IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. XX, NO. Y, MONTH 2000 1

Timing-driven Partitioning and Timing Optimization of
Mixed Static-Domino Implementations

Min Zhao and Sachin S. Sapatnekar

Abstract— Domino logic is a circuit family that is well-
suited to implementing high-speed circuits. Synthesis of
domino circuits is more complex than static logic synthesis
due to the non-inverting nature of the logic and the com-
plex timing relationships associated with the clock scheme.
In this paper, we address several problems along a domino
synthesis flow. We mainly consider the problem of parti-
tioning a circuit into static and domino regions under timing
constraints. The algorithm is extended to develop a method
for partitioning domino logic into two phases, with inverters
permitted between the two phases, and then to a flow for
general two-phase static-domino partitioning. We also ad-
dress a timing verification and sizing optimization tool for
circuits containing mixed domino and static logic.

Keywords— Domino logic, logic duplication, partitioning,
sizing, static logic, technology mapping, timing, VLSI.

I. INTRODUCTION

Domino logic is an effective circuit configuration for im-
plementing high-speed logic designs. Despite some draw-
backs, such as its susceptibility to charge-sharing and noise
and its non-inverting property, it has made important con-
tributions in the design of low cycle time microprocessor
design and other high performance designs [1], [2]. Domino
circuits offer the advantages of faster speed and glitch-free
operation.

A representative domino gate configuration is shown in
Figure 1. When the clock input is low, the gate precharges
the dynamic node d to logic 1. In the next half-cycle, when
the clock goes high, the domino gate evaluates, i.e., the
dynamic node either discharges or retains the precharged
state, depending on the values of the input signals. The
two-step mode of operation with a precharge and an eval-
uate phase causes the timing relationships in domino logic
to be more complex than those for static logic.

[

Telkf Telk,r Tokf+P

Fig. 1. A typical domino circuit

In the past, most domino circuits have been manually

This work was supported in part by the Semiconductor Research
Corporation under grant 99-TJ-692.

M. Zhao was with the Department of Electrical and Computer En-
gineering, University of Minnesota, Minneapolis, MN 55455, USA.
She is now with Motorola SPS, Austin, TX 78729, USA

S. S. Sapatnekar is with the Department of Electrical and Computer
Engineering, University of Minnesota, Minneapolis, MN 55455, USA.

designed and automated synthesis tools for domino logic
have been scarce. Recent research has led to several pa-
pers related to domino synthesis and optimization. In
[3], a domino logic synthesis flow including logic optimiza-
tion and technology mapping is described, and in [4], [5],
domino gate synthesis methods are described. The work
in [6] addresses the problem of output phase assignment
to minimize the duplication overhead required to make a
network unate so that it may be implemented in domino
logic. Several works present novel clock schemes for domino
circuit design, such as methods for overcoming the non-
inverting property of domino logic [1], and making the de-
sign more skew tolerant [7]. Other published research in
this area includes methods for partitioning between domino
and static gates [8] and for timing verification of domino
logic [8], [9], [10], [11], [12].

In this paper, several stages of a domino synthesis and
optimization flow, outlined in section 2, are discussed. In
section 3, an efficient timing-driven static-domino parti-
tioning algorithm is presented. The algorithm is then ex-
tended to two-way partitioning for domino logic and the ap-
plications of the two algorithms to various clocking strate-
gies are discussed. In section 4, we describe a timing anal-
ysis and sizing optimization tool. Finally, concluding re-
marks are presented in Section 5.

II. DOMINO LOGIC SYNTHESIS FLOW

Due to issues arising from the precharge and evaluation
mechanism of domino logic and its non-inverting property,
synthesizing domino logic is more complicated than stan-
dard two-stage static logic synthesis methods that perform
technology-independent optimization, followed by technol-
ogy mapping.

To build a high-performance domino circuit taking these
factors into account, we suggest the synthesis flow of Fig-
ure 2 instead of a traditional library based synthesis flow.
Step 1 corresponds to a standard technology-independent
optimization. In Step 2, according to timing specifications
and the area or power cost function, the input network is
partitioned into the part implemented as static logic and
the part implemented using domino gates. If domino gates
are used, the choice of a clock scheme, and the partition-
ing of domino gates between clock phases is essential for
correct and efficient performance of domino gates.

In Step 3, a technology mapping method that considers
the characteristics of domino logic is applied. Due to the
large number of candidate domino gate types, the use of
a parameterized library and a library layout synthesizer is
considered a good choice for this step [3], [4], [5].

While coarse timing optimization measures may be built

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. XX, NO. Y, MONTH 2000 2

[Logic Description(BLIF,Verilogﬂ

L

Technology-independent optimization

Clock strategy|

[Static-domino partitioning

Timing Constraints

STEP 1.

STEP 2: P
Partitioning between clock phases

i

[Parameterized library technology mapp}.g

E—

STEP 4: [Timing verification and optimizatio

!

[Noise verification and optimizatio|

Physical desig%

Fig. 2. Domino logic synthesis flow

STEP 3:

Library layout
synthesizer

STEP 5:

STEP 6:

into the preceding steps, there is a need for a rigorous tim-
ing verification step, followed by timing optimization to
meet the set of applied constraints. This is performed in
Step 4, where, for example, optimization methods such as
transistor sizing are applied to meet long path constraint
violations.

After these procedures, noise verification and optimiza-
tion, performed in Step 5, is necessary. This is particularly
important since domino circuits can be susceptible to noise
effects such as charge sharing. This circuit is then passed
on for physical design in Step 6, with iterations being per-
formed until timing closure.

In this paper, we develop a static/domino partitioning
algorithm for Step 2 of the flow, discuss briefly the tech-
nology mapping problem of Step 3, and then address issues
related to Steps 4 of the flow by proposing a transistor siz-
ing procedure.

III. TIMING-DRIVEN PARTITIONING OF DOMINO AND
MIXED STATIC-DOMINO CIRCUITS

A. Introduction

After the technology-independent logic design step, a
specified technology must be chosen to implement the in-
put logic network. Both static and domino implementa-
tions offer various advantages. While static logic is com-
monly used for its robustness, its speed may be inadequate
to satisfy the clocking constraints. Although various opti-
mization methods such as sizing and buffer insertion can
be used to increase the speed of the circuit, the area cost
may increase exponentially beyond a certain point, and it
is worthwhile to alter the logic style to meet such strin-
gent constraints. Domino circuits typically provide higher
speeds than static logic while having a higher clock rout-
ing overhead and are less noise-tolerant. Depending on the
amount of logic duplication required to make the network
unate, domino circuits may use a larger or smaller number
of transistors than static circuits. Therefore, for optimal-

ity, a determination must be made as to which parts of the
circuit should be implemented in static logic, and which
parts using domino logic. This must be carried out while
keeping the requirements of the specified clock scheme in
mind.

In this section of the paper, we describe an automated
design strategy to solve the following problems with the
goal of minimizing an objective function such as area or
power, under a set of timing constraints:

o We partition a circuit into static and domino regions,
under the same clock phase. Note that since one of the
partitions may be empty, the two extremes of constructing
the circuit entirely using domino logic, or entirely using
static logic, are also feasible solutions to the problem.

¢ Under a two-phase clocking scheme, we address the prob-
lem of partitioning the domino region to determine which
gates are to be clocked by each clock phase.

« For a two-phase clocking discipline, we utilize the solu-
tions for the above two problems to arrive at a flow that
partitions a circuit into a common two-phase clocking strat-
egy of the type illustrated in Figure 3.

As will be described through an example in Section ITI-
B, for a partitioned circuit, the logic duplication penalty
for the domino segment depends on the location of the cut
between the partitions. Our method finds a partitioning
solution that takes this into account while minimizing the
an objective function.

To the best of our knowledge, the only published work
addressing a related problem is [8], which outlines a static-
domino partitioning procedure. Their work first imple-
ments the input logic using static gates, and then finds
a critical path and its fanin transition region. A greedy
approach is taken and the logic in this region is then re-
mapped to domino gates to maximize the use of domino
logic gates. No experimental results were presented in this
work. In our paper, the problem is approached systemat-
ically, and a network flow based algorithm that provides
an optimal solution, within the accuracy limitations of the
cost estimation, is proposed. Our procedure is based on
the following observations that differentiate it from [8]:

o Logic duplication can cause a large area penalty for large
combinational circuits [3], [4]. A proper choice of the par-
titioning cut can reduce the duplication cost. Our parti-
tioning procedure automatically creates the largest possible
unate region within the domino partition.

o The critical path and its fanin transition cone may form a
large part of the input, or possibly even the entire network
(for a circuit with one primary output). Implementing this
in domino logic as in [8] may be costly and unnecessary,
and as long as the timing constraints are satisfied, it may
not be essential to maximize the use of domino gates in the
fanin cone.

o The work in [8] attempts to greedily minimize the num-
ber of domino transistors by utilizing them only in the crit-
ical region. We use an estimator that directly incorporates
the area cost (including the duplication penalty) for static
gates and domino gates to find optimal combinations be-
tween domino and static gates that minimize the overall

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. XX, NO. Y, MONTH 2000 3

cost function, while meeting the performance targets.

