
A Timing Model Incorporating the E�ect of Crosstalk on Delay and

its Application to Optimal Channel Routing �

Sachin S. Sapatnekar

Department of Electrical and Computer Engineering

University of Minnesota, 200 Union Street SE, Minneapolis 55455, USA.

contact: sachin@ece.umn.edu

Abstract

Crosstalk is generally recognized as a major problem in IC design. This paper presents a novel

approach to the e�cient measurement of the e�ect of crosstalk on the delay of a net using an algorithm

whose worst-case complexity is polynomial-time in the number of nets. The cost of the algorithm is

seen to be O(nlogn) in practice, where n is the number of nets, and it is amenable to being incorporated

into the inner loop of a timing optimizer. To illustrate this, the method is applied to reduce the e�ects

of crosstalk in channel routing, where it is seen to give an average improvement of 23% in the delay

in a channel as compared to the worst case, as measured by SPICE.

1 Introduction

In recent years, crosstalk has become a major problem a�ecting the behavior of integrated circuits

as device geometries have scaled down, bringing wires closer to each other, and switching frequencies

have increased. Crosstalk can a�ect the behavior of circuits in two ways:

� introducing unwanted noise induced in a quiet line

� altering the delay of a switching transition

Each of these is a potentially serious hazard, and this has motivated work in the area of crosstalk

analysis and crosstalk-tolerant design. Published techniques for crosstalk analysis typically work with

either a very detailed and accurate analysis of the phenomenon (for example, [1]) or a very high-level

model that captures the spirit, if not the details, of the crosstalk phenomenon (for example, [2{7]). The

latter class of approaches has the advantage of speed over the former class, at the expense of accuracy,

and has been therefore been used in the inner loop of optimizers. However, there is a need for greater

accuracy without sacri�cing the requirement of speed that is essential in the inner loop of an optimizer.

�This research was supported in part by the Semiconductor Research Corporation under contract 98-DJ-609 and by

the National Science Foundation under award CCR-9800992.

Previous approaches that have been fast enough for this purpose have been simplistic in their approach.

For example, they may measure crosstalk using a sum of their coupling lengths; these approaches do

not adequately capture the delay reduction objective.

The goal of this work is to develop a technique that is intermediate to the two in accuracy and

speed, and to show its application to optimal crosstalk-conscious channel routing. We will concentrate

primarily here on the e�ect of crosstalk on the circuit delay; for methods for measuring the crosstalk

noise, the reader is referred to [8,9]. The delay calculation procedure uses the Elmore delay model in the

examples shown here, but the assumptions used herein are general enough that the only requirement

of the delay model is that it should show an increased delay for an increased capacitance. Therefore,

a higher order AWE-like delay model is equally applicable to this basic framework. The application of

this approach to optimal channel routing is shown.

Recent research on determining the waveform for a set of wires that are subject to coupling e�ects

was published in [10]. The approach provides exact waveforms through the use of waveform relaxation

that capture the e�ect of coupling on delay. However, while the method is more accurate than the one

we propose here, its computational cost is relatively high. Therefore, it is not appropriate for larger

systems of interconnect wires or for situations where numerous repeated evaluations are desirable (for

example, in the inner loop of an optimizer, where a quick estimate that captures the character of the

delay variations due to coupling is useful, without necessarily calculating the exact waveforms).

We now summarize previous approaches to noise-conscious physical design. In [2, 3], methods for

routing to minimize crosstalk in channels and switchboxes were presented. In [4], the spacing between

tracks was altered to reduce the crosstalk, while in [5], the track assignment was performed with the

goal of crosstalk minimization. Post-global crosstalk reduction algorithms were presented in [6, 7].

The optimization problem chosen here has the same general goal as [2], namely, to reduce the amount

of crosstalk in a routed channel. The advantage of performing crosstalk estimation and reduction at

this level is that since the details of the physical design are decided at this phase of the design cycle,

the timing and neighborhood information of all nets is available, and consequently, accurate estimates

of the timing and crosstalk may be made. Our method takes an initial routing solution that attempted

to minimize the number of tracks, and modi�es the solution to reduce the crosstalk-induced delay,

while leaving the number of tracks in the channel unchanged. Our method di�ers from [2] in two ways:

�rstly, it permits the direct incorporation of the delay in the objective function, and secondly, instead of

permuting full tracks, this approach (like [11]) allows segments of tracks (one or more individual nets)

to be permuted, while maintaining the total number of tracks in the initial routing, thereby allowing a

greater amount of
exibility. A simulated annealing approach is used to perform the permutations.

The important features of this work are as follows:

2

(a) It provides, for the �rst time, a procedure for determining the e�ect of crosstalk on delay that can

be used in the inner loop of an optimizer. This is important since it implies that the procedure

can directly
ag critical paths that fail timing speci�cations due to coupling capacitance problems.

The procedure has polynomial time complexity in the worst case and is experimentally seen never

to be worse than O(nlogn) where n is the number of nets. It does not attempt to consider the

e�ect of crosstalk on noise; that topic is well covered by other published research.

(b) The application of this procedure to channel routing is illustrated on several examples, including

Deutsch's di�cult example. The procedure maintains vertical and horizontal constraints and

reorders the nets to reduce the e�ect of crosstalk on delay. The number of tracks is maintained

to be equal to the number of tracks for the optimal channel routing solution, unless otherwise

desired. For the same number of tracks, average timing improvements of 23% over the worst case

are shown.

Although only the application to channel routing is explicitly shown, this procedure can be used for

global routing strategies. Current global routing procedures [6,7] have not directly considered the e�ect

of crosstalk on delay. As a fast estimator, this method may be incorporated within those procedures

to incorporate delay e�ects directly into the global routing optimization. However, this issue is not

directly addressed in this paper.

