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Abstract

Timing optimization is a critical component of deep sub-micron design, and buffer insertion
is an essential technique for achieving timing closure. This work studies buffer insertion
under two types of constraints: (i) avoiding blockages, and (ii) inserting buffers into pre-
determined buffer bay regions. We propose a general Steiner tree routing problem to drive
this application and present a maze-routing based heuristic. We show that the combination
of our Steiner tree optimization with effective buffer insertion techniques leads to useful

solutions on industry designs.

1 Introduction

It is now widely accepted that interconnect is becoming increasingly dominant over transistor and logic
performance in the deep submicron regime. Buffer insertion has become a critical step in modern VLSI
design methodologies (see Cong et al. [6] for a survey). Indeed, Cong [5] shows that as gate delays decrease
while chip dimensions increase, the number of buffers inserted will increase with advancing technologies.
He expects that close to 800,000 buffers will be required for 50 nanometer technologies. There is a critical
need to automate the entire interconnect optimization process in order to achieve timing closure.

Several works have studied the delay driven-buffer insertion problem. Closed form solutions have been
proposed in [1] [3] [4] [7]. Van Ginneken’s algorithm [21] has become a classic in the field. His dynamic
programming algorithm finds the optimal buffer placement under the Elmore delay model. Several exten-
sions to this work have been proposed (e.g., [2] [14] [15] [16] [19]). All of these works (except for [16] [19])
assume that a Steiner tree is given and that buffers must be placed along the Steiner wires. The works

of [16] [19] also perform routing of the tree during buffer insertion but do not consider blockages.



When attempting to insert buffers into a hierarchical design (which are becoming increasingly common
due to the complexity explosion), buffers may not be placed on top of pre-existing macros; these regions
are called blockages. If the existing Steiner tree has been routed almost entirely over blockages, then any
buffer insertion algorithm that uses the routing topology fails to find a solution. Figure 1(a) shows an
example 2-pin net whose route runs over a large blockage, thereby making buffer insertion infeasible. If
one re-routes the tree as in Figure 1(b), then buffers can be inserted, albeit for an additional wire length
cost.

In this methodology, the Steiner tree serves as a guide for buffer insertion, but does not represent the
final route. The actual routing is performed after buffer insertion. Figure 1(c) shows how the global router
may re-route the newly created nets while considering delay, noise, congestion, etc. Without this final step,

the regions of the chip without blockages would become unnecessarily congested with interconnect.
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Figure 1: A tree routed over blockage (a) can be re-routed around the blockage, which enables buffer
insertion (b), thereby yielding a better solution than in (a). The newly created nets can then be routed
over blockage (c).

Figure 2 illustrates an example where the best Steiner tree construction avoids some, but not all, of the
blockages. In (a), the existing route is completely blocked for buffering, while in (b), the re-routed tree
avoids all blockage, allowing buffers to be inserted. However, the most efficient solution is shown in (c)

which avoids only some of the blockage.

n
- u
-
PN -~
(b) ©

@

Figure 2: A net routed totally over blockage (a) prevents any buffer insertion; avoiding all blockage (b)
requires three buffers; the best solution (c) avoids only some blockage, permitting two buffers to be inserted.



The problem of buffer insertion in the presence of blockage constraints has been recently addressed
in [12] and [22]. The method of [12] optimizes the routing tree topology and inserts buffers simultaneously.
While it obeys blockage constraints, the method makes no effort to avoid blockages. The approach of
[22] allows routing over some blockages while avoiding others. Their algorithm uses maze routing and
dynamic programming techniques to find the buffered path with minimum delay (while obeying blockage
constraints). However, the algorithm is only applicable to two-pin nets.

In some design methodologies, it may be suitable to pre-allocate space for buffers during floorplanning,
rather than trying to squeeze buffers between large blocks during physical design, which can cause both
logical and wiring congestion. We call these pre-allocated regions buffer bays. For this methodology, the
entire layout area is viewed as blockage except for the buffer bays. Figure 3(a) shows an example of a
two-pin net that does not cross any buffer bays and is thus totally blocked from buffer insertion. By

re-routing the tree through a buffer bay (b), buffers can be suitably inserted (c).
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Figure 3: A totally blocked tree (a) can be re-routed through a buffer bay (b) which enables buffer insertion

().