B. Clock scheme and motivation
B.1 Clock scheme

Single-phase domino logic is impractical since precharg-
ing all domino gates simultaneously would result in wasted
time during which no useful computation occurs. There-
fore, domino circuits are typically partitioned into multi-
ple phases and the design discipline imposes one of vari-
ous allowable clocking strategies [1], [7], [8], [13], [14], [15].
For example, the use of two phases is common [13] where
the precharge of one phase is overlapped with the evaluate
of the other phase, as illustrated in Figure 3. The cycle
boundaries in the figure may be latches active in @, or
flip-flops launched at leading edge of ®,. If latches are
used, then latches active in @5 must be inserted at some
position A, as illustrated in the figure. In the remainder of
this paper, when we refer to a two-phase clocking scheme,
we will denote the clock phases by the symbols ®; and ®.

|

Domino chain
Evauatedin ®1
Precharged in ®2

CLK

Domino chain
Evaluated in ®2
Precharged in ®1

Cycle boundaries O

O
8
i
e
2
2
)

Latchonin ®2

Static logic Lo Static logic

Fig. 3. A common clocking strategy for domino circuits

B.2 Problem definition and partitioning considerations

The problems of static-domino partitioning and domino
partitioning between the two phases are critical problems
to be solved in determining the optimal circuit implemen-
tation. We define these two problems concisely as follows:
Static-domino partitioning Given an optimized combina-
tional circuit and delay specifications on the outputs of
the network, implement the nodes in the network using ei-
ther domino logic gates or static gates such that the cost is
minimized, assuming them all to be within the same clock
phase.

Two-way domino partitioning Given an optimized combi-
national circuit to be implemented entirely in domino logic
and a two-phase non-overlapping clock scheme that per-
mits inverters to be placed at the interface between the
two phases, partition the boolean network into two clock
phases such that the cost of domino implementation is min-
imized.

We will use the solutions to the above problems later in this
paper to solve a more general statement of the partitioning
problem in Section ITI-F.

For the problem of static-domino partitioning, we assume
that we are provided with a combinational logic network
description as an input, and that it can be partitioned into
a static and a domino region within the same clock phase.
Under this model, an additional precedence constraint that

must be satisfied states that no static logic gate is permit-
ted to fan out to a domino gate in the same clock phase
when level-clocked latches are used within the static logic.
A violation of this requirement would lead to functional
errors in the domino logic [8]. The timing constraint for
this situation is that the partitioned circuit must have its
outputs ready at the end of the clock phase.

For the problem of two-way domino partitioning, we as-
sume that the input is a combinational logic network that
is to be partitioned so that its primary outputs are avail-
able in one clock cycle. This imposes a similar precedence
constraint, where a domino gate in ®, is not permitted
to fan out to a domino gate in ®;. The two-phase non-
overlapping clocking scheme forms a hard edge that pre-
vents time borrowing between the phases. This results in
a timing constraint that states that the delay within each
phase must be restricted to a half-cycle.

The timing-driven partitioning method must consider
two factors: the timing constraints, described above, and
the cost of the implementation, measured in terms of the
area or the power. In our experimental results, the area is
modeled as the total number of transistors, but it is easy to
incorporate a factor that models the clock routing penalty
by adding a factor that is proportional to the number of
domino gates.

An important consideration in the area cost relates to the
requirement that only unate functions can be implemented
in domino logic, as a consequence of the non-inverting na-
ture of the domino logic family. Therefore, intervening in-
verters are handled by implementing a logic function and
its negation separately, which duplicates the cost of logic
implementation for that logic cone [6]. However, we ob-
serve that the duplication cost can be reduced by parti-
tioning, and our formulation directly incorporates the cost
of duplicating non-unate logic within a domino region in
the cost function. To see this, consider the example shown
in Figure 4.

Lri R A RAD

Fig. 4. An example for static-domino partitioning

In Figure 4, assume that the segment labeled “Part 1”
corresponds to a domino implementation, while “Part 2”
represents a static CMOS implementation. Two possible
cut lines are shown in the figure. If cut A is used, then both
a and @ must be implemented as unate functions, resulting
in a duplication of the fanin cone of a, doubling the cost of
implementing this cone. However, if cut B is used instead,
then there is no need to duplicate the fanin cone of a as
the inverter may be implemented in static logic. Similarly,
under the scenario where Part 1 corresponds to domino
logic driven by phase ®; of a two-phase clock, and Part 2

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. XX, NO. Y, MONTH 2000 4

corresponds to phase ®,, with latches being placed at the
cut, an identical argument holds, with the difference that
the inverter for cut B would now be implemented using the
Qbar output of the inserted latch.

C. Technology mapping for domino logic

Our static-domino partitioning algorithm requires the
use of a technology mapper that estimates the cost of a
static or a domino implementation for a region of the cir-
cuit. In this section, we will briefly describe the algorithm
that is used in this work, though we emphasize that the
partitioning method can be used with any other mapping
algorithm.

Technology mapping is an optimization phase at the logic
synthesis stage that binds the gates in the circuit network
to the cells of a specific technology library. Although tech-
nology mapping for domino logic can follow the commonly-
used static technology mapping procedure based on dy-
namic programming, special features of domino style gates
such as large NMOS pull-down network, flexible gate con-
figurations and logic duplication, demand further consider-
ation. Compared to the mappers that simply migrate the
algorithms for static logic, a procedure that makes use of
these properties of domino logic will significantly improve
the performance in both area and delay [16].

Various techniques for domino mapping have been intro-
duced in the past [1], [3], [4]. The work in [3] applied the
concept of a parameterized library for domino mapping,
and our mapper uses this same idea. In contrast with a
conventional library that consists of a small set of prechar-
acterized cells, a parameterized library is defined as a col-
lection of gates that satisfy the constraints on the width
(maximal number of parallel chains) and height (maximal
number of series chains) of the pull-down or pull-up im-
plementations of a gate. Particularly in a domino envi-
ronment, where pulldown networks typically have a large
width and height, the number of possible gates in a pa-
rameterized library can be extremely large [17]. Therefore,
it is infeasible to pre-layout and precharacterize all of the
large number of possible configurations that belong to the
library, and after the circuit is technology mapped on to
the parameterized library, the layout of the required library
cells must be produced by an on-the-fly cell generator. The
greater flexibility afforded by such a technique in selecting
cells from this virtual parameterized library can overcome
the deficiencies associated with the above limitation [18].

In an environment that uses a parameterized library,
we state the definition of the domino technology map-
ping problem as: Given an optimized boolean network and
constraints on the width and height of the domino gates,
implement the nodes in the network with domino logic
gates, such that the objective cost is minimized. A fast
structural matching technique based on dynamic program-
ming [16] is applied for fast parameterized library mapping.
We explore the design space by storing the sub-solutions
for all possible [height, width] combinations from [1,1] to
[H,W], where H is the maximal height of domino gates
and W is the maximal width of domino gates. Each sub-

solution is optimal for its corresponding substructures. The
basic structural mapping algorithm is further augmented
by techniques that incorporate the use of domino-specific
circuit structures such as dual-monotonic domino gates,
dynamic-static gates [19], and multiple-output gates into
the technology mapping framework.

D. Timing-driven static-domino partitioning
D.1 Algorithm outline

The two subproblems listed in Section III-B.2 can be
solved using similar algorithms, using different cost formu-
lations. In this section, we will illustrate the algorithm for
static-domino partitioning. The algorithm applies a DAG
technology mapper based on dynamic programming, a tim-
ing analysis method based on PERT, and a maximum flow
algorithm to realize a timing-driven two-way partitioning.

