transform
Ug(t) :Cl'eiﬁ +62'67%: (20)

where 1/k; and 1/ky are the poles of the voltage function. It was observed that none of the
configurations in our experiments showed an unstable second order model.

Performing moment matching for the expressions for V5(s) in the equations (12) and (17) leads

to:
ay = ’UQ()J. (21)
ar = wvg;b1; + v, (22)
and )
by Va1; V20, 0 —Ugz;
by | = Ug2; U21; Uz, —U23; |- (23)
bs V23; U22; V21 —U24;

where j is the node number where the noise is computed. In case the approximation of equation

(19) is used, similar expressions can be used to find the voltage moments.

5 Incorporating Inductive Effects

We will persist with the notation introduced above, as far as possible and model the input
voltage as an exponential function according to (8). Vi(s) and V;(s) are expanded as described
in section 4.

The basic set of equations for a circuit of the type shown in Figure 3, with net 1 being the

aggressor and net 2 being the victim net, initially at ground potential, can be written as follows:

01 —CCT 0 0 ’U.l —A11 0 ]’1TL 0 U1 B1
—Cc 02 0 0 ’U.Q _ 0 —AQQ 0 ]2TL Vo 0
o 0 L, ME||i|=| e o o ofli|Tlol @Y
0 0 My, Lo 1L, 0 Iy, 0 0 UL, 0
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Figure 3. Circuit schematic with aggressor and victim net for coupled noise including induc-
tances. For the sake of simplicity, only two of the n distributed RLC elements have been
shown. Ry corresponds to the impedance to ground of the victim net.

where Ly, Ly and M;, corresponds to the self-inductive matrix of aggressor and victim net and
the mutual inductance between these wires, respectively. Ii;, and I5;, correspond to matrices
consisting of ones and minus ones, representing the voltage difference of the inductors in victim

and aggressor nets. This matrix system can be rewritten in the Laplace domain as

sCiVi —sCIV, = —AuVi+ BV,
sC VI — sCoVy = AV,
SLliLl + S]M'IT;Z.L2 = Va,2k - Va,Zk—I—l

sMigir, + sLlotp, = Vyor — Viyort1- (25)

Note that the diagonal entries of capacitance matrices C; and Cs correspond to the sum of ground
and coupling capacitances, while diagonal entries of the matrix C, have a positive value and £ is
an integer variable, resulting in V, o — V, 3, Vo4 — Vg5, etc.

Hence, the matrices A;;, C, and C; from section 4 can be replaced by the matrices X;;, Y, and
Y;, where Xj; represents the matrix including the resistances of the aggressor and victim net as
well as the matrices I, and Iz, while the matrices Y; and Y, include the ground capacitances
and self inductances from wire j and the coupling capacitances and mutual inductances between
aggressor and victim net, respectively.

Similar to the series expansion of the voltages V; and V5, the currents i;, and iz, can be



modeled. Hence, the new vectors Z; and Z, consist of each n voltage nodes and n inductive
currents where n represents the number of segments in each of the wires.

For an exponential input, we may expand i, (s) and ir,(s) using the series:

7;L1 (8) = ilO + 7;115 —+ 7;1282 =+ 7;1383 =+ ... (26)

iLg (8) = igo + i218 + i22$2 + i2383 + ... (27)

These specific forms for the series have been chosen to be consistent with the final value theorem.
If an exponential input with amplitude V;; is applied to the aggressor, the currents i, and i,
have an initial and final value of zero, consistent with the observation that the currents in the
victim and aggressor nets are limited in time. Using the series expansions for the voltages Z;, Zy

and substituting them in Equation (25) leads to:

(sY1 + Xll)(zlos_l + 211 + 2128 + 2138° + )=

1 1
SYYCT(ZQO + 2918 + 22282 + 22383 + ) = Bl(_ - ), (28)

s Ss+p

(sYa + X9o) (220 + 2215 + Z998% + 2236‘3 +...)—
SYvC(Zl()Sil + 211 + 2128 + 21382 + ) =0. (29)

Therefore, the moments z;; and 2,; can be computed in the same way as the moments v;; and

vg; in section 4.