The outline of this paper is as follows. Section 2.1 presents the models used for crosstalk here and

presents an example to motivate the problem. Next, in Section 3, the algorithm for delay computation

is proposed and its complexity is analyzed. Section 4 presents the formulation of the channel rout-

ing problem, and is followed by experimental results in Section 5, followed by concluding remarks in

Section 6.

2 Modeling Crosstalk

2.1 Interconnect Modeling and Crosstalk E�ects on Delay

This work models a wire as a succession of RC segments connected in series. We assume that the

widths, wi, of the wires are kept constant through the analysis and optimization. The resistance, Ri,

and intrinsic capacitance, Ci, of the i
th segment are given by the formul�Ri = � li=wi and Ci = � li wi,

where li is the length of the ith segment, and � and � are constants of proportionality for the resistance

and intrinsic capacitance (including the fringing capacitance), respectively. The coupling capacitance,

Cc, between two adjacent nets is proportional to overlapi, the length along which the nets run next to

each other, and is given by Cc =
 overlapi, where
 is a constant of proportionality.

It is important to emphasize that the exact functional form that is used to estimate the capacitance

and the delay are not important. As will be seen later, the only requirement that the delay model must

satisfy is that an increase [decrease] in the coupling capacitance should be translated into an increase

3

[reduction] in the delay of a net; this is a rather simple requirement that any meaningful delay model

would satisfy. In this work, we will use the Elmore delay model for simplicity, but we emphasize that

the crosstalk estimation methodology is extendable to any arbitrary delay model that satis�es the above

requirements.

The role of the coupling capacitances is greatly dependent on the relative switching times of the

nets [12]. One of three situations is possible, as illustrated in Figure 11

� If one net switches and the other remains inactive, then the equivalent coupling capacitance

between the two is modeled as Cc.

� If both nets switch at the same time in opposite directions (i.e., one switches from 1 to 0, and the

other from 0 to 1), then the equivalent coupling capacitance is modeled as 2Cc.

� If both nets switch at the same time in the same direction, then the equivalent coupling capacitance

is modeled as zero.

The complexity of this relationship arises from the interrelationships between the timing behavior and

the coupling capacitance. The value of the equivalent coupling capacitance is a�ected by the switching

time, which, in turn, is a�ected by the value of the coupling capacitance.

2 C cC c

Aggressor Aggressor Aggressor

Victim Victim Victim

0

Figure 1: E�ect of switching times on coupling capacitance.

To elaborate on this, consider two wires that are laid out adjacent to each other. If the input

signals to driver of the two wires switch between times [Tmin;1; Tmax;1] and [Tmin;2; Tmax;2], respectively,

and if the delays required to propagate the signal along the wires are in the range [d1;min; d1;max] and

[d2;min; d2;max], respectively, then the intervals during which the lines switch are [Tmin;1+d1;min; Tmax;1+

d1;max] and [Tmin;2 + d2;min; Tmax;2 + d2;max], respectively. Therefore, the following relationship holds

between the switching times and the equivalent coupling capacitance, Cc;eq.

The value of Cc;eq in the �rst line of Table 1 is chosen to be either 0 or 2Cc, depending on whether

the signals switch in the same direction, or in opposite directions. Note that it is possible for some of

the above intervals to be empty when the lower bound and the upper bound of the interval coincide.

1We point out that the �gure is meant to emphasize a point and should not be taken too literally. In particular, the

capacitance of 0, Cc or 2Cc is, in reality, modeled as a capacitance to ground rather than a capacitance between the two

lines.

4

Table 1: Variation of Cc;eq with switching time.

Interval Cc;eq

[maxfTmin;1 + d1;min; Tmin;2 + d2;ming;minfTmax;1 + d1;max; Tmax;2 + d2;maxg] 0 or 2Cc

[minfTmin;1 + d1;min; Tmin;2 + d2;ming;maxfTmin;1 + d1;min; Tmin;2 + d2;ming] Cc

[minfTmax;1 + d1;max; Tmax;2 + d2;maxg;maxfTmax;1 + d1;max; Tmax;2 + d2;maxg] Cc

While the relationship shown in Table 1 looks relatively straightforward, it is considerably complicated

by the fact that d1;min, d1;max, d2;min and d2;max are dependent on the value of Cc;eq, which is itself

dependent on the values of di;min and di;max, i = 1; 2. Therefore, an iterative approach is required.

It should be pointed out that the 0�Cc� 2Cc model has some limitations. The work of [13] showed

that a capacitance of 0 is not a strict lower bound, and likewise, 2Cc is not a strict upper bound on

the e�ective capacitance. In such a case, if a lower bound and upper bound capacitance can be arrived

at (including a negative lower bound) a priori, the techniques described here can be used to correctly

determine the switching intervals (we do not provide a technique for determining these bounds a priori

in this work).

2.2 Illustrative Example

The relation between crosstalk and timing is illustrated by the simpli�ed three-wire example in

Figure 2. The details of our calculations are described in Appendix 6, but the salient assumptions and

conclusions are shown here. We assume interconnect parameters in accordance with [14], and assume

that the drivers a, b and c with resistances of 2K
, 3K
 and 1K
, respectively, and that their inputs

switch at times that lie in some speci�ed time intervals 2. These times are assumed to be as follows:

� driver 1 switches in the interval [0.25ns,1.0ns]

� driver 2 switches in the interval [0.1ns,0.2ns]

� driver 3 switches at 0ns

For ease of description, we will assume equal rise and fall times. We point out, though, that the methods

described in this paper do not require equal rise and fall times and can be extended to unequal values

using standard methods in timing analysis (see, for example, [15]).

On the surface, it would appear that none of the switching time intervals overlap, and an equivalent

coupling capacitance of Cc would prevail, based on Table 1. However, these switching intervals do not

take the wire delay into account, and hence we will now make that correction.