The input to the algorithm is an arbitrarily optimized
two-input AND-OR DAG network. In outline, the algo-
rithm consists of the following steps that are described in
detail in the remainder of this subsection:

A. Perform static technology mapping and domino tech-
nology mapping separately on the entire logic network to
determine a cost estimate for every vertex.

B. Find the candidate cut nodes in the network; a candi-
date cut node is defined as a node that satisfies the cri-
terion that a cut passing through it will not violate the
timing specification.

C. Build the flow network from the candidate cut nodes,
assign edge capacities, and apply a maximum flow algo-
rithm to the network to obtain a minimal cost cut [20].

D.2 Step A: Cost estimation

The first step of partitioning is to perform static and
domino mapping on the logic network to obtain cost esti-
mates. The partitioning between domino and static re-
quires a cost comparison of each vertex of the network
implemented using a domino or a static implementation.
While we would like to perform this determination on the
same network for purposes of storage efficiency, this task is
complicated by the fact that technology mapping of domino
logic requires the input network to be unate; after unating,
the topology of the new network will be different from the
original network on which static mapping is performed.
Moreover, inverters may be pushed through the network
using De Morgan’s laws, and therefore their location is not
fixed. Depending on where the inverters are placed, the
cost of logic duplication and the positions at which logic
duplication occurs could vary, and a good partitioning al-
gorithm should consider all such possibilities in arriving at
a partition.

To address these issues, we introduce the idea of a twin
network, Niyin, that represents the original network. Each
vertex in Ny, corresponds to a node in the original net-
work, and stores information on the implementation of
both the true and complemented forms of the logic function
realized at that node; these will be referred to as the posi-
tive and negative polarities, respectively. An edge between

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. XX, NO. Y, MONTH 2000 5

two nodes can have two polarities: if an inverter exists be-
tween these nodes in the original network, then the edge
polarity in the Ny, is negative; otherwise, it is positive.
It is not necessary to store inverters in the original net-
work as nodes in the twin network; rather, these may be
merged into the polarity of an edge as shown in Figure 5,
where inverter node d is collapsed into the edge between
a and b by setting its polarity to be negative. The lists
of positive and negative polarity fanouts of each vertex in
Niwin are maintained, and in case of domino mapping, the
duplication of any fanout is flagged.

ﬁ& \
!

I: inverter node
N: other type of node

@ (b)

Fig. 5. Inverter elimination from the original network (a) in the twin
network (b)

Once the technology mapping results on Ny, are avail-
able for both for static and domino implementations, cost
estimations are available for both the static and domino
implementation at each vertex.

Definition 1: We define the following quantities at each
node N.

p-delayq(N)[n_delayq(N)] :
the positive [negative] polarity delay from the inputs
to node N using a domino implementation.
p-delays(N)[n-delays(N)]:
the positive [negative] polarity delay from the inputs
to node N using a static implementation.
p-ararg(N)[n_areaqs(N)] :
the area cost of implementing the positive [negative]
polarity logic of node N using domino gates.
p-arars(N)[n_areas(N)] :
the area cost of implementing the positive [negative]
polarity logic of node N using static gates.

The cost estimation at each vertex includes both delay
and area information, and the above quantities are calcu-
lated at each node. Note that p_areas(N) and n_areas(N)
can differ by at most two since one can be obtained by
placing an inverter at the output of an implementation
of the other. Therefore, storing only one of the two val-
ues will lead to a negligible loss in accuracy. However,
for domino circuits, due to the requirement of the unate-
ness property, the positive and negative polarities of a
node are implemented separately, which may lead to a
significant difference in their values. We heuristically use
delayqs(N) = min(p_delay,(N),n_delays(N)) as the largest
delay from the inputs to node IV using a domino implemen-
tation and delays(N) = min(p_delays(N),n_delays;(N)) as
the largest delay from the inputs to node N using a domino
implementation.

D.3 Step B: Determining the candidate cut nodes

The objective of the first step of partitioning is to ob-
tain a coarse cost estimate for delay and area of same net-
work for both static and domino implementations. Once
this cost estimation has been obtained for each vertex, the
next task is to determine the region that can be parti-
tioned without violating the timing constraints. We will
now introduce the idea of a candidate cut node, illustrated
in Figure 6.

OUTPUT

Vertex v

Ddi,v)
INPUT
Fig. 6. Determination of candidate cut nodes

Assume that v is some vertex in Nyyin. If the cutset
passes through the node, then the input transition cone
of v will be implemented by domino gates and the output
transition cone of v will be implemented by static gates.
Let Dy(i,v) be the largest delay from the inputs to node v
using a domino implementation, and D, (v, 0) be the largest
delay from the node v to outputs through paths using static
logic. Then the maximal delay from the input to output
that passes through the cut at node v will be Dy(i,v) +
Dg(v,0). If this value is smaller than the specified delay,
Tspec, then the cut through node v is feasible; if not, it is
certain to violate the timing constraint. The procedure of
finding candidate cut nodes makes this determination at
each vertex.

The value of Dy(i,v) is directly obtained from delayq(v)
from the technology mapping phase. The value of D(v,0)
can be obtained using a PERT-like procedure [21] to tra-
verse from the outputs of the network towards its inputs.
The algorithm for finding candidate cut nodes is as follows:

ALGORITHM: Find_candidate_cut_nodes
For all nodes i, D4(i,0) = 0;
Perform a PERT traversal from outputs to inputs.
At each node v

If Dys(v,0) + delayq(v) < Tspec
v is a candidate cut node;
node_delay = min[delay,(v) — delays(i)],
Vi € inputs(v);
For each input i of v
D,(i,0) = max[D,(i,0),node_delay + Dy (v, 0)];

D.4 Step C: Finding the minimum cut

The objective of Step B is to find the candidate cut
nodes of input network that satisfy the imposed timing
constraints. After all of the candidate cut nodes have been
found, a maximum flow network, whose minimum cut cor-
responds to minimal cost of mixed domino-static imple-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. XX, NO. Y, MONTH 2000 6

mentation, is built. The max-flow min-cut algorithm is
then applied to this network to find the minimum cut. This
procedure consists of the following steps:
I. Maximal flow capacity assignment

The DAG technology mapping procedure performs the
mapping of a Boolean network to the gates in a param-
eterized library. For a multi-fanout node in the network,
the area contribution of the node is divided by the fanout
count of the node, as in [22], so that the area value of
each node, area(N), is the approximate area contribu-
tion of its fanin transition cone. Therefore, for any cut
on the graph, the area cost in the region from the pri-
mary inputs to each cut set node can be approximated as
Y iccutser area(N;), where the value of areaq(N;) is set to
min[p_areaq(N),n-areaqs(N)]. In the example of Figure 7,
if nodes a, b, c and d form the cut vertices, then the area of
region Y is calculated as areaq(a) + areaq(b) + areaq(c) +
areaq(d).

OUTPUT

Region Y

INPUT
Fig. 7. Evaluating the cost of a cut

For a given cut that divides the network into two parts,
referred to as Region X (closer to the inputs) and Re-
gion Y (closer to the outputs), the cost can be calculated
as follows. Assume that the area cost of the entire net-
work implemented in static logic is A (sum), and the area
costs for Region X to be implemented in static and domino
logic are, respectively, As(X) and A4(X). Then the to-
tal cost after partitioning, with Region X implemented
in domino logic and Region Y implemented with static
gates is As(sum) — As(X) + Ag(X). Since Ag(sum) is
constant over all partitions, the objective of minimizing
cost of mixed implementation is equivalent to minimizing
—A(X) + Aa(X) = D courser (areaq(i) — areas(i)).

Based on this, we reduce the problem to one of finding a
minimum cost vertex cut on a network where the capacity
associated with each vertex i is set to areaq(i) — areas(i).
II. Building the maximum flow graph

The maximum flow algorithm is a well-established ap-
proach for finding minimum cost cuts. The procedure of
building the maximum flow network can be illustrated on
the example circuit of Figure 4.

After performing static and domino mapping on Nyyin
and determining the candidate cut nodes, we obtain an
example circuit shown in Figure 8(a). The shaded part
of the network shows the region containing the candidate
cut nodes. There are two weights on every node, which
represent the result of domino mapping, areaq(i) and the
result of static mapping, areas (i), respectively.