6 Efficient Computation Techniques
6.1 Circuit Interpretation and Computation

As in Devgan’s work, we may ascribe a physical meaning to these equations. For the computa-
tion of the coeflicients a;; and b;; of the Laplace transform, entirely six moments of V; and V5 are
required. For the sake of simplicity, we always refer to the moments z;; instead of v;; for purely
capacitive coupled and z;; for capacitive and inductive coupled nets. For the computation of v,

the inductance parts have to be neglected.

e The zeroth moment z;y always corresponds to the voltage V4 at each node. On the other

hand, 259, which are the counterparts of the noise metric computed by Devgan (except that



we use an exponential instead of an infinite ramp), may be computed by replacing each
coupling capacitor by a current source of value C.Vy; and calculating the voltages in the

resulting network, while the self inductances are shorted.

Finding z;; involves the solution of the aggressor net with all coupling capacitances removed,
and all self-capacitances to ground, C,, replaced by a current source of value —C', z19; and
each node has an initial voltage of 210, /p. All self- and mutual inductances have to be
additionally replaced by voltage sources of value Llj 210, and Muj 210, - The solution to the

resulting circuit yields the vector zi;.

Finding 29, involves the solution of the victim net with all coupling capacitances replaced
by current sources of value Cy, 211 ;,all self-capacitances to ground, Cy,, replaced by a current
source of value —ng 220, 5 all mutual inductances My, replaced by voltage sources of value
Mlgj 211, and all self inductances replaced by voltage sources of value ng 220, - The solution
to the resulting circuit yields the vector zy;. All higher moments zy;, ¢ > 1 are similarly
computed by choosing the corresponding current sources as Cy;z1;;, and —Cy; Za(i-1); a8 well

as the corresponding voltage sources as M, z9(i-1); and Lo, zo(i-1); -

Finding 25 involves the solution of the aggressor net with all coupling capacitances replaced
by current sources of value C,z,, and all self-capacitances to ground, C};, replaced by a
current source of value —C’lj (z11 + Z10; /p) and each node has an initial voltage of 211, /.
The self- and mutual inductances Ly, Mo, have to be replaced by voltage sources of value
Ly; (211 + 210;/p) and My, (211 + 210,/p). The solution to the resulting circuit yields the

vector zio.

All higher moments 21;,% > 2 can be computed by replacing the coupling capacitances C;,
by current sources of value C., (%23i-2) ;T 223i-3); /p), and all ground capacitances C}, replaced
by current sources of value —C'; (z1(;—2); /P + 21(:-1)) While all nodes j have an initial voltage
of 21(3i-1), /p. The self- and mutual inductances LQJ,,MIQJ. have to be replaced by voltage
sources of value Lo, (213-2);/p + 216-1)) and Mia, (214-2); /P + 216-1))-



Once all required moments are computed, the poles and residues of the victim net can be obtained.

The order in which the moments are calculated is zag, 211, 221, 212, 222, 213, * * *-
6.2 Computational Complexity

The computational complexity of the proposed metric can be obtained by examining the equa-
tions (14) to (20). To obtain vy, two tree traversals and one multiplication of a diagonal matrix
vector by a vector are required. The tree traversal and the multiplication are of the order O(n),
where n is the number of segment points (see section 6). In order to obtain vq1, two tree traver-
sals and a diagonal matrix-vector multiplication are required. All higher moments vy;_1y and vy;
simply require two additional tree traversals per moment and two diagonal matrix by vector mul-
tiplications. All these operations are of the order of O(n). The complexity for the computation of
necessary moments for the voltage function in Equation (17) corresponds to 20 tree traversals and
18 diagonal matrix by vector multiplications. After the computation of all necessary moments
the residues and poles of the voltage function have to be computed. This requires the solution
of a 3 x 3 system and can be solved in O(1) for each node resulting in the coefficients a; and b;.
Finding the roots of a third order function can be performed in linear time for n nodes and is of
the order of O(n).

Compared with the metric of Devgan, this corresponds to an increase in the number of tree
traversals and multiplication/division by 6x and 20x, respectively. However, by realizing that
Devgan’s scheme required less than half a second to compute the noise in a circuit with 500,000

elements, this increase in complexity is tolerable.

7 Results and Comparison

In accordance with [2], SPICE-files have been obtained for five different wire lengths, varying
from 1mm to Smm for the aggressor net and victim net, respectively. The wire resistances and
capacitances have been distributed every 100um. Hence, the number of segment points is equal
to the length of the victim net divided by 100um. The driver of the aggressor net is simulated as
a voltage source with a time constant that is calculated based on the effective capacitance, Ceys

[18]. At the end of the wires, a load capacitance of 50fF is placed to model a possible fan-out.