We make the following contributions:

e We propose a general Steiner tree problem formulation for buffer insertion with either blockage or

buffer bay constraints.

e We present a new Steiner tree optimization that derives a heuristic solution to this problem. The
algorithm iteratively rips up a sub-path of an existing Steiner tree and uses maze routing to re-connect

the two remaining sub-trees.

e We employ a customized grid graph and sparsify it appropriately, so that it can accommodate an
efficient solution search without significantly altering the quality of the results. We also utilize a

branch-and-bound technique to further improve the computational efficiency.

e We show that for real industry designs, our Steiner tree heuristic, when used with an effective buffer

insertion algorithm, results in more useful solutions than a Steiner tree heuristic that does not account

for blockages.



In contrast to the works of [12] [19] [22], which simultaneously insert buffers during routing, we first
construct the Steiner tree, then inserts buffers. The simultaneous approach is arguably superior considering
that one cannot design the best tree until buffer locations are known. However, the simultaneous operations
of tree construction and buffer insertion necessitate that the buffering component be somewhat simplistic.
The buffer insertion tool that we adopt has a wide user base and has several sophisticated features. It
can (i) handle a library of inverting and non-inverting buffers [15], (ii) simultaneously fix noise, slew and
capacitance violations, (iii) be run with higher-order gate and interconnect delay computations [2], (iv)
trade-off the number of buffers inserted with solution quality, simultaneously perform wire sizing, and (vi)
insert buffers to conform with the net’s hierarchical structure. It is neither prudent nor necessarily feasible
to integrate a simultaneous Steiner tree construction while maintaining both the features and performance

of the tool as it currently exists.

2 Problem Formulation

Given a unique source so and a set of sinks ST, a rectilinear Steiner tree (RST) T'(V, E) is a spanning tree
in the rectilinear plane that connects every node in V = {so} U ST UW, where W is a set of additional
nodes. W typically includes two types of nodes: (i) internal Steiner nodes of degree three or four, denoted
by the set IN, and (ii) corner nodes of degree two that connect a horizontal and vertical edge, denoted
by the set CO. We add a third node type to W: a boundary node (belonging to the set BY') has degree
two, an incident edge lying over blockage, and an incident lying in a blockage-free region. For example,
the RST in Figure 4 shows a Steiner tree with source so = s and sinks ST = {d, 7, k}. All other nodes are

in Wwithbe IN, g,5 € CO, and a,c,e¢, f,h € BY.

Figure 4: A Steiner tree illustrating different node types.

Definition: A 2-path of a tree T'(V, E) is a path p(u,v) = {(u,v1), (v1,v2),--.,(Um,v)} € T such that
{vi,...,9m} CBY UCO and u,v € {so} USTUIN.



Every tree T can be uniquely decomposed into a set of 2-paths, e.g., the tree in Figure 4 can be decomposed
into four 2-paths: p(s,b),p(b,d),p(b,7) and p(i, k).

A rectangle r has a unique bounding box (z1,y1), (z2,y2), where 1 < z2 and y; < yo. Given a set of
rectangles B (i.e., the blockage map), an edge e € E to said to be inside B (denoted by e € B) if there
exists a rectangle r € B such that both endpoints of e lie inside the bounding box of r. Let [, denote the
length of edge e. Our problem formulation is as follows:

Dual Region Rectilinear Steiner Tree Problem: Given a parameter a, a source so, a set of sinks S1,
and a set of rectangular blockages B, construct a Steiner tree 7'(V, E) with {so} UST C V that minimizes
cost(T(V, E)) = Z le + Z le (1)

ecE e€B

The parameter « represents the degree of the penalty for routing over blockage. This problem is
NP-Complete by reduction to the Rectilinear Minimal Steiner tree problem (setting a = 0). Observe
cost(T(V, E)) can be expressed as the sum of the costs of all 2-paths in 7', where the cost of a 2-path is
given by:

cost(p(u,v)) = Z le+a z le (2)

e€p(u,v) e€BNp(u,v)

For example, if a = 1, then edges that intersect blockage have twice the cost of the other edges. Recall
the re-route in Figure 1. If the wire length more than doubles when changing the route from (a) to (b), then
(a) is the lower cost solution. The appropriate value for a depends on the technology, though empirically
a value of one seems to work well.

An advantage of this cost function is that it can be used to handle both buffer bays and blockages. If B
represents a set of buffer bays, then routing over rectangles in B should actually reduce the cost function.
Chooses a between —1 and 0 achieves this effect For example, if o = —%, then the cost of routing outside
a buffer bay is twice that of routing inside a buffer bay.