Finding the minimum cost cut on the above network is
equivalent to finding the minimum cost cut on the maxi-

[domino cost - static cost]
AN k\

f® \[\34-3‘3]

21-21
L2y
&) 118-14] S [30-34] n

g P;%] f@;&@ 3?[8-8]
©
/N

(a) (b)
Fig. 8. Boolean network after mapping and candidate cut node
decision

mum flow graph shown in Figure 8(b). In Figure 8(b), the
nodes in the shaded region that are closest to the primary
inputs of Figure 8(a) are connected to the source node,
and the nodes of the region that are closest to the primary
outputs in the original network are connected to the sink
node. Each vertex in Figure 8(a) is split into two vertices
connected by an edge of capacity areaq(i) — areas(i).

However, before the standard max-flow min-cut algo-
rithm can be applied on the network, two conditions in
the network must be considered:

1. The vertex cut must maintain the predecessor con-
straints that dictate that no static node can feed a domino
node, unless that logic is related to the output inversion
function of a domino gate. A solution to this problem is
provided in [23], [24].

2. Standard maximum flow algorithms cannot handle
edges with negative capacities, and the network must be
modified suitably.

To solve the problem, we heuristically transform the
vertex-cut maximum flow network into an edge-cut max-
imum flow network and then translate it into a standard
maximum flow network with nonnegative edge capacities.
The procedure consists of the following steps:

1. Building the edge cut maximum flow network.

If (u, v) is an edge originating at the candidate cut node w in
Niwin, the capacity of the edge is heuristically assigned to
Cinit = (areaq(u)—areas(uw))/ fanout(u), where fanout(u)
is fanout number of node u.

2. A positive initial flow is injected into the source node,
and the initial flow is distributed into the whole net-
work. The flow at each node is calculated by a PERT-
like traversal on the DAG, with the flow from node u
to a fanout node v being calculated as Flow(u,v) =
(Xicinput(u) Flow(i))/ fanout(u). Since this is a fea-
sible flow, updating the capacity C' of each edge as
Crodified(uv) = Cinit(uv) — Flow(uv) leaves the identity
of the minimum cost cut unchanged. This procedure is re-
peated until the value of Cy04ifica for each edge is nonneg-
ative; it is easily verified that this method must converge.
3. For each edge (u,v) in the graph, a new edge (v,u) with
a capacity of oo is introduced into the graph to force the
predecessor constraint.

The three steps described above are illustrated, respec-
tively, by Figures 9(a), 9(b), and 9(c). The max-flow min-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. XX, NO. Y, MONTH 2000 7

cut algorithm is then applied to the network to obtain the
minimum cost cut.

initial flow=32

(a) STEP1

(b) STEP 2 (c)STEP 3

Fig. 9. Constructing the edge-cut maximum flow network

E. Two-way domino partitioning

As described in Section III-B.1, even a circuit that is
implemented purely in domino logic is typically operated
in two phases, so that the precharge of one phase overlaps
with the evaluate of the next phase, thereby ensuring that
useful computations are carried out in the circuit at all
times. In this section, we address the problem of two-way
domino partitioning of a circuit under a two-phase non-
overlapping clock. The objective here is to determine which
gates in the circuit should be clocked by the first clock
phase, and which by the second clock phase, with inverters
permitted between the two phases. Like the static-domino
partitioning scenario described earlier, there is an inherent
precedence constraint that states that no gate clocked by
&, may fan into a gate clocked by ®;. Another feature
common to the two problems is that the partitioning itself
influences the cost of implementation area. The differences
between the solution methods lie in the manner in which
the candidate cut node is chosen, and how the capacities
in the max-flow network are assigned, and are summarized
as follows:

Determining the candidate cut nodes For any vertex N of
the input network, let Dy(i, N) be the largest delay from
the inputs to node N and let Dy(NV,0) be the largest de-
lay from node N to the outputs, calculated using a reverse
PERT traversal as before. The physical meaning of the cut
in this situation is that if the cutset passes through some
node N, then all gates in the fanin transition cone of IV will
be clocked by clock phase ®;, and all gates in the fanout
transition cone of N will be clocked by ®,. Therefore, since
candidate cut nodes are those that satisfy the timing con-
straints in each phase and no time borrowing between two
phases, a vertex is a candidate cut node if both Dy(i, N)
and D4(N, o) are smaller than the clock pulse width.
Mazimal flow capacity The two clock phase regions must
be separated by a latch, which provides the ability to invert
a signal. The cost function here is the cost of latches and
the cost of logic duplication.

In the input network, some of the logic nodes must be du-
plicated since the logic function is required in both true and
complemented forms, while some of the other logic outputs
are required only in one polarity and need no duplication.
There are two possible cases:

e Assume that N is a node at which both the true and

complemented form of the logic function are required. If
this node does not belong to the cutset, then the logic
must be duplicated, and hence the area cost at this node
is p_areaq(N) + n_areaq(N). If the node lies on the cut,
then only one polarity of the logic needs to be generated
and the other is generated by an inverter or within the
latch placed at the cut. Therefore, the area contribution of
the node can be modeled as min[p_areaqs(N),n_areaqs(N)].
Therefore, the area cost difference between placing node N
on the cutset or not is the max[p_areaqs(N),n_areaqs(N)],
plus the latch area.

e On the other hand, for a node N at whose output only
one polarity is required, the area cost difference between
passing a cut through NV or not is merely the area of the
latch.

In either case, the capacity corresponding to a cut at this
node is represented by the area cost difference values de-
fined above.

The two-phase non-overlapping clock creates a hard edge
at the latches that prevents time borrowing between the
two phases. On the other hand, an overlapping two-phase
clocking scheme is often used [7] to enable cycle borrow-
ing. In such a case, the step of determining the candidate
cut node is a simple extension of the procedure described
earlier. As before, a vertex is a candidate cut node if both
Dy(i,N) and D4(N,o) are smaller than the clock pulse
width; however, it should be recalled that in an overlapping
two-phase clocking scheme, the clock pulse width is more
than half of clock period. It should be noted that when time
borrowing is used, the existence of an inverter between the
two-phases could violate the timing constraints of domino
logic. In this case, the cost of the inserted latch instead of
the cost of reduced duplication allowed by an inserted in-
verter would become the main factor to be considered and
should used to assign the maximal flow capacity.

F. A partitioning flow for a general two-phase clocking
strategy

A flow for partitioning an input network into stages of
the general two-phase clocking scheme illustrated in Fig-
ure 3 is more complex than the procedures described earlier
in this paper. We solve the problem heuristically by apply-
ing a design flow based on the timing-driven static-domino
partitioning algorithm of Section III-D and the two-way
domino partitioning algorithm of Section ITI-E. If flip-flops
are used at the cycle boundaries, Flow 1 below is applied:
1. We first perform static-domino partitioning on the entire
network to divide the circuit into domino and static regions,
labeled, respectively, as Region 1 and Region 2. The timing
constraint specified here is a full clock cycle.

2. We now specify the required time at the output of Re-
gion 1. Next, we perform two-way domino partitioning on
this region to obtain the domino partition to be (tenta-
tively) clocked by phase ®; of the clock (Region 3) and the
region to be clocked by phase ®, of the clock (Region 4).

3. Region 3 is now assigned to Phase 1; however, we now
investigate the possibility of implementing a part of it in
static logic. Therefore, we perform static-domino parti-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. XX, NO. Y, MONTH 2000 8

tioning on this region to divide it into a phase ®; domino
region (Region 5) and a phase ®; static region (Region 6).
The end result of this procedure is that Region 2 and Re-
gion 6 are implemented in static CMOS, Region 5 is im-
plemented as phase ®; domino, and Region 4 as phase ®,
domino.

We propose another possible partitioning design flow, re-
ferred to as Flow 2. It first performs two-way domino par-
titioning on the input circuit, followed by a static-domino
partitioning step on each of the two resulting partitions.
This flow is more appropriate for use in a situation where
level clocked latches are to be used, since, unlike Flow 1,
it requires the use of a level-clocked latch even within the
static logic (as shown by latches in position A in Figure 3).

G. Cost modeling

In the discussion so far, we have used the area as the
cost function for partitioning. However, the algorithm may
be adapted to other cost objectives, using a power model,
or an area model with an incorporated routing cost. A
transistor level Elmore delay model that is similar to that
in [25] has been used in this work. While the Elmore delay
is known to be limited in its accuracy, it is reasonable to
use it here for a fast and approximate delay estimate, since
the partitioning procedure is carried out early in the design
flow shown in Figure 2.