Table 3. Noise simulation results in mV of HSPICE , using a 0.18um CMOS technology and
V4a=1.8V. The wires have been spaced at twice the minimum distance leading to a resistance,
a ground and coupling capacitance per mm of 250 €2, 51.4 fF and 58.3 fF, respectively.

Victim impedance: 200 €2
wire length, agg-vic | 0.05ns 0.1ns 0.25ns 0.5ns 0.75ns 1.0ns
1-1mm 296 233 145 92 67 54
1-2mm 213 177 120 80 60 48
1-3mm 152 133 96 67 52 43
1-4mm 112 101 7 56 45 37
1-5mm 84 7 63 47 38 33
2-1mm 261 206 133 85 64 51
2-2mm 393 352 264 190 150 124
2-3mm 312 288 227 170 136 114
2-4mm 247 234 193 148 122 104
2-5mm 197 190 163 130 107 93
3-lmm 255 198 125 81 61 48
3-2mm 350 315 242 177 142 118
3-3mm 423 403 341 268 224 192
3-4mm 355 344 301 244 205 178
3-5mm 298 293 262 218 187 164
4-ITmm 254 197 123 78 58 47
4-2mm 334 297 226 166 133 112
4-3mm 383 366 314 252 211 183
4-4mm 433 425 386 326 283 251
4-5mm 378 373 345 298 262 234
5-1mm 254 197 123 78 58 46
5-2mm 331 292 220 160 127 107
5-3mm 362 344 294 236 200 173
5-4mm 398 392 358 306 267 238
5-5mm 438 435 412 366 328 297




Table 4. Noise simulation results in mV of the proposed metric, using a 0.18um CMOS
technology and V434=1.8V. The wires have been spaced at twice the minimum distance leading
to a resistance, a ground and coupling capacitance per mm of 250 €2, 51.4 fF and 58.3 fF,
respectively.

Victim impedance: 200 €2
wire length, agg-vic | 0.05ns 0.1ns 0.25ns 0.5ns 0.75ns 1.0ns
1-1lmm 297 233 145 92 67 54
1-2mm 211 176 120 80 60 48
1-3mm 150 131 95 67 52 43
1-4mm 108 98 76 56 45 37
1-5mm 82 76 62 47 38 33
2-1mm 258 207 133 86 64 51
2-2mm 391 352 265 191 150 124
2-3mm 310 286 227 170 136 114
2-4mm 244 231 191 148 122 103
2-5mm 195 186 160 128 107 93
3-lmm 235 195 123 80 60 48
3-2mm 336 314 243 178 142 118
3-3mm 417 402 341 270 224 193
3-4mm 352 342 300 243 205 178
3-5mm 297 290 260 217 186 163
4-ITmm 226 180 122 75 57 46
4-2mm 312 287 226 167 134 113
4-3mm 370 361 315 253 212 183
4-4mm 426 421 385 326 283 251
4-5mm 374 371 344 297 262 234
5-1mm 225 177 115 74 56 45
5-2mm 298 274 220 157 126 106
5-3mm 338 328 294 237 201 174
5-4mm 387 380 357 307 268 238
5-5mm 430 430 410 366 328 297




Table 5. The relative error in percent between the proposed metric and the HSPICE simu-
lations, using a 0.18um CMOS technology and Vgq=1.8V. The wires have been spaced at
twice the minimum distance leading to a resistance, a ground and coupling capacitance per
mm of 250 2, 51.4 fF and 58.3 fF, respectively.