2Variations in the switching times may occur for various reasons such as the existence of multiple paths passing through

the gate with di�erent delays.

5

Cload

Cload

Cload

wire3

wire1

wire2

Driver a

Driver b

Driver c

R = 1K
d

d
R = 3K

R = 2K
d

2000 m

1000 m

1000 mµ

µ

µ

= 10fF

= 10fF

= 10fF

Figure 2: An example showing the e�ect of crosstalk on timing.

Let us, only for a moment, neglect the coupling capacitance. The switching time of wires 1, 2 and

3 considering the e�ects of their self-capacitance (i.e., area and fringing capacitance), and ignoring

the e�ects of coupling capacitance entirely, may be calculated from the Elmore delay formula to be

[0.3309ns,1.0809ns], [0.3432ns,0.4432ns], and [0.1609ns,0.1609ns], respectively (note that the last interval

is a single point). Therefore, it is clear that the overlaps in the timing intervals at the driver inputs can

be misleading and do not show the complete picture. Moreover, the e�ects of the coupling capacitance

are yet to be incorporated, and the calculation of the switching intervals while incorporating their e�ects

is quite involved.

C cC c c0 or 2C

0.1609ns 0.3309ns 0.4432ns 1.0809ns0.3432ns

wire 1

wire 2

wire 3

Figure 3: Illustration of the procedure for calculating switching intervals for a system of interconnects.

The intervals calculated above are illustrated in Figure 3. Consider the switching of wire 1. A

switching event at any time in the interval [0.3309ns,0.3432ns] corresponds to a coupling capacitance of

Cc, implying that incorporation of coupling capacitance e�ects would update these switching times to

the interval [0.4016ns,0.4139ns]. An event in the interval [0.3432ns,0.4432ns] corresponds to a best-case

coupling capacitance of 0; therefore, no correction in the earliest switching time due to the coupling

capacitance is required. Consequently, the earliest switching event occurs at time 0.3432ns, assuming

that the switching intervals for wire 2 have been correctly calculated. However, that is an invalid

assumption, as wire 2 has a minimum coupling capacitance of Cc with wire 3, requiring its value to be

corrected, leading to the calculation of a new earliest switching time for wire 1, and so on.

6

After several iterations, the �nal switching intervals for wires 1 through 3 are calculated as [0.4016ns,1.2223ns],

[0.5539ns, 1.0753ns] and [0.3016ns,0.3016ns], respectively; for details, the reader is referred to Ap-

pendix 6.

The objective of this example was to help the reader appreciate the di�culty of the issue of calculating

these switching intervals, and to motivate the need for a precise, e�cient and systematic algorithm for

the purpose, which is presented in Section 3 and proven to have polynomial time complexity. We will

also point out here that the order in which the switching intervals were updated a�ects the number of

iterations required to �nd these values.

This example illustrates the following points. Firstly, an iterative approach is required. Secondly,

di�erent switching times for a wire may correspond to di�erent equivalent coupling capacitances, and

a uniform value for the entire switching duration is not valid; this is illustrated by the update to wire

1 in Iteration 1 above. Thirdly, the order in which the updates are made is important for convergence.

In the above example, if the updates were carried out in an order that processes wire 2 before wire 1,

then the number of iterations would be brought down from two (see Appendix 6 for details) to one.

The algorithm proposed in this paper attempts to �nd such an order, and determines the number

of computations required by the iterative procedure in the worst case. For this speci�c example, our

algorithm completes the computation in a single iteration since the heuristic in Section 3.3 will process

wire 2 before wire 1.

3 An Algorithm for Correct Crosstalk Estimation

The algorithm is described here in the context of a set of nets N1; � � � ; Nk in a channel. We will

assume that the channel is positioned with its length along the x axis and its height along the y axis.

We de�ne a spatial adjacency graph, Gs, whose vertices correspond to the k nets in the channel. An

edge is drawn between vertices i and j if the horizontal spans of nets Ni and Nj intersect. If two nodes

are connected by an edge on Gs, the corresponding nets will a�ect each other by means of a coupling

capacitance if they are placed on adjacent tracks.

The assumption that is made in this work is that all transitions are sharp transitions that occur at

a time given by the delay; we happen to use the Elmore delay model here, but the basic approach may

be extended to other models.

3.1 Outline of the Algorithm

The input to the algorithm is a channel routing solution that is found without regard to crosstalk,

using a standard channel router [16, 17], which provides the adjacency information required for the

analysis. For each driver, a switching interval [Tmin; Tmax] signifying the range of switching times at

the input of the driver, and a source resistance, Rd, are speci�ed. If the wire originates at a gate at

the top or bottom of the channel, these quantities simply correspond to the range of switching times

and the driver resistance of that gate. If the wire originates at the left or right of the channel, then Rd

7

corresponds to the upstream resistance. The speci�cation of the range of switching times corresponds

to the range of switching times of the driver of the net, plus the Elmore delay of the net assuming that

it terminates at the left edge of the channel; this is justi�ed by the separable structure of the Elmore

delay computation3.

The goal of the algorithm is to incorporate the information in the Gs graph and the adjacency

information derived from the channel routing solution to arrive at a range [Tstart; Tend] for all of the

wires in the channel.