The delay of a domino gate is given by

Ddomino = Rn : (1 + S) . Cgate : (1 + cpm“atio)
+Delaypm“a + Rp : Cgate : Nfanout; (]-)

where R,,, R, are the driving resistances of the NMOS
transistor and the PMOS transistor, respectively, S is the
maximum height of the NMOS pull-down network, Cyaze
is the gate capacitance for a unit NMOS transistor, and
cpnratio is defined such that the gate capacitance of the
PMOS transistor on the output inverter is cpnratio- Cyate -
The first term in Equation (1) represents the delay of the
NMOS pull-down network that drives the output inverter,
where the clock-controlled transistor in series with the S
transistors contributes the (1 + S) factor. The effects of
the internal capacitances are incorporated by the second
term, Delaypqrq, using the Elmore delay metric, and the
last term represents the delay of the inverter that is driving
the fanout gate capacitance.

Separate rising and falling delays were used for static
gates, given by the equations

Dr,static =Rp-S- Cgate . ((1 + Cpnratio) . Nfanout) + Delaypaﬂl
Df,static = RP -P- Cgate . ((1 + Cpm"atio) . Nfanout) + Delayparav

where S and P are, respectively, the maximum height of
the NMOS segment and the PMOS segment of the static
gate, and the other terms are analogous to those defined in
the previous paragraph.

H. Ezperimental results

The entire partitioning and technology mapping flow has
been implemented using C++ and applied to the multi-

level circuits in the LGSynth91 benchmark suite. A param-
eterized library based mapping algorithm that is similar to
[5] is used for the domino technology mapping. The pa-
rameterized library contains all possible cells with up to 4
transistors in series and 4 transistors in parallel. A method
using the same principles as [5] is used for the static tech-
nology mapping to a parameterized library that contains
all possible cells with up to 3 transistors in series and 3
transistors in parallel. The mapping objective is area min-
imization, where the area is measured in terms of the num-
ber of transistors. An initial technology-independent logic
minimization for all circuits is performed using SIS with
script.rugged script file, after which the input networks are
compressed to form the Ny, i, network addressed in Section
III-D.2. The delay estimation is carried out using the delay
model described in Section ITII-G. The primary inputs are
assumed to be available in true and complemented form,
and it is assumed that each of these is driven by a flip-flop
that provides the inverted signal at no cost.

The results of static-domino partitioning are shown in
Table I. Columns 2 and 3 show the implementation cost
of pure one-phase domino mapping and pure static map-
ping, respectively. The delay of the static implementation
is also shown. All delays in this table are normalized so
that “x1.0” corresponds to the delay of a purely domino
implementation. Next, for various delay specifications, we
list the number of transistors, N¢rqn, and the number of
domino/static gates (G4/G) using our method. In partic-
ular, for the timing-unconstrained case, the delays of the
optimal mixed static-domino implementation are listed in
Column 6. The average CPU execution time of the par-
titioner, including technology mapping, is shown for each
circuit in column 10.

From the table, we observe that domino implementa-
tions of the benchmarks typically have a speed advantage
over static circuits, but tend to have larger areas. There-
fore, the tighter the timing constraints, the more domino
gates are required, and the larger the area cost. No special
fanout optimizations were performed on our benchmark.
With fanout optimization, greater delay improvement are
expected for static logic than domino logic. Under loose
timing constraints, for most circuits, the cost of the mixed
static-domino implementation is no larger than the mini-
mum of pure static and pure domino implementation costs;
this is as expected since they form two feasible solutions to
the partitioning problem. The exceptions to this are the
benchmarks “count” and “c2670,” which have a slightly
larger area than the static implementation. Several factors
lead to this minor inconsistency in the partitioning algo-
rithm. Firstly, during the cost estimation, we heuristically
estimate the cost of each node by dividing the cost of mul-
tiple fanout nodes by the number of fanouts. Secondly,
for domino implementations, the number of fanouts itself
depends on whether the fanout region of a node will be
duplicated or not, and this is not considered by the algo-
rithm. Thirdly, the approximations used in maxflow capac-
ity assignment as described in Section ITI-D.4 are partially
responsible for this difference. We point out, however, that

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. XX, NO. Y, MONTH 2000 9

TABLE 1
RESULTS OF THE STATIC-DOMINO PARTITIONING ALGORITHM

in all cases, the error is small enough (2.4% for count and
1.2% for ¢2670) that the above drawbacks are outweighed
by the massive reductions in CPU times that they permit.

The results of the two-way domino partitioning algo-
rithm are shown in Table II. Column 2 shows the re-
sults of one-phase domino implementation and is identi-
cal to Column 2 of Table I. Columns 3-5 show the two
way partitioning results without any timing specification,
while columns 6-7 and 8-9 show the results under timing
specification of x1.25 and x1.05, respectively. An explana-
tion of the above timing specifications is as follows: if the
maximum delay for the domino mapping is A, then x1.05
specification represents the fact that a delay constraint of
A x 1.05 x 0.5 is assigned to each phase of the domino par-
tition, corresponding to the fact that the total delay must
be evenly distributed over the two partitions for a sym-
metric nonoverlapping clock scheme. The results under the
specified time constraints include the area cost of domino
logic, the number of inverters and the number of latches.
The delays for a partitioning solution that minimizes the
area under no timing constraints are listed in column 5. In
most cases, the resulting area is no smaller than that for
the tighter specification, as expected. As in static-domino
partitioning, in a few cases, a slightly smaller area is ob-
tained (but within a reasonable margin of error) due to
approximations in the partitioning algorithm. The differ-
ential between the numbers in columns 2 and 3 shows the
reduction in logic duplication obtained by exploiting the
inverters at the partition boundary, and this is often sig-
nificant. The CPU execution time for the two-way domino
partitioning procedure is shown in the last column and can
be seen to be very reasonable.

The results in Tables I and II are applicable to a
single-phase static-domino implementation and a two-way
domino implementation, respectively. For the general two-
phase clocking scheme shown in Table III, we apply the
techniques listed as Flow 1 and Flow 2 in Section III-F.
For each circuit, we list the number of transistors, N¢ran,
and the number of latches, Nyqtcn. The experiments are ex-
ecuted under two sets of delay specifications, namely, x1.05
and x1.25, where all times are normalized to a pure domino
two-phase implementation. From the results, we can see
that the results of using a combination of static and domino

Circuits [[Domino Static No spec Spec=(x1.25) Spec=(x1.05) CPU

Nitran Ntran/delay Niran | G4/Gs | delay Niran | Gd/Gs Niran | G4/Gs (S)
c1355 1824 1302/2.25 1302 0/260 2.25 1800 170/104 1800 | 170/104 1.4
dalu 2360 2192/2.16 2098 97/198 1.78 2096 147/132 2096 189/75 7.9
c880 1163 982/2.08 958 21/124 2.07 1015 56/88 1027 62/85 1.4
count 357 336/2.77 344 5/54 1.71 350 23/30 353 32/18 0.3
c1908 1978 1308/1.78 1306 5/263 1.78 1723 174/86 1928 238/34 1.4
¢2670 1992 1754/1.43 1775 79/173 1.15 1775 79/173 1774 81/170 3.5
¢3540 4527 2850/1.78 2748 88/349 1.78 3312 260/218 3987 461/26 10.9
6288 13702 8350/1.81 8340 | 16/1771 1.76 12079 | 1301/493 13456 | 1733/73 33.5
k2 2884 2896/1.54 2884 368/68 0.95 2884 368/68 2884 368/68 8.6
des 9945 8134/4.25 7527 | 160/915 1.00 7536 165/911 7536 | 165/911 60.2
c7552 7919 5464/2.35 5396 78/857 2.35 5987 375/578 6198 | 456/504 30.9
t481 1697 1832/1.35 1695 203/19 0.97 1695 203/19 1695 206/15 3.7
rot 1777 1536/1.99 1462 55/171 1.99 1514 87/137 1611 | 126/103 3.0

TABLE III

RESULTS OF APPLYING THE PARTITIONING FLOWS FOR THE
TWO-PHASE CLOCKING SCHEME

Circuits Ntran/Nlatch
Flow 1 Flow 1 Flow 2 Flow 2
x1.25 x1.05 x1.25 x1.05
c1355 1408/8 1456/8 1452/48 1486/48
dalu 1998 /56 2050/78 1848/122 1966/94
c880 944/13 953/14 926/43 943/43
count 346/9 345/14 337/23 338/23
c1908 1449/46 1560/46 1519/40 1590/60
c2670 1538/52 1538/52 1548/95 1548/95
3540 3063/60 3235/68 2943/53 3277/53
c6288 11604/104 | 12511/115 12105/110 | 12410/111
k2 2691/157 2795/152 2862/147 2889/156
des 7510/118 7513/119 8452/437 8766/437
c7552 5754/164 5772/164 5701/192 5892/194
t481 1701/84 1752/90 1831/80 1833/85
rot 1463/36 1515/51 1485/118 1538/119

gates yields areas that are similar to those in static imple-
mentations, and speeds that are similar to domino speeds,
thereby providing the best of both worlds. As the timing
constraints are made more relaxed, the resulting area can
become even smaller, barring minor anomalies due to our
heuristic approximations, whose effects are seen in the cir-
cuit “count” under Flow 1. Therefore, our method can be
used to find an area-delay tradeoff curve for static-domino
partitioning.