Equation (1) is just one possible objective function. One could also incorporate, e.g., the maximum
length over all sub-paths that intersect blockage, the sum of the squared lengths of these sub-paths (scaled),
or actual path delays into the objective. More sophisticated objectives may be better suited for buffer

insertion, but more difficult to incorporate into an optimization.

3 The Grid Graph Construction

Our Steiner tree heuristic is based on maze routing, which is appealing since it can handle multiple cost

functions. Maze routing approaches have been used elsewhere in recent research, e.g., [11] [22], but it



can be inefficient since it may search over numerous locations, many of which do not lead to worthwhile
solutions.

A fundamental notion in maze routing is the concept of a grid graph, G(Vg, Eg). A grid graph can
be viewed as a tessellation of rectangular tiles with Vg being the set of tile centers and Eg being edges
that connect tile centers. A grid graph can be uniquely induced by the sets X = {z1,...,z,} and
Y = {y1,...,ym} of sorted non-duplicate coordinates. The induced grid graph G(Vg, Eq) from X and
Y has vertices Vg = {(z,y) | z € X,y € Y}, and edges Eq¢ = {((zi,v), (zi+1,v)) | 1 < i < |X|,y €
YIU{((@0), (@ 9i1)) | 1< i < |YV],o € X}

Typically a uniform grid graph is utilized, which forces a routing algorithm to spend an equal amount
of time searching each part of the routing area. For our purposes, this is wasteful due to the non-uniform
distributions of sinks and blockages. We propose using a non-uniform grid graph, which allows high density
channels in difficult routing areas and low density channels elsewhere. Assume that some low-cost RC tree
T has already been computed over {so} U SI. Our grid graph is a superset of the Hanan grid [9] for T'.

We require that no buffer can be placed within a distance of less than M units from a blockage, where
the value of M is half the width (or height if greater than width) of the largest buffer. Therefore, we add
routes that surround each blockage by this prescribed offset parameter M, as shown in Figure 5. Similarly

for buffer bays, the offsets are added internally to each region, allowing sufficient room for buffers.
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Figure 5: Using M to compute usable tracks (a) around blockages, (b) inside buffer bays and (c) with
overlapping blockages. Dashed lines are tracks that are infeasible for buffer insertion.

We construct a grid graph according to the procedure shown in Figure 6. Step 1 initializes sets X and Y
to be empty, and Step 2 adds the coordinates of each tree node into X and Y. Step 3 adds the coordinates
of the blockages, and Steps 4-5 construct the grid graph induced by X and Y. Finally, Step 6 sets the
attribute blocked(e) for each edge e in G. If e overlaps with a blockage in B or does not overlap with a

buffer bay in B, then the attribute is set to true; otherwise, it is set to false. We refer to this grid graph



as the Extended Hanan Grid (EHG). An example grid graph constructed from a 3-pin net and a single
blockage is shown in Figure 7. Note that the EHG uniquely depends on the net being optimized, i.e., the

Steiner tree heuristic is carried out only on its own customized grid graph.

Procedure Grid_graph(T, B)
Input:  Steiner tree T(V, E), set of rectangles B
Output: Grid graph G(Vg, Eg)
1. Set X =0,Y = 0.
2. For each v € V with coordinates (z,y),
X+—zUX, Y +—yUY.
3. For each r € B with bounding box (z1,41), (z2,y2)
If r is a blockage
X(—(:C1—M)U(.T2—I—M)UX,
Y (y1 —M)U(y2 + M)UY.
If r is a buffer bay
X ($1+M)U(IC2—M)UX,
Y (y1+M)U(yo—M)UY.
4. Sort the coordinates in X and Y
Generate induced grid graph G(Vg, E¢) from X,Y.
6. Ve € Eg, compute value of blocked(e).

o

Figure 6: The Grid_graph procedure.
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Figure 7: The grid graph constructed according to the Grid_graph procedure in Figure 6 for an example
3-pin net and a single rectangular blockage.

Since the EHG may be sparse in some regions, a natural question to ask is whether any loss in optimality
is incurred by considering only tracks on the EHG and neglecting the large spaces off the EHG. It can be
shown that a minimum cost 2-path which connects two disjoint subtrees that are embedded on the EHG

also lies on the EHG. Consequently, it is reasonable to restrict the solution search to the EHG.



