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Abstract— This paper derives a methodology for developing ac-
curate convex delay models to be used for transistor sizing. A new
rich class of convez functions to model gate delay is presented and
the circuit delay under such a model is shown to be equivalent to a
convez function. The richness of these functions is exploited to ac-
curately model gate delay for modern designs. Since the delay under
this model is a convex function, optimal sizing algorithms based on
convex programming techniques are applied with the new delay model.
Ezperimental results demonstrating the accuracy of proposed model
are presented along with results of sizing various test circuits.

I. INTRODUCTION

The transistor sizing problem is a circuit optimization
problem that is important in high performance designs. By
suitably selecting the sizes of the transistors in the circuit, a
designer may meet the required timing goals. The problem
has traditionally been formally defined as [1]:

Area or Power
Delay < Typee. (1)

minimize
subject to

There have been many significant attempts to solve this
problem, for example, [1], [2], [3]. Most published ap-
proaches use the Elmore delay model [4], [5] for timing cal-
culations, and a breakthrough observation in [1] was that
the circuit delay under this model is a posynomial function
(to be defined later) of the transistor sizes. The advan-
tage of this functional form is that under a simple vari-
able transformation, the problem can be transformed into
a convex optimization problem for which it is guaranteed
that any local minimum is also a global minimum. This
is a powerful property since it precludes the need for any
hill-climbing approaches to get out of local minima. Based
on this property, the method in [1] used a greedy heuristic
that tried to achieve this global minimum. A more formal
and exact convex optimization algorithm was employed in
[3], guaranteeing that the global minimum would be found.
It is generally accepted that the use of the Elmore delay
model at the transistor level is very inaccurate for mod-
ern designs, and even exact optimization under this model
may lead to a wrong solution to the sizing problem since the
timing model has a bad correlation with reality. More pre-
cisely, the solution may be suboptimal in that it meets the
timing specification without minimizing the cost function,
or entirely inaccurate, in the sense that it may not meet
the timing constraints at all. Therefore, it is immensely
important to use more accurate timing models in sizing.
Several approaches for accurate timing modeling have
been proposed in the past. For example, one could model
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gate delays by developing closed form expressions (for ex-
ample, [6], [7]). Alternatively, a look-up table could be
constructed using experimentally derived delay data for
various configurations, with intermediate data points being
derived by interpolation methods, as in the delay model in
[8]. The data point spacing determines the accuracy of the
model and hence, there is a tradeoff between desired levels
of accuracy and the amount of data storage, and achieving
good accuracy may be prohibitively expensive in terms of
memory requirements. Neither the closed-form modeling
approach nor the table-look-up modeling method is par-
ticularly well suited for optimization since the modeling
functions typically do not possess any convexity properties
and cannot be used in the context of a formal optimization
algorithm that is guaranteed to find the global minimum
in a reasonable time. Moreover, it is not necessarily true
that these models will have continuous derivatives, or, in
the case of look-up tables, any derivative at all. Therefore,
there is a need for new models that permit accurate de-
lay computations, while maintaining convexity properties
suited for optimization. This work derives a methodology
for developing such models.

The theoretical underpinning of this approach is a result
that defines a new class of provably convex functions that
are shown to work well for modeling circuit delays. A for-
mal proof of convexity is shown, and it is to be emphasized
that the implications of this proof are more far-reaching
than the immediate problem of delay modeling. The set
of functions from which these convex functions are cho-
sen is more general than posynomials in that the class of
posynomials is a subset of this class; therefore, we refer to
these functions as generalized posynomials. It is likely that
these functions may have applications in other optimiza-
tion problems in other fields, just as posynomials have been
used in many fields other than circuit optimization. This
work uses a curve-fitting approach to find a least-squares fit
from the delay function, computed by SPICE over a grid,
to a generalized posynomial in order to provide guarantees
on accuracy of the delay model while using functions that
are well-behaved in an optimization context.

Before describing the model, a few words on the mathe-
matical notation are in order. While these are standard no-
tational techniques, their explicit explanation at this point
is intended to remove any possibly ambiguities. The set of
real numbers is denoted by R, and the set of positive reals
by R*t. An n-dimensional real space is represented by the
symbol R™, and an n-dimensional vector, x = [z1,- - %],
as x € R".

The outline of this paper is as follows. Section IT presents



some general mathematical background on posynomials
and convexity. The idea of a generalized posynomial is
presented in Section III and its application to circuit de-
lay modeling is discussed. The actual problem we solve is
given in the Section IV and the proof of convexity of the
delay model for the entire circuit is provided in Section V.
This is followed by experimental results in Section VI and
concluding remarks in Section VII.