It is observed that Flow 2 introduces a larger num-
ber of latches than Flow 1. This can be explained by
the fact that the two flows are directed towards different
clocking disciplines: in Flow 1, the cycle boundaries are
edge-triggered flip-flops, while in Flow 2, they correspond
to latches. Moreover, Flow 2 begins with an initial two-
way domino partition and hence must insert latches at the
boundaries, even if they are not essential to the final par-
tition. It is generally true that in Table III, the results
of Flow 1 are better than the results in Table I, while
the results of Flow 2 are usually better than those in Ta-
ble II. This is a natural consequence of how these flows are
created, based on combining the static-domino partition-
ing and two-way domino partitioning algorithms; however,
since the method is partly heuristic, a couple of the circuits
do not obey this property.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. XX, NO. Y, MONTH 2000 10

TABLE II
RESULTS OF THE TWO-WAY DOMINO PARTITIONING ALGORITHM

Circuits [[Domino No spec Spec=(x1.25) Spec=(x1.05) CPU

Ntran Ntran/Ninv | Nlatch | delay Ntran Nin'u | Nlatch Ntran/Ninv | Nlatch (S)
c1355 1824 1656/32 32 1.59 1600/16 16 1600/16 16 1.8
dalu 2360 1881/73 122 0.90 1881/73 122 1846/74 94 10.0
c880 1163 933/22 64 1.24 1025/17 38 1037/14 43 4.6
count 357 267/15 50 1.09 316/7 24 347/7 23 0.4
c1908 1978 1861/37 67 1.32 1733/45 72 1838/40 60 2.7
c2670 1992 1703/74 106 0.95 1703/74 106 1703/74 106 6.0
c3540 4527 3499/44 50 1.69 3418/86 51 3407/94 53 11.7
c6288 13702 13173/34 39 1.47 13114/58 58 13085/108 108 96.4
k2 2884 2856/1 46 2.00 2866/1 159 2921/1 147 9.6
des 9945 8265/37 293 1.66 10835/5 437 10835/5 437 111.5
c7552 7919 6413/201 251 1.21 6413/201 251 6607/186 225 44.6
t481 1697 1632/14 31 1.80 1744/0 72 1823/0 80 5.43
rot 1777 1422/53 152 1.03 1572/41 131 1638/46 118 4.9

In all the above tables, we compare all partitioning re-
sults with pure one-phase domino. The area advantage of
partitioning is more than just the ratio of partitioning cir-
cuits cost to pure domino implementation. Domino circuits
are rarely implemented as pure one-phase domino. They
are partitioned into several phases, and the possible area
overheads include splitting gates, the use of latches between
stages, buffer insertion if there is no logic in a given stage,
and the cost of clock generation and routing.

To summarize the results, we reiterate that the objective
of the algorithms is to minimize the implementation cost
while satisfy the timing constraints, under various clocking
schemes. The cost improvements arise from two quarters:
from the freedom to select either domino or static imple-
mentations in parts that are not timing-critical, and from
the reduction of logic duplication for domino logic due to
the partitioning scheme. Although our cost model does not
explicitly consider the cost of clock generation and routing,
which is a drawback of domino logic, this may easily be
factored in as being proportional to the number of domino
gates.

Our implementation ignores second-order effects such as
the effects of clock skew, and the penalty due to the pres-
ence of latches between the two phases. A latch between
the two phases may be implemented as a regular latch with
6-8 transistors, or by adding an extra transistor to the out-
put inverter of the preceding domino gate, as in Figure 14
of [7]. Adding these costs to the algorithm is relatively
eagy, since it requires the cost of a latch to be added to
the cost of each edge of the vertex cut graph, so that the
min-cut counts the cost of one latch for each edge in the
cut.

IV. TIMING VERIFICATION AND SIZING OPTIMIZATION
A. Introduction

The correct functionality of a circuit containing domino
logic is contingent on correct timing relations between the
clock and individual domino gates. For a given circuit
topology consisting of static and domino gates, timing ver-
ification and optimization is an essential step of the design
process. In different designs, domino circuits may utilize
one of various clock schemes, such as the clock strategy

of Figure 3, skew-tolerant overlapping clock [7], self-timed
domino [13], wave-domino pipeline [14], and clock-delayed
domino[1]. The goal of the section is to provide a general
timing verification and sizing tool for mixed static-domino
circuits that presents the problem in a similar framework
as the corresponding solutions for static circuits.

Previous research in sizing domino circuits has been lim-
ited. Several sizing algorithms have been published in the
past (a survey is provided in [21]), but most of them have
not considered domino logic. Although the research of [11],
[12] performs sizing for domino circuits, both techniques
perform local optimizations, optimizing only one domino
block at a time. In [26], a sizing tool for domino style
circuits called Focus was developed.

B. Domino logic timing constraints

In this section, we summarize the timing constraints as-
sociated with domino logic. For details, the reader is re-
ferred to the timing analysis techniques in [9], [10]. A less
conservative timing constraint is described in [8], but is not
incorporated into this work.

Let us first consider the timing constraints of an indi-
vidual domino gate used in our timing analysis and sizing
optimization tool. The clock input to the domino gate is
shown in Figure 1. The precharge phase begins at Ty ¢
and continues until Ty -, and the evaluate phase begins
at that time and ends at time Ty + P where P is the
period of the clock signal feeding the domino gate. The
reference time ¢ = 0 is set with respect to the clock signal
at the primary input of the circuit block. If more than one
clock signal is used, any one of them may be used as a ref-
erence, and the transition times of the other clocks may be
expressed according to the reference.

The long path timing constraints we used for each
domino gate include:

(1) The falling events at data input nodes should meet the
setup-time requirement to the rising edge of the evaluate
clock.

(2) The rising event at the output node must be completed
before the falling edge of evaluate clock.

(3) The rising event at dynamic node d of the domino gate
must be completed before the rising edge of the evalua-
tion clock. This constraint implies that the pulse width of

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. XX, NO. Y, MONTH 2000 11

precharge clock must be capable of pulling up the output
node.

For the short path timing constraints, instead of using
the conservative constraints of [9] or more aggressive con-
straints of [10], we use different constraints for falling and
rising edges. These constraints, which are more accurate
and capture the requirements for the correct functioning of
domino logic, are listed below:

(1) For any rising input data line, a transition should occur
only after the end of evaluation stage.

(2) A falling input data line may not go down to logic 0 but
must be held at the logic 1 level until the output transition
in that cycle has been completed. It can be given by

ty(in) + P > T, (out) (2)

where ty(in) are the earliest falling event time of input
signals, T).(out) refers to the latest rising event time at the
output node, and P is the period of the clock signal feeding
the domino gate.

Note that if the falling signal arrives before the end of
the evaluation phase, it will not influence the output as
long as the dynamic node has already been discharged. If,
however, the rising signal arrives earlier than the end of
the evaluation phase, it may cause a glitch at the output.
The presence of T,.(out) in Equation (2) causes the short
path timing analysis to be related to the long path timing
analysis.

C. Timing verification

The timing analysis procedure described here is based on
the PERT procedure and uses a table-lookup delay model
for delay calculation. The long path timing analysis con-
sists of two steps.

First, the circuit is forward-traversed, beginning with the
primary input nodes and the clock node. The rising and
falling event arrival times for each node v are calculated as
follows:

T, (v) = max(Ty(u) + Dy (u,v)) (3)
Ty(v) = max(Ty(u) + Dy (u,v) (4)

where T,(u) and Ty(u) are, respectively, the rising and
falling event times for nodes u, and D¢ (u,v) and D, (u,v)
are, respectively, the worst fall delay and rise delay from in-
put u to output v. The domino clock input node is treated
in the same way as any primary input node, and the rising
or the falling edge of the clock provide the corresponding
event times for the clock node. The rising and falling event
arrival times at the output node of a domino gate can be
obtained similarly to the static gate arrival time computa-
tions, using equations (3) and (4). The only difference is
that the rising event at the dynamic node is related only
to the falling edge of the domino clock and is independent
of the other input nodes. This fact is captured by setting
the value of D, from each input node of the domino gate
to the output node as —oco . At the end of this traversal,
the arrival time at each node has been computed.