We de�ne the self-delay, ds, of a line as its RC delay calculated by considering only the intrinsic

capacitance of the line. Note that the self-delay is calculated without incorporating the e�ects of

coupling capacitance; consideration of the coupling capacitance can only cause the delay to increase,

and hence the self-delay is a lower bound on the delay of the line. The task of this algorithm is to

determine whether the correction due to coupling capacitance should assume a capacitance of Cc or

2Cc [0 or Cc] for the maximum [minimum] switching time. Let delay(Cc) be the delay on the line due

to the coupling capacitance of Cc for each neighbor of a given wire (note that the value of Cc for each

wire will be di�erent, and this is only a notational convenience). The initial switching interval is set to

the value of [Tstart; Tend], where Tstart = Tmin + ds and Tend = Tmax + ds+ delay(Cc), both of which

are clearly lower bounds on the earliest and latest switching times for the wire. The pseudocode below

shows how these can be re�ned to arrive at the actual earliest and latest switching times.

ALGORITHM Update Switching Times

1. For each net f
2. calculate its ds and delay(Cc) and update its Tstart and Tend value

3. g
/* OUTER LOOP */

4. Repeat f
/* FORWARD PASS

Update the latest switching time for each net using

Cc;eq = Cc or 2 Cc, as appropriate

*/

5. Repeat f
6. For each net i f
7. For each neighbor j of i in Gs

8. Update Tend for i
9. For each neighbor j of i in Gs

3Several bottom-up methods [18,19] have used the approach representing the delay as a sum of the downstream Elmore

delay and the delay of the upstream net, assuming the downstream nodes to be represented by a capacitance. This

method is the analog of that approach for a top-down computation. For an RC tree with an upstream resistance of

Rupstream and an upstream delay of Dupstream, the Elmore delay at a node in a downstream tree can be computed as

Td = Dupstream +RupstreamCtree+ Td;tree, where Ctree is the total capacitance of the tree and Td;tree is the Elmore delay

from the root of the tree to the node of interest.

8

10. Update Tend for j
11. g
12. g until (no Tend changes)

/* BACKWARD PASS

Update the earliest switching time for each net using

Cc;eq = 0 or Cc, as appropriate

*/

13. Repeat f
14. For each net i f
15. For each neighbor j of i in Gs

16. Update Tstart for i
17. For each neighbor j of i in Gs

18. Update Tstart for j
19. g
20. g until (no Tstart changes)

21. g until (no Tend or Tstart changes)

In practice, the changes in the forward and backward passes are only made for neighbors of nets that

were altered in the previous iteration, except in the �rst iteration of the outer loop, where all nets are

processed.

The neighbors of a wire j above correspond to adjacent vertices in the Gs graph. The updates in lines

8, 10, 16 and 18 are performed using the scheme in Table 1, with the di�erence that the wire delays

are calculated using the values of Cc;eq based on the current values of Tstart and Tend for the nets. The

update formul� are as follows:

Tend updates

� If Tend(j) > Tend(i) > Tstart(j), as in Figure 4(a), then the worst case corresponds to an

equivalent coupling capacitance of 2Cc between wires i and j that is seen at Tend(i), resulting

in the update shown by the dotted line. Mathematically, we state this using the formula

Tend(i) = Update(Tend(i); 2Cc) where the right hand side implies that Tend is updated so

that Cc;eq between i and j is set to 2Cc.

(a) (b)

wire j

wire i

wire j

wire i

Figure 4: Updating the value of Tend.

� If Tend(i) > Tend(j) > Tstart(i) as in Figure 4(b), then the latest concurrent switching activity

occurs at Tend(j), where a coupling capacitance of 2Cc is seen by wire i between itself and

9

wire j. This results in a potential update shown by the dotted arrow in the �gure. The

value of Tend(i) is updated only if this value exceeds the current value; in the situation

shown in the �gure, no update is necessary. Mathematically, we write the update formula as

Tend(i) = max[Update(Tend(j); 2Cc); Tend(i)].

� If the two intervals do not overlap spatially, Tend corresponds to an e�ective coupling capac-

itance of Cc, and Tend(i) = Update(Tend(i); Cc) and Tend(j) = Update(Tend(j); Cc).

Tstart updates

The updates for Tstart may be justi�ed similarly and are listed below.

� If Tstart(j) > Tstart(i), then update Tstart(i) = min[Update(Tstart(i); Cc); Tstart(j)].

� If Tstart(i) > Tend(j), then update Tstart(i) = Update(Tstart(i); Cc).

� If Tend(j) > Tstart(i) > Tstart(j), then Tstart(i) is left unchanged and corresponds to a coupling

capacitance of zero.

The updates in lines 8 and 10 (and similarly, in lines 16 and 18) are performed in separate loops

so that the value of Tend of net i in the current iteration is fully calculated before its impact on its

neighbors is determined. This removes the need for unnecessary repeated applications of the update

formul�.

3.2 Theoretical Results and Complexity

Theorem 1: The iterative procedure in Algorithm Update Switching Times converges.

Proof: In the �rst iteration of the outer loop, at the end of the forward pass loop, the values of Tend

are no smaller than they were before the pass. This is due to the fact that the coupling capacitance was

taken to be Cc before beginning, and during the forward pass, some of these are updated to 2Cc, with a

consequent increase in Tend. Similarly, the value of Tstart is always larger on completion of the backward

pass in the �rst iteration of the outer loop, since some of the coupling capacitances are updated from 0

to Cc.

In the second iteration of the forward pass, the values of Tend are updated to re
ect any altered

circumstances due to overlaps that were either introduced or made absent after the preceding backward

pass. Since the �rst backward pass kept Tend unaltered and only increased Tstart, it follows that

the span of each switching interval could only be diminished, and not increased during the backward

pass. Therefore, it is not possible for any new overlaps to be introduced, and consequently, any updates

during the second forward pass must be due to the fact that some overlaps were removed during the �rst

backward pass. The e�ect of a removed overlap is that the worst-case equivalent coupling capacitance

is reduced from 2Cc to Cc, and therefore, the updated value of Tend must be reduced in the second

iteration. Similarly, it can be argued that since the second forward pass diminishes the overlaps, the

value of Tstart must be increased by the second forward pass.