4 Algorithm Description
4.1 Overview

Our algorithm first decomposes the existing Steiner tree into disjoint 2-paths and computes each 2-path
cost. It then iteratively chooses a poorly routed 2-path, removes it, and re-routes it. The 2-path with the
highest cost is not necessarily the most poorly routed path, as the highest cost path could simply be a
very long path. We identify poorly routed 2-paths with the highest value of cost(p(u,v))/lp()- Such a
2-path has the highest ratio of wire length routed over blockage to total wire length which implies room

for improvement.

Steiner_Tree Algorithm (T, B)
Input: T'(V, E), a Steiner routing tree
B, rectangles representing blockages or bays
Output: Re-routed Steiner tree T'
1. G(Vg, Eg) = Grid_graph(T, B) (see Figure 6).
2. Compute the set P of disjoint 2-paths in T'.
Compute cost of each 2-path in P from Equation (2).

3. While P # ()
4. Choose p(u,v) € P with max cost(p(u,v))/lp(uv)-
5. Remove p(u,v) from T and P to get two sub-trees.

Label sub-tree containing so as T§; the other is T;.
6. Find 2-path p(q,w) = Maze_routing(G, Ts, T}).
7. Add the edges in the 2-path p(q,w) to T

Figure 8: The Steiner tree construction algorithm.

A complete description of the algorithm is given in Figure 8. Step 1 computes the underlying grid graph
for T and B. Step 2 finds the set of all 2-paths, and Steps 3 and 4 iterate through these 2-paths, each time
picking the one with the highest overlap cost. The selected 2-path is removed in step 5, which induces two
subtrees Ts and T;. Step 6 performs the maze routing which returns a minimum cost 2-path between T
and T3, and Step 7 re-connects the tree using this 2-path. We now explain the maze routing performed in

Step 6.

4.2 Maze Routing

The path re-connecting two subtrees is found via maze routing. The original maze routing algorithm [17]
runs on a grid graph and makes point-to-point connections. Each grid edge is assigned a cost such as edge

length for unblocked and infinity for blocked edges. Maze routing is equivalent to Dijkstra’s shortest path



algorithm [8] applied on the grid graph. The source node is initially assigned zero cost, and then wave
expansion proceeds out from the source, labeling all intermediate nodes until the target node is reached.
The grid node labels reflect the routing cost from the source. For a linear cost function, maze routing
guarantees the least cost path for connecting two points. The primary variation of our algorithm is we
wish to find the lowest cost path between subtrees as opposed to unique points. This is accomplished
by labeling all nodes in the source tree with zero cost and stopping when any node in the target tree is

reached.

Maze _routing(G,Ts,T;) Algorithm
Input:  Underlying grid graph G(Vg, Eg).
Disjoint RSTs T and T; embedded in G.
Output: 2-path p(q,w) with g € T, w € T}
1. Vv e Vg, set
label(v) = oo, visited(v) = false, parent(v) = ()
2. For each node v € T
Set label(v) = 0 and set @ = Q U {v}.
While Q # 0
Let v € Q with minimum label(v).
Delete v from Q. Set visited(v) = true.
5. For each u, such that (u,v) € Eg, u # parent(v)
newLbl = label (v) + ly y)-
If blocked(u,v) then newLbl = newLbl + aly )
6. If newLbl < label(u) then
label(u) = newLbl, parent(u) = v.

- w

7.  If visited(u) = false and u ¢ T}, insert u into Q.
8. Find node w € T} such that label(w) is minimum.
9. Find path p(q,w) from w to g € T by tracing back

parent. Return p(q, w).

Figure 9: Algorithm for maze routing connecting two subtrees

The complete procedure is shown in Figure 9. Step 1 initializes three arrays, label, visited, and parent
for each node in the grid graph. The label(v) value is the cost of the best path from a node in T to v, the
visited(v) value indicates whether v has been explored, and parent(v) is stores the best path to v. Step 2
initializes the labels of all nodes in T to zero and puts them into a priority queue Q). Steps 3-7 search the
grid graph by iteratively deleting the node v with smallest label from ) and exploring that node. Each
neighbor node u of v is explored in Steps 5-6, and the label for u is updated according to length of edge
(u,v) and whether edge (u,v) is blocked. If the new label, corresponding to a path to u through v, is less
than the previous label, the label is updated and v becomes the parent for u. Steps 8-9 find the node with

the smallest label in the target tree, and uncover the path back to the source tree by following the parent



structure.