II. BACKGROUND
A. Delay abstractions

The delay characteristics of the output waveform at a
gate may be represented by two numbers:
(1) the delay, i.e., the difference in the time when the out-
put waveform crosses 50% of its final value, and the corre-
sponding time for the input waveform.
(2) the output transition time, i.e., the time required for
the waveform to go from 10% to 90% of its final value.
For a capacitive load, the delay and output transition
time of a gate of a fixed size can be precharacterized as
a function of input signal transition time, 7, and the load
capacitance, Cf.

B. Convex optimization

A convex programming problem, also referred to as a
convex optimization problem, involves the minimization of
a convex function over a convex set (for definitions of these
terms, the reader is referred to [9]). A problem of the type

minimize f(x) (2)
such that g;(x) <0,1<i<m
x € R™

is a convex programming problem if f(x) and g;(x),1 <
1 < m, are convex functions. Since all linear functions are
convex, a linear programming problem is a special case of a
convex program, where the functions f and g; are all linear.

It is desirable to attempt to express any optimization
problem using a convex formulation, as far as possible, un-
der the caveat that the accuracy of the modeling functions
for the objective and the constraints must be preserved. In
the context of transistor sizing, this requires the derivation
of convex closed-form expressions for the path delay.

C. Posynomial delay modeling

In much of the previous work on transistor sizing, the
circuit delay has been expressed in the form of a class of
functions known as posynomials. A posynomial is a func-
tion p of a positive variable x € R™ that has the form

p(x) = 3 [[ " ©

where the exponents a;; € R and the coefficients y; € R™.
Simply stated, this means that a posynomial is similar to a
polynomial, with the difference that each term must have
a positive coefficient, and the exponents associated with

the variables may be arbitrary real numbers that could be
positive, negative, or zero. In the positive orthant in the x
space, posynomial functions have the useful property that
they can be mapped onto a convex function through an
elementary variable transformation, (z;) = (e*).

The Elmore delay model used, for example, in TILOS [1]
and iCONTRAST [3], used the following form of expres-
sions for the path delay.

n n
D(x) = ai;— + —+ K 4
(x) E i g E . (4)
i,j=1 i=1
where a;;,b;, K € RT are constants and, x = [z, -, Zp]

is the vector of transistor sizes. Notice that the Elmore
delay expressions are a subset of the set of posynomials;
specifically they are posynomials whose exponents belong
to the set {-1,0,1}.

III. DELAY MODELING USING GENERALIZED
POSYNOMIALS

A. Generalized posynomials

Posynomials and convex functions are a rich class of func-
tions and the basic motivation for this work is that better
delay estimates can be obtained by fully exploiting this
richness. In this work, we introduce a generalized posyn-
omial form that is useful for delay modeling and can be
proven to have convexity properties.

A generalized posynomial function G (x),x € R", where
k > 0 is called the order of the function, is defined recur-
sively as follows:

1. A generalized posynomial of order 0, Gy, is the posyno-
mial form defined earlier:

Go(x) = Y [[ o7, 0

where the exponents a;; € R and the coefficients y; € RT.
2. A generalized posynomial of order k > 1 is defined as

n

HOEDILN | ([T (©

=1

where the exponents a;; € R* and the coefficients v; €
R*, and Gj_1,(x) is a generalized posynomial of order
k—1.

Specifically, the generalized posynomial of first order, is
given by

m

pi n Bij
f(x) = Z%’ H (sz’jl H éUZ””) (7
i =1 s=1

where each (3;; € R*, each a;;;; € R, each 7; € R, and
each w;;; € RY.

Stripping Equation (7) of its complicated notation, one
may observe that the term in the innermost bracket,

m P
> wit [ =5, (8)
=1 s=1



represents a posynomial function. Therefore, a general-
ized posynomial is similar to a posynomial, except that
the place of the x; variables in Equation (3) is taken by
an arbitrary posynomial. Clearly, since z; is a posynomial,
the class of posynomials is a proper subset of the class of
generalized posynomials. Similarly, a generalized posyno-
mial of order k uses a generalized posynomial of order k£ —1
in place of the z; variables in Equation (3).