Victim impedance: 200 2

wire length, agg-vic | 0.05ns 0.1ns 0.25ns 0.5ns 0.75ns 1.0ns
1-1lmm 0.4 0.2 0.2 0.1 0 0
1-2mm -0.8 -0.6 -0.3 -0.1 -0.1 0
1-3mm -1.8 -1.5 -0.7  -0.3 -0.2 -0.1
1-4mm -2.6 -2.3 -1.2 -0.5 -0.3 -0.2
1-5mm -3 -2.8 -1.6 0.7 -04 -0.3
2-1mm -1 0.5 0.5 0.4 0.3 0.3
2-2mm -0.4 0.1 0.2 0.1 0.1 0.1
2-3mm 0.7 -0.5 -0.3 -0.2 -0.1 -0.1
2-4mm -1.2 -1.3 -0.8 -0.5 -04 -0.3
2-5mm -1.4 -2 -1.5 -1 -0.6 -0.5
3-lmm -8.6 -1.8 -2.3 1.7 -1.2 -0.7
3-2mm -4.1 -0.1 0.6 0.5 04 0.3
3-3mm -4 -04 0.1 0.2 0.1 0.1
3-4mm -0.8 -0.7  -0.3 -0.1 -0.1 0
3-5mm -0.7  -1.1 -0.8 -0.5 -04 -0.3
4-ITmm -12.2 -10 -1.6 -4.2 -2.5 -1.5
4-2mm -7.1 -3.7 0.3 0.5 0.4 0.4
4-3mm 3.7 -1.7 0.3 0.4 0.4 0.4
4-4mm -1.6 -1 -0.1 0.1 0.1 0.1
4-5mm -1 -0.8 -0.4 -0.2 -0.1 -0.1
5-1mm -12.6 -11 -7.4 -5.3 -3.6 -2.6
5-2mm -10.7 -7 0.2 -1.8 -1.6 -1.3
5-3mm -7.1 -5.2 0 0.5 0.6 0.5
5-4mm -3.1 -3.2 -0.1 0.3 0.3 0.3
5-5mm -2.2 -1.4 -0.4 0 0.1 0.1




Table 6. Noise simulation results in mV of HSPICE , using a 0.18um CMOS technology and
V4a=1.8V. The wires have been spaced at twice the minimum distance leading to a resistance,
a ground and coupling capacitance per mm of 250 €2, 51.4 fF and 58.3 fF, respectively.

Victim impedance: 1000 €2
wire length, agg-vic | 0.05ns 0.1ns 0.25ns 0.5ns 0.75ns 1.0ns

1-1mm 455 387 274 190 147 122
1-2mm 333 295 221 161 128 107
1-3mm 248 227 180 136 111 94

1-4mm 190 178 147 116 96 83

1-5mm 148 143 123 100 84 74

2-1mm 410 357 261 185 145 120
2-2mm 530 495 403 311 255 218
2-3mm 430 410 345 273 228 197
2-4mm 350 338 294 240 204 178
2-5mm 287 281 252 211 182 161
3-lmm 393 340 248 177 140 116
3-2mm 481 454 378 297 247 212
3-3mm 542 527 467 388 333 293
3-4mm 463 454 412 350 304 270
3-5mm 396 391 362 313 275 247
4-ITmm 391 335 242 172 136 113
4-2mm 455 427 357 284 237 205
4-3mm 498 487 438 370 321 284
4-4mm 540 534 498 437 388 351
4-5mm 476 472 447 398 357 325
5-1mm 391 334 240 170 134 111
5-2mm 447 417 345 273 228 197
5-3mm 470 460 414 352 307 273
5-4mm 503 498 470 416 373 337
5-5mm 535 532 512 467 426 393




Table 7. Noise simulation results in mV of the proposed metric, using a 0.18um CMOS
technology and V434=1.8V. The wires have been spaced at twice the minimum distance leading
to a resistance, a ground and coupling capacitance per mm of 250 €2, 51.4 fF and 58.3 fF,
respectively.

Victim impedance: 1000 2
wire length, agg-vic | 0.05ns 0.1ns 0.25ns 0.5ns 0.75ns 1.0ns

1-1lmm 456 388 274 190 147 122
1-2mm 331 294 221 161 127 107
1-3mm 245 226 180 136 111 94

1-4mm 187 176 146 115 96 83

1-5mm 146 141 122 98 84 73

2-1mm 404 360 262 185 145 120
2-2mm 526 496 404 311 255 218
2-3mm 427 407 344 273 228 197
2-4mm 348 335 293 240 203 177
2-5mm 286 278 248 208 181 160
3-lmm 371 333 250 178 141 116
3-2mm 468 452 381 298 248 213
3-3mm 532 523 468 390 334 294
3-4mm 458 451 411 350 304 270
3-5mm 394 388 360 312 275 246
4-ITmm 371 327 242 173 136 113
4-2mm 432 412 360 285 238 206
4-3mm 486 476 440 372 322 285
4-4mm 530 525 498 438 390 351
4-5mm 471 467 446 398 358 325
5-1mm 363 313 234 168 132 110
5-2mm 417 385 340 274 230 198
5-3mm 452 440 413 354 308 274
5-4mm 491 486 467 417 374 338
5-5mm 525 521 508 467 427 393




Table 8. The relative error between the proposed metric and the HSPICE simulations, using a
0.18um CMOS technology and V4q9=1.8V. The wires have been spaced at twice the minimum
distance leading to a resistance, a ground and coupling capacitance per mm of 250 2, 51.4
fF and 58.3 fF, respectively.