10

In subsequent iterations, the Tstart are either increased or kept constant, and the Tend values are either

reduced or kept constant. For n nets, since the number of possible con�gurations is �nite (< n � 3n,

corresponding to each net having an equivalent coupling capacitance of 0; Cc or 2Cc with each other

net), and since the reduction is monotone, the procedure must converge. In practice, the procedure

converges much faster than n � 3n steps since many of the possible con�gurations are eliminated by the

monotone path taken by the algorithm, as illustrated in the next theorem. 2

Theorem 2: The computational complexity of the algorithm is O(mn2), where n is the number of nets

and m < n is the maximum number of nets that are spatially adjacent to any net. Therefore, assuming

that m is bounded by a constant, the complexity of the procedure is O(n2).

Comment: In practice, this upper bound was never seen to be reached.

Proof: We will consider the case of the forward pass in which Tend is updated; the argument for Tstart

is symmetric.

In the �rst iteration of the outer loop of Algorithm Update Switching Times, there are two ways

in which Tend may be updated, corresponding to the �rst two bullet items under \Tend updates" in

Section 3.1; by construction, the third is never activated in the �rst iteration and may only occur in

subsequent iterations. We will refer to these two types of updates as \updates at Tmax" and \updates

before Tmax," respectively.

For any given net, if the Tmax value of a neighbor is updated, it could potentially update the Tmax

value of the given net. Once an \update at Tmax" is made by a neighbor, no further updates that can

be made by that neighbor during the current iteration, since the Tmax values can only increase during

a forward pass iteration (as shown in the proof of Theorem 1), meaning that no overlaps are removed

during the execution of the loop. However, an \update before Tmax" may result in multiple updates in

the iterations of the forward pass loop, with each update corresponding to an update on the Tmax of

some neighbor.

We observe that each update to the Tmax value of a net must be initiated by an update to the Tmax

value of some other net. Moreover, in every iteration, there must be at least one update at Tmax since

in each switching pair, there must be one net that switches �rst, and its e�ect could ripple to all of the

other nets. Therefore, the forward pass loop can have no more than O(n) iterations, implying that the

total number of updates can be no more than O(n2) in the �rst iteration of the outer loop.

In subsequent iterations of the outer loop, the forward pass will only update a Tmax value if an overlap

is removed. Since each net can overlap with at most all of its m neighbors, there can be no more than

O(mn) overlaps that could be removed, implying that the total number of such updates can be no more

than O(mn2). This implies that the overall complexity is O(mn2). 2

The theorem above lists the worst-case time complexity of the procedure, corresponding to the most

pathological case where every update to every net a�ects every other net. However, this is extremely

11

unlikely in practice, and with the use of heuristics (to be described in Section 3.3), the number of

updates can be restricted to a complexity that is practically of the form O(n). In our experiments,

the number of iterations of the outer loop of Algorithm Update Switching Times never exceeded four

and therefore, we found that the number of updates was linear in the number of nets. This ordering

necessitated a sorting procedure, and therefore the complexity of the entire procedure is O(nlogn).

As a parenthetical note, the character of the updates can be seen to be similar in character to those

for the Bellman-Ford algorithm [21], where the neighbors of a node are �rst updated, followed by the

neighbors of these neighbors, and so on. The di�erence is that the weights on the edges of the timing

graph that could be drawn here are liable to change, depending on the presence or absence of overlaps,

making the algorithm more complex.

3.3 Heuristics for Speeding up the Procedure

The order in which the nets are processed is important in ensuring that the switching intervals

are calculated e�ciently. We will illustrate this with respect to the backward pass of Algorithm Up-

date Switching Times, noting that the argument is similar for the forward pass loop.

We �rst note that for the backward pass loop of lines 13{20, the iterations are similar to Gauss-Seidel

updates, where all updates in the current iteration are taken into account while processing a net, rather

than a Gauss-Jacobi iteration, where the values from the previous iteration would be frozen in place

and used in the current iteration. Therefore, while processing the kth net in the �rst forward pass, the

updated Tstart values for the �rst k � 1 nets are being used.

If, in some iteration of the loop on lines 14{19, a net nx is updated, then each neighbor of nx is

processed. The value of Tstart of this neighbor is dependent on the values of Tstart and Tend of each of

its neighbors (including nx) in the following ways:

� Due to the monotone shrinking of the switching intervals, the Tend value of each neighbor can

a�ect the Tstart of a net precisely once: when the value of Tend is such that a temporal overlap

ceases to exist, the e�ective coupling capacitance for Tstart becomes Cc instead of 0.

� A change in the Tstart value of a net can update the Tstart value of each neighbor according to the

update formul�previously described. This update can occur more than once if a poor ordering

is chosen, and the alignment of the timing windows for the nets (and the planets) is such that a

pathological case is excited. The computation in the procedure can be reduced by heuristically

choosing a good ordering.

Our heuristic updates the nets in descending order of the value of Tstart at the beginning of the

procedure. This is based on the fact that since Tstart is guaranteed to be nondecreasing and as a result,

when a net with a lower value of Tstart is updated, it is likely not to be limited by the Tstart values of

its neighbors; if they had larger Tstart values to begin with, they would have been updated already, and

12

if they had smaller Tstart values, then their values are irrelevant as the update depends on the Tstart

value of the current net. The cost associated with performing the sorting procedure is O(nlogn).