Next, a backward traversal is carried out to calculate
the required time at each nodes. Before traversal, the re-
quired time of domino gates from long path constraints in
Section IV-B and the required time at each primary out-
put from synchronizer have been assigned the correspond-
ing nodes. Beginning with the primary output nodes, we
make a reverse PERT pass back through constraint graph
to compute the required time at each node and the slack
associated with every edge. At the same time, the critical
path, defined as the path with maximum negative slack, is
found. During this second traversal, the algorithm keeps
a record of the minimum negative slack. If an edge with
the same slack is encountered, then it is incorporated into
the critical path. If an edge with smaller (more negative)
slack is traversed, then the previous critical path is dis-
carded and the critical path is updated to begin at that
edge. Note that due to the presence of constraints at each
domino gate, the critical path does not necessarily termi-
nate to a primary output and could terminate at a domino
gate instead. Additionally, it is possible for the origin of
the critical path to be either at a PI or at the clock node.

After long path timing analysis has been performed,
T, (out) in constraint (2) is available. A PERT-based proce-
dure that is similar to long path timing verification can be
applied to verify the two short path constraints addressed
in IV-B.

D. Sizing algorithm

If long path timing constraints are found to be violated
after applying the above timing analysis procedure, a siz-
ing algorithm is applied. In addition, the short path tim-
ing constraint (2) is incorporated into the sizing procedure.
Suppose that T,.(i) and T((i) are, respectively, the rising
and falling event times for arbitrary node i, the sizing prob-
lem is formally stated as follows:

minimize Area (5)
subject to
max(7,(0),Tr(0)) < Tspee Yo € PO
Tr(in) < Tepky — Tsetup Vin € Iqomino
T, (out) < Tpp,p + P Yout € Ogomino

Tr(d) S Tclk,'r' Vd € Ddomino

Yout € Ogomino

V gates in the circuit.

where Area is the area of the circuit and, as in other work
on transistor sizing [25], is approximated as a sum of tran-
sistor sizes. The first set of constraints represents the con-
straints from synchronizer, where PO is the set of primary
outputs and T, is the time specification for primary out-
puts. The second through the fourth set of constraints
correspond to long path constraints of each domino gate,
where t4omino, Odomino and dgomino are, respectively, the
set of inputs, outputs dynamic nodes of all of the domino
gates in the circuit, and Tsetyp i a constant that acts as

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. XX, NO. Y, MONTH 2000 12

a safety margin. The fifth line of constraints come from
short path constraints 2, and the last set of constraints
are related to the noise margin, where W,(W,,) refers to
the width of the p-(n-) transistor in the equivalent inverter
associated with each complex gate.

The sizing algorithm used here is an adaptation of the
TILOS algorithm [25]. Beginning with a circuit where all
transistors are minimum-sized, each iteration selects one
transistor and increases its size by a constant factor. In
each iteration, a timing analysis is performed to identify
the constraint g(w) < 0 with the largest violation, where
g(w) denotes the fact that the constraint g is a function
of the vector w of transistor widths. The traceback proce-
dure described above is used to determine the critical path
of the circuit, which corresponds to that constraint. The
sensitivity of the constraint function g to each transistor
width is computed, and the width of the transistor with
the most negative sensitivity is increased. The iterations
continue until the timing specifications are all met, or until
no further improvement is possible.

E. Experimental results

The timing verification and sizing tool has been imple-
mented in C++, and takes an input in the format of a
SPICE transistor netlist. The characterization was per-
formed in a 0.5 pm technology. The bump-size of each
sizing step for the TILOS-like algorithm is set to x1.5 of
original size. The noise margin constraints require that
K1 = 1.0 and K2 = 4.0. The procedure has been per-
formed on two sets of circuits of different clock strategies.
A summary of the results are listed in Table IV and Ta-
ble V, respectively. For each circuit, the original unsized
area, which is obtained by setting each transistor minimal
size, is listed. For various domino clock specifications listed
in the “Clk spec” column, the results of sizing are listed.
The output timing specification is always set to the corre-
sponding clock period, i.e., Tspec = Tep,f + P. The area

is reported as “-” if the specifications are too tight to be
satisfied. TABLE IV
TRANSISTOR SIZING ON CIRCUITS FOR THE TWO-PHASE CLOCKING
SCHEME
Circuit Unsized Clk spec Optimized | CPU
Area | period(s) area (s)
C1355 1582 1.8 1589 1.2
1.6 1605 1.5
1.4 - 2.3
dalu 2357 2.3 2453 7.2
2.08 2524 10.4
1.86 2711 15.7
1.64 - 17.0
C1908 1764 2.6 1780 2.1
2.2 1871 6.3
1.8 2107 16.5
1.4 - 31.8
des 9881 4 9910 10.1
3.6 9977 13.7
3.2 10156 26.4
2.8 10506 57.1
C7552 6948 3.5 6954 5.9
3.0 7015 14.8
2.6 7210 38.7
2.1 - 73.5

The first set of results, reported in Table IV uses the
two-phase clocking scheme of Figure 3, whose duty cycle
is set of 1/2. We also apply our procedure to four-phase
overlapping domino clocks of [7] with a duty cycle of 1/2,
illustrated in Figure 10, and list the results in Table V.
Note that for the same set of circuits, the unsized area is
different for the overlapping and nonoverlapping schemes:
the nonoverlapping clock scheme does not permit inversions
at internal latches that use time borrowing, and therefore
requires more logic duplication. Each block consists of sev-
eral levels of domino gates, or clocked buffers if no domino
gates are available. Both the long path and short path tim-
ing verification are performed for the input circuit in each
case. It is easily verified that as the clock specification is
made more stringent, the area of the circuit increases in

each case. TABLE V
TRANSISTOR SIZING ON CIRCUITS FOR A FOUR PHASE OVERLAPPING
CLOCK WITH A 66% DUTY CYCLE

Circuit Unsized | Clk spec Optimized | CPU
Area, Period area, (s)

C1355 2736 1.36 2744 1.4
1.22 2774 2.2

1.08 - 4.9

dalu 3414 2.1 3417 1.7
1.88 3423 1.9

1.22 3552 6.9

1 - 13.3

C1908 2922 2.2 2929 1.6
1.8 3091 8.6

1.4 3554 23.3

1 - 24.7

des 17368 2.8 17369 10.7
2.4 17370 10.8

2 - 17.3

C7552 10264 2.12 10321 11.8
1.66 10614 44.3

1.2 - 72.1

‘ BLOCK1 ‘ BLOCK2 ‘ BLOCK3 ‘ BLOCK4 ‘

1ol L2 | ®3 Y

Fig. 10. Four-phase overlapping domino clocks

The objective of this tool is to provide a timing verifica-
tion and long path correction tool for mixed static-domino
circuits with arbitrary clocking strategy. For short path
violations, delay insertion techniques [27] are more appro-
priate, and are not addressed in this work.

Although it is not possible to make a sweeping general-
ization, it is often true that domino logic circuits are easier
to size than static logic: in a domino gate, usually the eval-
uation speed is critical, while both the rising and falling
delays are important for static logic; additionally, the pres-
ence of inverters can provide the ability to drive large loads
faster.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. XX, NO. Y, MONTH 2000 13

V. CONCLUSION

Domino logic is an attractive design style for high speed
design. As its use becomes more widespread, there is a
growing need for good EDA synthesis and optimization
tools to support domino-based design. However, domino
circuits are difficult to design since they are non-inverting,
must obey strict timing constraints and are susceptible to
noise. In this paper we have addressed several problems
along a domino synthesis and optimization flow.