4.3 Complexity Analysis

Given a tree T(V, E) and a set of blockages B, let n = |V| and k = |B|. The size of the grid graph is
O((n + k)?) so the procedure Maze _routing has complexity O((n + k)?log(n + k)). The number of times

this procedure is called is bounded by O(n), which means the complexity for the entire algorithm is thus
O(n(n + k)?log(n + k)).
5 Improving Efficiency

The high time complexity of the algorithm suggests that one can speed up the algorithm without necessarily
sacrificing solution quality. We have employed two speedup techniques, a sparsified grid graph construction

and branch-and-bound maze routing, that together improve runtimes by more than a factor of ten.

5.1 Sparsified Grid Graph
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Figure 10: The original grid graph (a) has (shown in bold) two pairs of redundant tracks and a severable
track. The sparsified grid graph (b) has neither redundant nor severable tracks.

When |B] is large, the induced grid graph can be dense. Nearby blockages that do not line up can cause
several edges in the grid graph to be extremely close together. A routing tree construction could choose
any of these edges and result in essentially the same tree. A track is a set of edges all with the same =
or y coordinate. Given a step size, such as 0.1 mm, two parallel tracks are called redundant if they are
closer than the step size and if at least one of them does not intersect a net pin (source or sink). Given
two redundant tracks a and b, if track a intersects a net pin while b does not, we remove track b. If neither

a nor b intersects a net pin, then one track is arbitrarily chosen for removal. Note that the resulting grid
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graph is always less dense than the original EHG. Figure 10 shows an example of a grid graph (a) before
and (b) after sparsification. The pairs of tracks given by coordinates z1 and z2 and by y3 and y4 are
redundant. Since z; intersects the source, zo is removed. Neither y3 or y4 intersect a net pin, so y4 is
randomly removed.

The second sparsification technique severs some tracks span the entire grid graph. For example, in
Figure 10(a), the track y; is induced by the upper border of the rectangle representing blockage A; thus,
a routing path that uses track y; results from avoiding blockage A. When the path hits B it can either
overlap or circumvent B. If the routing cost according to Equation (2) of circumventing B is less than the
cost of overlapping B, then we say the corresponding track is severable. The bold part of track y7 (a) that
firsts hits the blockage B can be removed (b). In Figure 10, these techniques reduce the number of grid
nodes from (a) 64 to (b) 46.

5.2 Branch and Bound Maze Routing

When expanding the lowest cost node, maze routing cannot distinguish between good and bad global
directions. The expansion may proceed in a direction completely opposite the target sub-tree which wastes
significant computation time. Branch and bound techniques can prevent some unnecessary expansions.

Recall Steps 3-7 of Figure 8 which iteratively delete and then reconstruct 2-paths. The 2-path p(u,v)
removed in Step 5 has cost(p(u,v)) which is also an upper bound for the cost of the new 2-path.. Let
upCost denote this value. After Step 4 of Figure 9, one can compare label(v) to upCost to determine if
node v is worth expanding. If label(v) > upCost then the cost of the path from T to v is already higher
than the cost of the original 2-path, which makes it wasteful to expand v. Whenever a node v € T; is
reached, the value for upCost can be replaced by label(v) if this value is less than upCost.

The bound can be made even tighter by using a lower bound on the cost of the remaining routing to be
done from v to T;. Let dist(v,T;) be the Manhattan distance from v to the bounding box of T; (which can
be computed in constant time).! Now the test becomes whether label(v) + dist(v,T;) > upCost holds. If
s0, node v is not worth further exploration and and Step 7 of Figure 9 is skipped.

Note that this speedup is similar to A* search [18] in utilizing a estimated cost from wavefront node to
target. However, in A* search this estimated cost is augmented to define node priority in wave expansion

instead of serving for cost bounding.

Yf o < 0, then (1 + a)dist(v, T;) is the lower bound.
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6 Experiments

We performed experiments on three designs. Testl is a small hand crafted test obtained from [20], Test2
is a large macro block, and Test3 is a hierarchical microprocessor design. The comparisons that follow are
made between two algorithms, SMT, a Steiner minimal tree algorithm that is used for net analysis within
an industrial physical design tool suite, and BBB, our proposed algorithm.

Note that works which perform simultaneous buffer insertion and routing tree construction such as [16]
[19] are inappropriate since they do not consider blockage. The work of [22] attacks the right problem space,
but it cannot be applied to multi-pin nets. All run times are reported in seconds for an IBM RS6000/595
processor with 512MB of RAM.