Similarly, it can be argued that for the forward pass, nets should be processed in increasing order of

their Tend values. However, it should be noted that this is only a heuristic, and does not guarantee a

single pass through the repeat loop; in fact, it is easy to derive examples where the application of this

method would require more than one pass of the repeat loop. For instance, consider the situation in

Figure 5, where the solid lines show the initial time spans, [Tstart; Tend], for switching events of three

wires that have a spatial overlap. According to the heuristic, the value of Tend for wires a and b will

�rst be updated during the forward pass, as shown by the dotted lines a-b, as the Tend value of wire b

plus the delay due to coupling. However, when wire b is processed, it is seen that the Tend values of

wires b and c are updated due to wire c, which necessitates another update to the Tend of wire a, shown

by the dotted line a-(b-c), since the Tend value for b that was used earlier was incorrect.

a-b a-(b-c)

a-b b-c

b-c

wire a

wire b

wire c

Figure 5: An example showing that the left-edge ordering is heuristic and not optimal.

4 The Channel Routing Problem

4.1 Introduction

The channel routing problem is to determine an assignments of nets to tracks in the channel with the

aim of satisfying one or multiple objectives. The most commonly used objective in the past has been

to minimize the number of tracks in the channel. The locations of pins on the top and bottom of the

channel are �xed, and the nets are required to connect two or more pins at either end of the channel.

In the �nal routing solution, all nets are required to satisfy two types of constraints [16]:

(1) horizontal constraints, which imply that two nets whose horizontal spans overlap must not occupy

the same track, and

(2) vertical constraints, which imply that a net that is connected to a pin at the top of the channel must

lie above another net that is connected to a pin at the bottom of the channel, in the same column.

The process of exchanging tracks in a routed channel can reduce the crosstalk in a channel. In the

simple example in Figure 6(a), if the �rst two tracks are exchanged, as shown in Figure 6(b), the crosstalk

in the channel would be \reduced"; the procedure in [2] would produce such a solution4. However, if the

4 We point out that like [11] and unlike [2], our implementation does not restrict itself to exchanging tracks, but also

13

n1

n2 n3

n4 n4

n3n2

n1

(a) (b)

Figure 6: Two permuted channel routing solutions.

focus is on timing-critical nets, and if net n1 in the uppermost track of the initial routing is the most

timing critical, it may be better to leave it in its current position, as against moving it to the second

track, where it would have crosstalk interactions with a larger number of nets.

4.2 Optimized Channel Routing for Reduced Crosstalk

The algorithm for optimizing the channel routing solution for crosstalk e�ects uses a simulated an-

nealing engine. The simulated annealing algorithm [22] is a well-known procedure and we will only

outline the salient features of the method.

The cost function is chosen to be a weighted sum of the maximum delay of each net; in our

implementation, all weights were chosen to be 1, but these may be adjusted appropriately to assign a

larger weight for more critical nets, if desired, or any alternative cost function. The calculation of Tend

proceeds according to the algorithm described in Section 3.

A move consists of an exchange of a set of nets between two tracks. These nets are chosen so that

they are contiguous within the track, and the number of such contiguous nets is chosen randomly. For

example, in Figure 6(a), a couple of possible moves are (see footnote 4):

(a) moving net n2 to the �rst track and n1 to the second track

(b) moving nets n2 and n3 to the �rst track and n1 to the second track

An example of an unallowable move is exchanging the positions of nets n1 and n4, since this would violate

a vertical constraint. All moves are performed in such a way that the feasibility of the routing solution

is maintained. In other words, no move is permitted to violate a horizontal or a vertical constraint.

Moreover, the number of tracks in the routing solution is maintained. Therefore, this method may be

used as a �ne-tuning step after the height of the channel has been minimized.

The simulated annealing procedure proceeds according to a cooling schedule for the temperature.

At each temperature, a number of moves are attempted, with cost-reducing moves being accepted and

cost-increasing move being accepted probabilistically according to the Metropolis function.

exchanges subsets of the nets in a pair of tracks, if permissible under the vertical constraints

14

5 Experimental Results

The algorithm to minimize the objective function by reordering, subject to horizontal and vertical

constraints, was implemented in C and executed on a Sparc Ultra 1/170 workstation. In our imple-

mentation, we assumed that the rise times are equal to the fall times, but this is not essential, and the

procedure can be extended easily to handle rise and fall transitions separately.

A summary of the results is shown in Table 2 for 0.25�m technology parameters. The algorithm was

used to reorder eight di�erent examples, keeping the number of tracks the same as that in the original

solution that was obtained from a Yoshimura and Kuh channel router [16] that optimizes the height of

the channel. The eight examples are taken from [16], with the last two examples being the routing of

the Deutsch di�cult example without and with doglegs, respectively.

The second column of Table 2 shows the number of nets for each example. The third column shows

the improvement in the objective function at the end of the simulated annealing run, as compared to

the objective function value in the original channel. The CPU times for the run are shown in the next

column.

The optimization was carried out on the basis of the Elmore delay model, modeling the driver as a

linear resistor. Due to the well-known de�ciencies of the Elmore model and the limitations of the linear

resistor model for a driver, we validated the solution using SPICE, with a 0.25�m BSIM3 model for the

drivers and wired appropriately modeled using coupling capacitances and capacitances to ground. The

improvement provided by the �nal solution over the initial solution according to this model is shown in

the next-to-last column of Table 2. It is seen that our optimizer provides improvements in each case,

and can give improvements of over 34%. It is expected that the essence of this approach can be used

to obtain even larger improvements for longer wires, by optimization over multiple channels or routing

regions.

To obtain an idea of how much the optimal solution di�ers from the worst solution, the simulated

annealing algorithm was executed again, this time with the objective of maximizing the objective func-

tion. At the end of this run, we have a reordered channel where the e�ects of crosstalk correspond to the

worst possible scenario. The di�erence between this objective function value and the objective function

value obtained earlier provides an idea of how much improvement is possible between the most optimal

and the least optimal channel routing solution. Note that both of these solutions are valid solutions

with the same number of tracks, and it is quite possible for a CAD tool that is not crosstalk-conscious to

come up with the worst-case solution. The last column of Table 2 shows the improvement provided by

the result of our technique over this worst-case solution, with the numbers corresponding to the results

of SPICE simulations. These �gures make the case in favor of the use of crosstalk-conscious criteria in

routing.