Example: Consider a posynomial function

_ x.0.3,—1.732 2, -1
fi(z1, x2,23) = bal~x3 + 2.4x52;

This is also a generalized posynomial since posynomials
are a subset of this class. An example of a generalized
posynomial that is not a posynomial is the function

fo(x1, 29, 3) = 9.8(7.62]° + 5.4a5 255 + 3.2)10
2.7(z1z5 " + 2323)%0 + 34.5(1.221 253 + 3.4z 2923) " 732

The following theorem parallels the relationship between
posynomials and convex functions.
Theorem 1: If the range of interest of f(x) is restricted
to the positive orthant where each x; > 0, then under the
variable transformation from the space x € R™ to the space
z € R" given by z; = €%, the generalized posynomial func-
tion f of equation (6) is a convex function in the variable
set z.
Proof: Refer to Appendix A.

B. Delay estimation
B.1 Outline of the delay modeling approach

Many commonly utilized delay estimation approaches,
such as those used for standard cell characterization, esti-
mate the delay of a gate for a given input transition time
and output load capacitance, with the sizes of the transis-
tors inside the gate being kept constant. However, for our
purposes, any sizing procedure requires the timing model
to capture the effects of varying the transistor sizes on the
gate delays. This causes the number of parameters for the
delay function to increase, making the problem of delay
modeling for sizing algorithms more complex. These input
parameters will be referred to as characterization variables.

We begin with an explanation of the timing model for an
inverter, such as the one shown in Figure 1; this model is
generalized to complex gates in subsequent sections. The
aim is to be able to estimate delay as a function of the
pmos and nmos transistor widths, w, and wy,, the input
transition time 7, and the output load capacitance, C.
Therefore, for an inverter, wy, wy, 7, and C, form the set
of characterization variables. These variables reflect the set
of variables that are generally considered to be important
in defining the delay of a gate in most models.

We attempted the use of several types of functions that
have generalized posynomial form, to achieve the desired
levels of accuracy. The general form of expression that
provided consistently good results for different gate types
is a first order generalized posynomial given by

m n
Delay = _ P; - [[ (@} +¢i5)™ +C 9

j=1 i=1
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Fig. 1. Inverter circuit

Here, the z;’s are characterization variables, and the ¢;;’s,
Bij’s, C, and Pj’s are real constants, referred to collec-
tively as characterization constants. The parameter A is
set to either -1 or 1, depending on the variable, as will
soon be explained. We will show in Section V that the use
of this form of function implies that the circuit delay can
be expressed as a generalized posynomial function of the
transistor widths. The problem of characterization is that
of determining appropriate values for the characterization
constants.

Due to the curve-fitting nature of the characterization
procedure (akin to standard cell characterization), it is not
possible to ascribe direct physical meanings to each of these
terms. However, it can be seen that the fall delay increases
as CL, wp, and 7 are increased, and decreases as wy is
increased, implying that the value of A for the first three
variables must be 1, and that for w,, should be -1. Note
that this is not as restrictive as the Elmore form since,
among other things, the 3;;’s provide an additional degree
of freedom that was not available for the Elmore delay form.
A similar argument may be made for the rise delay case.

B.2 Circuit simulations and curve-fitting

A two-step methodology is adopted to complete the char-
acterization. In the first step, a number of circuit simula-
tions are performed to generate points on a grid. In the
second, a least-squares procedure is used to fit the data to
a function of the type in Equation (9).

A series of simulations is performed to collect the ex-
perimental data using the HSPICE circuit simulator [10].
The total number of data points, N, increases exponen-
tially with the number of characterization variables. For
the inverter circuit with four characterization variables and
d data points for each variable to cover the range of inter-
est, the total number of data points, N would be d*. The
issue of choosing the set of data points is similar to the
problem of choosing data points for the characterization of
standard cells, where the delay is characterized in terms of
the output load and input slope. In this case, we have the
same problem but with more variables, and similar meth-
ods are used to cope with the problem. For example, it
is not necessary to choose an even grid for the transistor
widths and a smaller granularity of points can be chosen
for larger w,’s in case of the fall transition.

The determination of the characterization constants was
performed by solving the following nonlinear program that



minimizes the sum of the squares of the percentage errors
over all data points.

2

(
Dactual (/L) (10)

minimize i [Destim 7') - Dactual(i)
=0

where N is the number of data points, Dggin (i) and
D 4etuai (i), respectively, represent the values given by Equa-
tion (9), and the corresponding measured value at the i*!
data point. This nonlinear programming problem is solved
using the MINOS optimization package [11] to determine
the values of characterization constants.