6.1 Additional Routing Cost

Our first experiment measures the additional wire length caused by BBB compared to SMT. Since BBB
is aware of blockage constraints while SMT is not, BBB should naturally increase total wire length, while
decreasing wire length overlapping blockages. Tables 1 and 2 present these results for Testl and Test2,

respectively.

Avg. wire length Avg. in-bloc. length
mode | #net | SMT | BBB | %impr. || SMT | BBB | %impr.

blck 23 213 | 21.7 | -1.8% 15.9 5.8 63.5%
bays 30 22.7 | 22.2 | -2.2% 222 | 104 | 52.7%

Table 1: Routing costs of SMT versus BBB for Test1.

For Testl, SMT and BBB were on 23 nets with 7 random blockages inserted and on 30 other nets with
7 random buffer bays inserted. The number of blockages or bays actually used by the BBB grid graph
is between 2-7 for all nets. The results were averaged over all nets and are summarized in Table 1. The
average wire length increases by only 1.8% for blockages and 2.2% for buffer bays which indicates that
BBB is almost as effective as SMT for construction a low wire length Steiner tree. However, the total
wire length in blocked regions was reduced by 63.5% for blockages and 52.7% for buffer bays by BBB. The
average CPU time to run BBB on a net was less than 0.2 seconds for both blockages and bays.

For Test2, we examined 16 timing critical nets that had differentiating characteristics (number of pins,
pin locations, wire length topology, etc.) and ran both SMT and BBB with the 54 blockages that were
present in the design. Table 2 presents the results. We observe that BBB results in an average of 2.5%
higher than SMT while reducing blocked wire length by 33.3%. The results vary widely for different nets.

12



Wire length Blocked wire length

net | #pin | |B| [ SMT [ BBB | %impr. | SMT | BBB | %impr. | CPU
1 2] 26 107 [ 122 [ -13.9% 9.3 2.0 | 78.6% 0.5
2 2 [ 36 9.0 9.0 0.0% 5.2 0.4 | 92.9% 0.8
3 9 30 [ 146 [ 151 -3.8% | 12.7 4.9 | 61.4% 1.3
4 9| 31 [ 146 | 152 [ -46% | 128 7.1 [ 444% 1.3
5 9 | 47 [ 184 | 187 [ -1.7% | 182 | 14.0 | 23.2% 2.2
6 11| 47 ] 171 ] 176 | -2.8% | 17.1 2.6 | 84.9% 2.7
7 17| 53 | 241 | 241 | -01% | 224 [ 219 2.3% 5.8
8 19 | 47| 197 207 | -5.0% | 19.7 | 16.6 | 16.0% 5.2
9 19 47 202 208 | -32% | 202 | 17.7 | 12.3% 5.6
10 25 [ 47| 222 [ 223 | -0.3% | 22.0 | 20.9 4.9% 4.7
11 25 [ 47| 22.6 [ 227 | -0.4% | 224 | 213 4.9% 4.8
12 25 | 47| 236 [ 241 | -21% | 235 | 146 | 37.8% 5.9
13 20 [ 33| 233 [ 239 -28% | 15.7 | 10.9 | 30.3% 5.4
14 20 | 33| 249 | 251 | -0.6% | 18.4 | 142 | 22.6% 4.9
15 20 [ 53| 305 [ 314 -3.0% | 233 | 112 | 51.8% 9.8
16 20 | 53] 29.0 | 304 | -5.0% | 19.9 86 | 56.7% | 14.0
[Ave | 18] 42] 203 ] 208 ] -25% | 17.7] 11.8 [ 333% | 4.7

Table 2: Routing costs of SMT versus BBB for Test2.

For example, reduction in blocked wire length for age length net7, net10 and net11 are limited because the

majority of the pins actually lie within blockage.

6.2 Delay Comparisons with Buffer Insertion

To assess the utility of BBB versus SMT trees, buffer insertion must be performed after routing. The next

set of experiments were performed on a net by net basis with the following methodology:
1. Compute the SMT tree for the net.

2. Compute the delays to each sink, then compute the slack to the most critical sink based on the

required arrival times supplied by the static timing analyzer.
3. Run BBB re-routing.

4. Perform buffer insertion. The tool we employ here has been used in the design of hundreds of ASICs

and several microprocessors.