Our claim of a linear number of updates in practice is validated by the fact that the number of

times that the outer and inner loops of Algorithm Update Switching Times are invoked is bounded

15

Table 2: Results of Channel Reordering on Timing

Number of Improvement CPU Improvement Improvement over
nets over initial Time over initial worst case

(our metric) (SPICE) (SPICE)

yk1 21 20.9% 9s 9.7% 15.6%
yk3a 45 12.2% 22s 3.9% 7.1%
yk3b 47 14.4% 68s 5.9% 14.0%
yk3c 54 12.5% 66s 4.2% 10.6%
yk4b 54 17.4% 87s 11.4% 17.3%
yk5 60 28.1% 101s 20.6% 36.6%
Deutsch1 72 35.2% 124s 34.6% 74.7%
Deutsch2 72 8.8% 201s 7.0% 9.6%

by a small constant, for all of the circuits that we tried. Since the inner loops have O(n) complexity,

the complexity is, in practice, dominated by the O(nlogn) sorting process for the nets required by the

ordering heuristic in Section 3.3. For larger systems, a more approximate sorting procedure may be

used to ease this bottleneck; in this work, the run times were small enough that we did not need to

resort to this.

The e�ect of utilizing additional tracks to reduce the crosstalk is shown in Figure 7. All numbers

in this �gure are calculated from the SPICE validation procedure described above. As expected, the

cost function reduces with the addition of more tracks. Note that in Table 2, Deutsch1 shows larger

improvements than Deutsch2 since it uses a larger number of tracks and has greater
exibility in

reordering for crosstalk reduction. The graph shows that as more
exibility is permitted to Deutsch2

by increasing the number of tracks, signi�cantly larger delay reductions are possible.

0

10

20

0 1 2 3

P
e
r
c
e
n
t
a
g
e

a
v
e
r
a
g
e

d
e
l
a
y

r
e
d
u
c
t
i
o
n

Number of extra tracks

Reduction over original

Figure 7: E�ect of increasing the number of tracks on example Deutsch2.

16

6 Conclusion

A new provably polynomial time iterative procedure for determining the e�ect of crosstalk on delay

has been proposed. From the proof of Theorem 1, it can be seen that it is applicable under any delay

model where an increase in the e�ective coupling capacitance causes an increase in the delay, and vice

versa. This is a property satis�ed by any reasonable delay model. The method was applied to reduce

crosstalk in channel routing, and the results were demonstrated to give visible improvements. It is

anticipated that this method will be useful in other applications for crosstalk optimization.

With regard to future work, it may be possible to adapt this work to a full-chip noise analysis scenario,

where a change in the switching time can impact the arrival time at the inputs of other gates in the

circuit, and a ripple e�ect is possible. Starting at the inputs, the wires can be processed in a PERT-like

fashion, using current values of arrival times to determine the e�ective coupling capacitance, continuing

until convergence.

It should be pointed out that noise reduction and delay reduction are correlated objectives, in that

both can be reduced by reducing the distance along which two simultaneously switching wires run

adjacently. The objective of this work has been to provide a technique that directly measures the

e�ect of crosstalk on delay. It is expected that it could be used in conjunction with noise metrics to

simultaneously satisfy requirements on delay and noise.

Acknowledgements

The author would like to thank the anonymous reviewers for their suggestions.

References

[1] D. H. Xie and M. Nakhla, \Delay and crosstalk simulation of high-speed VLSI interconnects with

nonlinear terminations," IEEE Transactions on Computer-Aided Design, vol. 12, pp. 1798{1811,

Nov. 1993.

[2] T. Gao and C. L. Liu, \Minimum crosstalk channel routing," in Proceedings of the IEEE/ACM

International Conference on Computer-Aided Design, pp. 692{696, 1993.

[3] T. Gao and C. L. Liu, \Minimum crosstalk switchbox routing," in Proceedings of the IEEE/ACM

International Conference on Computer-Aided Design, pp. 610{615, 1994.

[4] K. Chaudhary, A. Onozawa, and E. S. Kuh, \A spacing algorithm for performance enhancement and

cross-talk reduction," in Proceedings of the IEEE/ACM International Conference on Computer-

Aided Design, pp. 697{702, 1993.

[5] D. A. Kirkpatrick and A. L. Sangiovanni-Vincentelli, \Techniques for crosstalk avoidance in the

physical design of high-performance digital systems," in Proceedings of the IEEE/ACM Interna-

tional Conference on Computer-Aided Design, pp. 616{619, 1994.

17

[6] T. Xue, E. S. Kuh, and D. Wang, \Post global routing crosstalk risk estimation and reduction," in

Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, pp. 302{309,

1996.

[7] H. Zhou and D. F. Wong, \Global routing with crosstalk constraints," in Proceedings of the

ACM/IEEE Design Automation Conference, pp. 374{377, 1998.

[8] A. Devgan, \E�cient coupled noise estimation for on-chip interconnects," in Proceedings of the

IEEE/ACM International Conference on Computer-Aided Design, pp. 147{151, 1997.

[9] K. Shepard, V. Narayanan, P. C. Elmendorf, and G. Zheng, \GlobalHarmony: Coupled noise

analysis for full-chip RC interconnect networks," in Proceedings of the IEEE/ACM International

Conference on Computer-Aided Design, pp. 139{146, 1997.

[10] P. D. Gross, R. Arunachalam, K. Rajagopal, and L. T. Pileggi, \Determination of worst-case ag-

gressor alignment for delay calculation," in Proceedings of the IEEE/ACM International Conference

on Computer-Aided Design, pp. 212{219, 1998.