C. Characterization of a set of primitives

To illustrate the problem of directly extending the above
methodology from inverters to arbitrary gates, we consider
a three-input NAND gate circuit. The characterization
variables for this gate will be the sizes of the three pmos
transistors, sizes of the three nmos transistors, 7 and Cf.
If five data points were chosen to cover each of these vari-
ables, we would have total 58 = 32768 data points. It is
computationally expensive to perform such a large number
of simulations and generate this database for curve fitting.
For more complex gates, as the number of data points in-
creases exponentially with the number of transistors in the
gate, this would lead to a large overhead, both in terms of
the simulation time and the time required to perform the
curve-fit. Therefore, an alternative strategy is suggested.
We emphasize even under this procedure, the transistor siz-
ing approach will size each transistor individually, and this
method is only used for delay estimation. It is important
to emphasize that the use of these mapping strategies only
serves to reduce the complexity of the characterization pro-
cedure. If one is willing to invest the CPU time required to
perform the characterizations for each gate type, then this
procedure is unnecessary. In a library-based design, this
full characterization of all cells is a viable alternative for a
fixed library and its complexity is comparable to charac-
terizing the library using any other means.

In our approach, the gate whose delay is to be measured
is mapped to the closest precharacterized logic structure
and the delay is calculated. A secondary advantage of this
approach is that the delay model is not restricted to a fixed
library type, and arbitrary gate types can be handled.

One straightforward technique that may be used is to
map all of the gates to an “equivalent inverter” [12], and
use the inverter characterization to estimate delays; the
sizes of the pull-down nmos transistor and the pull-up pmos
transistor of this inverter reflect the real pull-down or pull-
up path in the gate. The widths of these new transistors
are referred to as the equivalent widths. The equivalent
width calculation is based on modeling the ‘on’ transistors
as conductances, and the equivalent width corresponds to
the effective conductance of the original structure. Accord-
ingly, if two transistors of widths w; and ws are connected
in parallel, the equivalent width is defined as wy +w- and if
the transistors are connected in series, the equivalent width

is defined as [w' + wz_l]_l.
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Fig. 2. Mapping of a nand gate
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However, such a reduction has shortcomings. Consider
the nand gate in Figure 2(a), whose equivalent inverter ap-
proximation is illustrated in Figure 2(b). The node capac-
itances at nodes other than the output are not accounted
for in this approximation. Also, the same mapping will
be used irrespective of whether input A or B is switching,
whereas in reality, these two cases correspond to different
delay values. We attempt to reduce the errors caused be-
cause of these approximations in our mapping procedure
by defining a set of basic primitives, where each primitive
corresponds to a different position of swithcing transistor,
and mapping arbitrary complex gates to these primitives.
The ensuing discussion describes each of these primitives.

C.1 Simple gates

The set of two-input primitives is shown in Figure 3 (the
presence of a load capacitance at the output is implicit
and is not shown). Timing analysis procedure in our tool
assumes only single input transitions, and hence there can
only be one pair of pmos and nmos transistors switching

at a time.
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Fig. 3. Set of primitives

Consider the two-input nand gate shown in Figure 4(a).
For the fall delay, if the input transition occurs at input
A, then the gate is mapped to Figure 3(a). Note that
since the output is being pulled down in the case of a fall
delay calculation, the pull-down is retained while pull-up
is replaced by a single transistor, and the characterization
equations of Figure 3(a) are used to estimate the delay.



In a similar fashion, when the input transition occurs at
input B of Figure 4(a), the gate is mapped to Figure 3(b).
A similar procedure is applied for rise delays, i.e., the pull-
up part is retained while the pull-down part is replaced by
an equivalent nmos transistor. If we assume single input
transitions, only one of the pmos transistors will be on
during the rise output transition. The pmos transistor that
is off acts only as a loading capacitance, and hence for rise
delay calculation, the nand gate is mapped to an inverter;
the loading capacitance of the inverter consisting of the
fanout load of the gate and the drain capacitance of the
off pmos transistor. In a similar fashion, for the nor gate
in Figure 4(b), when the transition is at input A, the gate
is mapped to the primitive in Figure 3(d), and when the
transition is at input B, the gate is mapped to the primitive
in Figure 3(c).

Vdd Vdd
>
A‘d W2 ELd
A
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Fig. 4. nand and nor gates

The set of three-input primitives is shown in the Figure 5.