5. Re-compute the slack to the most critical sink. Let Aslack denote the difference between this slack

and the slack computed in Step 2.

Skipping Step 3 of this methodology yields buffer insertion with the SMT algorithm while including Step
3 yields results for the BBB algorithm.
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Average results for Test1 are presented in Table 3 with Aslack values presented in picoseconds. Observe
that BBB utilizes more buffers than SMT (2.9 versus 2.2 for blockage and 2.3 versus 1.9 for bays) since
BBB offers more potential locations for buffers. BBB trees also reduced slack by an additional 337 (768)

ps over SMT trees for blockage (bay) mode.

SMT + BI (Ave) || BBB + BI (Ave)
mode | #net || Aslack | #buf || Aslack | #buf | CPU

blockage 23 2064 2.2 2401 2.9 4.0
bays 30 2494 1.9 3262 2.3 4.3

Table 3: Experimental results on average slack improvements for Test1.

Table 4 presents the same experiments for the 16 nets from Test2. For the net by net comparisons, we
first took the SMT solution which yielded the best value for Aslack, then compared it against the BBB
solution with the same number of buffers. Thus, each row in Table 4 uses the same number of inserted
buffers. Overall, SMT trees resulted in an average slack improvement of 519.4 ps as compared to 694.6
ps for BBB. The runtimes reported are for the combination of BBB plus the buffer insertion step. By
comparing these runtimes to those reported for BBB alone in Table 2, we see that the runtimes of BBB
do not dominate the buffer insertion runtimes. Note that since buffer insertion is applied only to timing

critical nets or those with noise or slew violations, these runtimes are reasonable for practical applications.

[ net | #pin | SMT Aslack | BBB Aslack | #buf | CPU(s) |

1 2 1032 1118 2 1.2
2 2 1034 1036 1 1.2
3 9 109 239 2 2.1
1 9 109 236 2 2.2
5 9 190 452 1 2.9
6] 11 7 71 1 4.0
T 17 850 1181 2 738
8] 19 578 1089 2 73
9] 19 605 880 2 738
10 25 277 209 2 7.6
1] 2 205 323 2 74
12| 2 205 228 2 9.0
13 29 223 308 5| 244
4] 29 371 375 1] 252
15 29 1049 1605 7] 353
16| 29 1376 1674 5] 366

[Ave. | 18] 5194 | 6046 | 26| 114

Table 4: Experimental results on slack improvement for Test2.
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6.3 Fixing Slew Problems

Finally, we considered the problem of using buffers to fix slew violations. In high performance design, it
is common for each gate to have a requirement for the maximum permissible slew rate on the input signal
to the gate. Buffers can be used to fix such problems by repowering a degrading signal and sharpening the
slew rate. For Test3, microprocessor designers identified 29 non-critical nets that had slew violations. We
attempted to fix these violations using the routes provided by both SMT and BBB in conjunction with

buffer insertion. The designers also specified several buffer bays; everywhere else was considered completely

blocked.

Algorithm | #net | #fixed | #improved | #failed
SMT 24 7 6 11
BBB 24 17 4 3

Table 5: Slew results for SMT and BBB on Test3.

Of the 29 nets, 5 of them had pins nowhere near the designated buffer bays, so neither SMT nor BBB
approach would work. The results for the remaining 24 nets are shown in Table 5. Of these 24 nets, BBB
was able to successfully re-route and fix 17 of the nets while SMT was only able to fix 7 nets. Of the 7
nets for which BBB failed, BBB was able to improve the slew (but not quite fix it) for 4 nets, while it
did not insert any buffers for 3 of the nets. SMT was unable to insert buffers on 11 nets since they did
not intersect buffer bays, but it was able to improve, but not fix, the slew on 6 of the nets. Overall, BBB

showed that it is better suited for fixing slew violations than a routing algorithm that ignores blockage.

7 Conclusion

We propose a new Steiner tree routing problem for making nets more amenable to buffer insertion in
the presence of blockage constraints. The formulation handles either a buffer blockages or buffer bay
floorplanning methodology. Our heuristic iteratively deletes and re-routes sub-paths of an existing Steiner
tree and can handle complex blockage maps. Several speedup techniques are incorporated so that the
empirical run times are practical, though the theoretical time complexity of is high. Experimental results
show that our method achieves the objective of avoiding buffer blockages (or seeking buffer bays) and can
provide significant improvements in terms of delay and slew when used in conjunction with an industrial

buffer insertion tool.
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