[11] K.-S. Jhang, S. Ha, and C. S. Jhon, \COP: A Crosstalk OPtimizer for gridded channel routing,"

IEEE Transactions on Computer-Aided Design, vol. 15, pp. 424{429, Apr. 1996.

[12] L. Gal, \On-chip cross talk - the new signal integrity challenge," in Proceedings of the IEEE Custom

Integrated Circuits Conference, pp. 251{254, 1995.

[13] F. Dartu and L. T. Pileggi, \Calculating worst-case gate delays due to dominant capacitance

coupling," in Proceedings of the ACM/IEEE Design Automation Conference, pp. 46{51, 1997.

[14] J. Cong, \Challenges and opportunities for design innovations in nanometer technologies," tech.

rep., Semiconductor Research Corporation, Research Triangle Park, NC, 1997. (available at

http://www.src.org/cgi-bin/deliver.cgi/p s98005.pdf?/pubs/opendocs/p s98005.pdf).

[15] S. S. Sapatnekar and S. M. Kang, Design Automation for Timing-Driven Layout Synthesis. Norwell,

MA: Kluwer Academic Publishers, 1993.

[16] T. Yoshimura and E. S. Kuh, \E�cient algorithms for channel routing," IEEE Transactions on

Computer-Aided Design, vol. CAD-1, pp. 25{35, Jan. 1982.

[17] N. Sherwani, Algorithms for VLSI Physical Design Automation. Norwell, MA: Kluwer Academic

Publishers, 1995.

18

[18] J. Lillis, C. K. Cheng, and T.-T. Lin, \Optimal wire sizing and bu�er insertion for low power

and a generalized delay model," in Proceedings of the IEEE/ACM International Conference on

Computer-Aided Design, pp. 138{143, 1995.

[19] L. P. P. van Ginneken, \Bu�er placement in distributed RC-tree networks for minimal Elmore

delay," in Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 865{

867, 1990.

[20] A. Tucker, Applied Combinatorics. New York, NY: Wiley and Sons, 2nd ed., 1984.

[21] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms. New York, New York:

McGraw-Hill Book Company, 1990.

[22] S. Kirkpatrick, C. Gelatt, Jr., and M. Vecchi, \Optimization by simulated annealing," Science,

vol. 220, pp. 671{680, May 1983.

19

Appendix A: Detailed Calculations for the Illustrative Example of Section 2.2

This section presents the detailed calculations associated with the illustrative example of the circuit

in Figure 2. The drivers are modeled as linear resistors with resistances as shown in the picture, and

the wires have a resistance, self-capacitance (area+fringing capacitance) and coupling capacitance of

0.02
=�m, 0.07 fF/�m and 0.07 fF/�m, respectively, in accordance with the numbers in [14]. Each

wire is represented by a �-model with segments of length 1000 �m. The inputs to the drivers of wire

1, wire 2 and wire 3 switch in the intervals [0.25ns,1.0ns], [0.1ns,0.2ns] and [0.0ns,0.0ns], respectively;

note that the last is a single point.

If we consider only the self-capacitance of the wire, then each wire would incur an additional delay

of Rdriver � (Cwire + Cload) + Dwire under the Elmore model, where Rdriver is the resistance of the

driver, Cwire and Cload are the capacitances of the wire and at the load, respectively, and Dwire is the

Elmore delay of the wire. For wire 1, this corresponds to 1K�(70fF + 10fF) + 20 � (35fF + 10fF) =

0:0809ns. This updates the switching interval for wire 1 to [0.3309ns,1.0809ns]. Similarly, the e�ect of

the self-capacitance on wires 2 and 3 would update their switching intervals to [0.3432ns,0.4432ns] and

[0.1609ns,0.1609ns], respectively.

The e�ect of coupling capacitance must now be considered, and this is done iteratively since we do

not know a priori whether an e�ective coupling capacitance of 0; Cc or 2Cc should be considered:

Iteration 1 : For wire 1, as described in Section 2.2 with the aid of Figure 3, the earliest switching

time is updated to 0.3432ns. Similarly, the latest switching time corresponds to time 1.0809ns,

where a coupling capacitance of Cc is seen since there is no simultaneous switching (based on the

currently calculated intervals) with the neighboring wire. This updates the switching times to the

interval [0.3432ns,1.2223ns].

For wire 2, the earliest switching time at 0.3432ns must be updated since there is no simultaneous

switching with wire 3 (see Figure 3), and this results in e�ective coupling capacitances of 0 with

wire 1 and Cc with wire 3. This updates the earliest switching time to 0.5539ns. Similarly, the

latest switching time at 0.4432ns is updated since it experiences an e�ective coupling capacitance of

2Cc with wire 1 and Cc with wire 2, resulting in a revised switching interval of [0:5539ns; 1:0753ns].

Wire 3 sees an e�ective coupling capacitance of Cc with wire 2, and its switching interval is

updated to [0.1609ns,0.1609ns].

Iteration 2 : If the resulting intervals above were consistent with the assumptions on coupling capac-

itance, no further iterations would be necessary. However, we �nd that the updated intervals of

wire 1 were dependent on the switching intervals of wire 2, which were subsequently updated. In

reality, the assumption of an e�ective coupling capacitance of 0 at time 0.3432ns was incorrect,

and therefore, an update to the earliest switching time of 0.3309ns with Cc would result in the

20

correct value, namely, 0.4016ns. Similarly, it can be found that the latest switching time must be

updated, and the resulting switching interval for wire 1 is now [0.4016ns,1,3623ns].

The iterations stop here since the values of the switching intervals are consistent with the values of the

equivalent coupling capacitances.

21