Vdd Vdd
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Fig. 5. Primitives for mapping of complex gates

Before explaining the procedure of delay modeling, we
introduce the notion of the largest resistive path (LRP). In
the worst case switching scenario for a gate, there is ex-
actly one path from the output node to the ground [Vy4]
node for a fall [rise] transition. This path may be formed by
calculating equivalent widths for the ‘largest resistive path’
from different nodes to ground/Vy,4 nodes [3]. The complex
gate is represented by a directed graph with an edge from
the drain and source nodes of each transistor in the gatel.
Since the ‘on’ resistance of a transistor is, crudely speak-
ing, proportional to the reciprocal of its width, the edge
weights are the reciprocals of the widths of corresponding

Tn a static CMOS gate, it is always possible to uniquely identify
the source node and the drain node. This may not be true in circuits
with pass gates, which are not handled in our work. The Jouppi rules
[13], for example, could be used to extend this work to circuits with
pass gates.

transistors. The largest resistive path between nodes n,
and ny is the path of largest weight from n; to ns. The
LRP and the weight of the LRP which corresponds to the
width of equivalent transistor is found using a longest path
algorithm [14]. Note that the LRP computation based on
the crude estimations of resistance are only required to pre-
dict the identity of the worst-case path, and more accurate
delay modeling is carried out for the actual delay compu-
tation.
Armed with this definition, we will now explain the com-

putation of fall and rise delays for the gate.
FALL DELAYS: For fall delay estimation, the switching
nmos transistor in the complex gate is identified; denote
this transistor by Ngwitch-
Case A:If the source/drain node of the transistor Ngytch 18
connected to the output node, the LRP from drain/source
of Ngyiten to ground is replaced by its equivalent transis-
tor, and the pull-up network by its equivalent transistor.
The gate is thus mapped to a primitive as shown in Fig-
ure 6; this corresponds to a mapping to the primitive in
Figure 3(a).

Case B: If the source/drain node of the transistor Ngyitch

W = 1/W1+ /W2 + JW3

@ (b)
Fig. 6. An illustration of the mapping procedure

is connected to ground, the LRP from drain/source of
Ngwiten to the output node is replaced by its equivalent
transistor, and the pull-up network by its equivalent tran-
sistor. The gate is thus mapped to the primitive shown in
Figure 3(b).

Case C: If neither the drain nor the source nodes of Ny itch
is connected to the Vg4 or ground node, then the LRP ’s
from drain/source of Ngyitep, 10 Vgq/ground nodes are re-
placed by their corresponding equivalent transistors. The
pull-up network is replaced by its equivalent transistor,
thereby mapping the gate to the primitive shown in Fig-
ure 5(a).

RISE DELAYS: For rise delay estimation, the switching
pmos transistor in the complex gate is identified. Let it be
identified by Pswitch-

Case A:If the source/drain node of the transistor Pyyitch 18
connected to the output node, the LRP from drain/source
of Pgyiten t0 Vyq is replaced by its equivalent transistor, and



the pull-down network by its equivalent transistor. The
gate is thus mapped to the primitive shown in Figure 3(c).
Case B: If the source/drain node of the transistor Psytch
is connected to Vg4, the LRP from drain/source of Psytcn,
to output node is replaced by its equivalent transistor, and
the pull-down network by its equivalent transistor. The
gate is thus mapped to the primitive shown in Figure 3(d).
Case C: If neither the drain nor the source nodes of Py itch
are connected to the V4 or ground node, then the LRP ’s
from drain/source of Psyitcn t0 Vyq/ground nodes are re-
placed by their corresponding equivalent transistors. The
pull-down network is replaced by its equivalent transistor,
thereby mapping the gate to the primitive shown in Fig-
ure 5(b).

C.2 Complex Primitives

One can see that above mentioned methodology can very
efficiently handle various simple gates as well as complex
gates. However, the methodology will not always give accu-
rate delays for the gates with disjoints paths to power sup-
ply or ground (AOI). In case of simple gates with only one
transistor chain, the internal node capacitances are inher-
ently taken into account during the modeling phase. But
in the case of AOI gates there is more than one parallel
chains of transistors. Hence if AQOI gates are mapped on to
the primitives developed for simple gates, then the inter-
nal node capacitances in the nonconducting chains would
not be correctly accounted for resulting in inaccurate delay
values. When the internal node capacitances are charged
then these capacitances need to be considered and hence a
set of complex (AOI) primitives is developed. The beauty
of our approach is that these primitives can be developed
as simple extensions of the primitives of simple gates. For
the AOI gates we make use of the observation that the
worst case delay corresponds to one conducting chain of
transistors between the output and supply, while all other
chains are nonconducting. This shows that primitives for
AOQI gate can be developed by addition of a nonconducting
transistor chain in parallel to the transistor chain in the
simple gate primitive. A few example primitives for AOI
gates are shown in the Figure 7. Similarly, a limited set of
primitives can be developed for general complex gates.