Victim impedance: 1000 2

wire length, agg-vic | 0.05ns 0.1ns 0.25ns 0.5ns 0.75ns 1.0ns
1-1lmm 0.3 0.2 0.1 0 0 0
1-2mm -0.4 -0.3 -0.1 -0.1 -0.1 0
1-3mm -1.1 -1 -0.4 -0.2 -0.1 -0.1
1-4mm -1.5 -1.5 -0.7 -0.3 -0.2 -0.1
1-5mm -1.6 -1.7 -1.1 -0.5 -0.3 -0.2
2-1mm -1.5 0.6 0.5 0.3 0.2 0.1
2-2mm -0.7 0.2 0.3 0.2 0.1 0.1
2-3mm -0.4 -0.3 -0.1 0 0 0
2-4mm -0.5 -0.8 -0.6 -0.3 -0.2 -0.2
2-5mm 0.7 -1.2 -1.1 -0.6 -0.4 -0.3
3-lmm -6.3 -2.2 0.4 0.5 0.4 0.4
3-2mm 2.7 -06 0.6 0.5 0.4 0.3
3-3mm -2.1 -0.7 0.2 0.3 0.2 0.2
3-4mm -1 -0.6 -0.1 0 0 0.1
3-5mm -0.4 -0.6 -0.6 -0.3 -0.2 -0.2
4-ITmm -5.8 -2.4 0 0.2 0.2 0.3
4-2mm -5.4 -4.2 0.5 0.6 0.6 0.5
4-3mm -2.7 =25 0.3 0.5 0.4 0.4
4-4mm -2 -1.7 -0.1 0.2 0.3 0.2
4-5mm -1.3 -1.1 -0.3 0 0 0.1
5-1mm -7.8 -7 -2.7 -1.2 -1.5 -1.5
5-2mm -7.4 -8.4 -1.7 0.5 0.6 0.5
5-3mm -4.3 -4.5 -0.5 0.6 0.6 0.6
5-4mm -2.6 -2.7 -0.4 0.4 0.4 0.4
5-5mm -2 -2.4 -0.6 0.1 0.2 0.2




The simulations have been performed for victim impedances of 200 €2 and 1000 €2, respectively.

The results of the HSPICE simulations are presented in the Tables 3 and 6 for a 180nm CMOS
technologies. Aggressors and victims of various length are chosen. The entry 5mm-1mm implies
an aggressor net of length 5mm and a victim net that is 1mm long. The noise is always measured
at the end of the victim net. The values 0.05ns. 0.1ns, 0.25ns, 0.5ns, 0.75ns and 1ns correspond
to the time constant of the input source.

Tables 3 and 6 show the results of the HSPICE simulations, while Tables 4 and 7 indicate
the results obtained by the proposed metric. Finally, Tables 5 and 8 present the relative error
introduced by the proposed metric. It can be seen that the results of the new metric have a
very good accuracy compared to SPICE. The noise is slightly under-estimated for some victim
nets due to instability problems of the third order model and resulting use of a second order
model. The error in the noise prediction is caused by the computation of AWE moments and the
corresponding reduction of a n**-order Laplace transform to a third order model. By comparing
the results of the new metric with the results of Devgan (these results are shown in Section 3.1),
the improvement in noise estimation is obvious. While the noise is over-estimated by up to two
orders of magnitude using Devgan’s metric, the proposed metric provides results that are close to
the actual SPICE simulations. Our experimental results suggest that this metric underestimates
the noise in many cases, but never by more than about 10%. This is a very acceptable level of
accuracy as compared to other sources of error such as inaccuracies in extracting and modeling

the resistances and capacitances for the line.

8 Conclusion

This paper presented a new method for coupled noise estimation. The proposed metric com-
putes the noise according to the sink capacitances and conductances of the aggressor net and the
victim net, respectively, the coupling capacitance between those two nets and the time constant
of the aggressor signal. The noise waveform is computed using a closed form leading to a short
computation time. While previously the coupling noise was over-estimated by up to two orders of
magnitude, assuming slew rates of less than 100ps and long or medium length wires, the coupling

noise can be computed within an accuracy of 11.4% compared to SPICE. This results have been



obtained by comparing the proposed metric results with SPICE simulation results.
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