In most circuits, it is appropriate to use domino gates
to speed up parts of the circuit, while the remainder is im-
plemented in static CMOS. Therefore, we have addressed
the problem of partitioning a circuit to determine which
parts of the circuit should be implemented as static logic,
and which parts as domino logic, in conformance with a
specified clock scheme. We have presented partitioning
algorithms for one-phase static domino partitioning and
two-way domino partitioning, and extended these to two
flows for two-phase static domino partitioning; all of these
algorithms work to minimize a cost function under timing
constraints. The results show that the effect of partitioning
is to reduce the logic unating penalty, and find solutions
with areas similar to the (typically lower) area of a pure
static implementation and delays similar to the (typically
faster) speeds of a pure domino implementation. The paper
necessarily tackles only a subset of the problems encoun-
tered in static-domino partitioning, and several problems
remain to be addressed. For example, if overlapping clocks
are used, there is an additional tradeoff involved: the use
of time borrowing can speed up the circuit, but at the cost
of disallowing the insertion of inverting latches, thereby
increasing the amount of logic duplication (however, logic
duplication may be avoided for early arriving signals). We
believe that the algorithms presented here provide a basis
for a general framework for static-domino partitioning that
can be modified to provide the solution to the partitioning
problems if the clocking strategy is altered, or if the cost
function is changed.

We have developed a timing verification and sizing op-
timization tool for circuits containing mixed domino and
static logic. A timing analysis methodology is developed,
and an optimization procedure based on TILOS is used to
meet timing constraints and preserve adequate noise mar-
gins by constraining the sizing procedure.

ACKNOWLEDGEMENTS

The authors would like to gratefully acknowledge the
numerous helpful suggestions made by the anonymous re-
viewers.

REFERENCES

[1] G. Yeeand C. Sechen, “Dynamic logic synthesis,” in Proceedings

of the IEEE Custom Integrated Circuits Conference, pp. 345—
348, 1997.

[2] P. E. Gronowski, W. J. Bowhill, R. P. Preston, M. K. Gowan,
and R. L. Allmon, “High-performance microprocessor design,”
IEEE Journal of Solid-State Circuits, vol. 33, pp. 676-686, May
1998.

[3] M. R. Prasad, D. Kirkpatrick, and R. K. Brayton, “Domino

[10]

[11]

[12]

[13]

(18]

[19]

logic synthesis and technology mapping,” in Workshop Notes,
International Workshop on Logic Synthesis, 1997.

T. Thorp, G. Yee, and C. Sechen, “Domino logic synthesis using
complex static gates,” in Proceedings of the IEEE/ACM Inter-
national Conference on Computer-Aided Design, pp. 242-247,
1998.

M. Zhao and S. S. Sapatnekar, “Technology mapping for domino
logic,” in Proceedings of the IEEE/ACM International Confer-
ence on Computer-Aided Design, pp. 248-251, 1998.

R. Puri, A. Bjorksten, and T. E. Rosser, “Logic optimization by
output phase assignment in dynamic logic synthesis,” in Proceed-
ings of the IEEE/ACM International Conference on Computer-
Aided Design, pp. 2—8, 1996.

D. Harris and M. A. Horowitz, “Skew-tolerant domino circuits,”
IEEE Journal of Solid-State Circuits, vol. 32, pp. 1702-1711,
Nov. 1997.

R. Puri, “Design issues in mixed static-domino circuit implemen-
tations,” in Proceedings of the IEEE International Conference
on Computer Design, pp. 270-275, 1998.

K. Venkat, L. Chen, I. Lin, P. Mistry, and P. Madhani, “Timing
verification of dynamic circuits,” IEEE Journal of Solid-State
Circuits, vol. 31, pp. 452-455, Mar. 1996.

D. V. Campenhout, T. Mudge, and K. A. Sakallah, “Timing
verification of sequential domino circuits,” in Proceedings of the
IEEE/ACM International Conference on Computer-Aided De-
sitgn, pp. 127-132, 1996.

H. Y. Chen and S. M. Kang, “A new circuit optimization tech-
nique for high performance CMOS circuits,” IEEE Transactions
on Computer-Aided Design, vol. 10, pp. 670-676, May 1991.

L. T. Wurtz, “An efficient scaling procedure for domino CMOS
logic,” IEEE Journal of Solid-State Circuits, vol. 28, pp. 979-
982, Sept. 1993.

T. Williams, “Dynamic logic: Clocked and asynchronous.” Tu-
torial notes at the International Solid State Circuits Conference,
1996.

W. H. Lien and W. P. Burleson, “Wave-domino logic: Theory
and applications,” IEEE Transactions on Circuits and Systems,
vol. 42, pp. 78-90, Feb. 1995.

J. Kernhof, M. Selzer, M. A. Beunder, B. Hoefflinger, B. Laquai,
and I. Schindler, “Mixed static and domino logic on CMOS gate
forest,” IEEE Journal of Solid-State Circuits, vol. 25, pp. 396—
402, Apr. 1990.

R. R. Ortiz and M. C. Lefebvre, “Technology mapping for NORA
dynamic logic circuits,” in Proceedings of the European Design
Automation Conference, pp. 310-314, 1993.

E. Detjens, G. Gannot, R. Rudell, A. Sangiovanni-Vincentelli,
and A. Wang, “Technology mapping in MIS,” in Proceedings of
the IEEE/ACM International Conference on Computer-Aided
Design, pp. 116-119, 1987.

J. L. Burns and J. A. Feldman, “C5M - A control-logic layout
synthesis system for high-performance microprocessors,” IEEE
Transactions on Computer-Aided Design, vol. 17, pp. 14-23,
Jan. 1998.

R. K. Brayton, C. L. Chen, C. T. McMullen, R. H. J. M. Ot-
ten, and Y. J. Yamour, “Automated implementation of switch-
ing functions as dynamic CMOS circuits,” in Proceedings of
the IEEE Custom Integrated Circuits Conference, pp. 346-350,
1984.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction
to Algorithms. New York: McGraw-Hill, 1990.

S. S. Sapatnekar and S. M. Kang, Design automation for timing-
driven layout synthesis. Boston, MA: Kluwer Academic Publish-
ers, 1993.

K. Chaudhary and M. Pedram, “Computing the area versus de-
lay trade-off curves in technology mapping,” IEEE Transactions
on Computer-Aided Design, vol. 14, pp. 1480-1489, Dec. 1995.

H. Liu and D. F. Wong, “Network flow based circuit parti-
tioning for time-multiplexed FPGA’s,” in Proceedings of the
IEEE/ACM International Conference on Computer-Aided De-
sign, pp. 497-504, 1998.

S. Iman, M. Pedram, C. Fabian, and J. Cong, “Finding uni-
directional cuts based on physical partitioning and logic restruc-
ting,” in 4th International Workshop on Physical Design, 1993.
J. P. Fishburn and A. E. Dunlop, “TILOS: A posynomial pro-
gramming approach to transistor sizing,” in Proceedings of the
IEEE/ACM International Conference on Computer-Aided De-
sign, pp. 326-328, 1985.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. XX, NO. Y, MONTH 2000

[26] A.Dharchoudhury, D. Blaauw, J. Norton, S. Pullela, and J. Dun-
ning, “Transistor-level sizing and timing verification of domino
circuits in the PowerPC microprocessor,” in Proceedings of the
IEEE International Conference on Computer Design, pp. 143—
148, 1997.

[27] N.V. Shenoy, R. K. Brayton, and A. L. Sangiovanni-Vincentelli,
“Minimum padding to satisfy short path constraints,” in
Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design, pp. 156—-161, 1993.

Min Zhao received her B.S. in computer and
its application, M.S. in electrical transmis-
sion and its automation, from Dalian Mar-
itime University, Dalian, China, in 1993, 1996
and the Ph.D. degree in electrical engineering
from University of Minnesota in 1999. She is
currently an Electrical Engineer in Motorola,
Austin, Texas. Her research interest is VLSI
CAD for domino logic, technology mapping,
power grid analysis.

Sachin Sapatnekar (S’86-M’93) received the
B.Tech. degree from the Indian Institute of
Technology, Bombay in 1987, the M.S. de-
gree from Syracuse University in 1989, and
the Ph.D. degree from the University of Illi-
nois at Urbana-Champaign in 1992. From 1992
to 1997, he was an assistant professor in the
Department of Electrical and Computer En-
gineering at Iowa State University. He is cur-
rently an associate professor in the Department
of Electrical Engineering at the University of

Minnesota.

He has coauthored two books, “Design Automation for Timing-
Driven Layout Synthesis” (Kluwer Academic Publishers) and “Se-
quentialS Timing Analysis and Optimization” (Kluwer Academic
Publishers). He has served as an Associate Editor for the IEEE
Transactions on Circuits and Systems II: Analog and Digital Sig-
nal Processing. He is a recipient of the NSF Career Award and Best
Paper awards at DAC97 and ICCD98.

14