g

Flg. 7. Examples of AOI prlmitives

IV. STATEMENT OF THE PROBLEM

The problem that we solve is an altered form of the tra-
ditionally stated problem of (1). In addition to minimiz-

ing the cost function under delay constraints at primary
output nodes, ratioing constraints are also used. Ratioing
constraints are important in balancing rise and fall delays
which have an impact on the noise margin (Section 2.3 of
[12].
minimize Area or Power

subject to Delay < Typec at all primary outputs

Pull-down strength )
K, < Pull-up strength < K,V gates i

V. PROOF OF CONVEXITY OF THE DELAY MODEL

The ensuing discussion shows that the delays of individ-
ual paths satisfy the property of convexity, and uses this
fact to prove the convexity of the optimization problem. It
is to be emphasized that this discussion is purely for expos-
itory purposes; the optimizer used in this work for sizing
does not require the enumeration of all paths, and performs
the optimization efficiently by checking, through a timing
analysis, whether the constraints are satisfied or not. For
details, the reader is referred to [1].

Let the critical path of the circuit be represented by a set
of stages, where each stage represents a gate. Let us first
consider a scenario with fully characterized gates where
no primitives are used, but the delay is characterized in
terms of the size of each transistor. Then, substituting the
characterization variables explicitly into Equation (9), we
see that the fall delay of the gate corresponding to stage [
has the following form:
=Y P (w4 )’ (wp,,

K3

Delay, + Cnm, )Prmn

(wpl + cpl)ﬂp1 T (wpmp + Cpmp)ﬁpmp

(Ti—l + CT)E"'HJ'(C]' + ch)ﬂcj

and the output fall transition time of the gate in stage [
has the form?

o= Q- (wgll + k1) e (w;rln,. + knm,, )T
(wp]_ + k-pl)’Ypl . (wpmp + kpmp)’Ypmp
(TZ’,1 + kT)’Y"Hj(Cj + kcj)’ycj

where PZ > 0; Q > 07 Cniacpiakniakpiaﬂniaﬂpia YnisVpi
Vi, kc;co; Vikricr, Be; e, B - are real constants. The
wp; and wy; values, as usual, refer to the nmos and pmos
transistor sizes, 7 refers to the transition time, and the C;’s
correspond to the capacitances at the gate output and at
internal nodes. We will show that the delay and transition
time functions have the form of generalized posynomials.

The capacitance at each internal or gate output node i,
C; is modeled by

Ci=> kw;+ k" (11)
J

2The rise delay and rise transition time expressions are similar, with
the roles of w, and wy interchanged.



where the k; and k" values are real constants, and w;’s
represent the equivalent transistor widths in the circuit.

From the Equation (11) we can see that output transition
time is represented by a generalized posynomial. Also the
loading capacitance given by equation (11) has generalized
posynomial form. Using Theorem 1, it can be seen that
when the input transition time and loading capacitance
expressions are substituted in the delay Equation (11), the
resulting expression is also a generalized posynomial. Thus,
the path delay is a generalized posynomial function of the
device widths, that can be mapped on to a convex function.
The objective function is chosen as a weighted sum of the
transistor sizes, which is clearly a generalized posynomial
form. Using identical arguments to [1], [3], since the max-
imum of convex functions is convex, the problem of area
minimization under delay constraints for “template” gates
can be shown to be a convex programming problem.

The problem of power minimization can be dealt with in
a similar fashion; since the edge rates are being explicitly
controlled in our formulation, the short-circuit power is
implicitly controlled and, unlike [15] can be neglected from
the cost function. As a result, the power objective merely
requires minimization of the dynamic power, which is well
known to be a weighted sum of the device sizes [15].

For gates that do not adhere to the template, the map-
ping techniques described in Section III-C may be used to
model the delay function. We will now show that in such a
case, the delay function continues to remain in the general-
ized posynomial form. Let wll, < ,wlm represent transistor
widths in the primitives the gates are mapped to. In the
process of mapping the gates, the transistor widths in the
primitives can be expressed in terms of the actual tran-
sistor widths in the circuit. Let wq,---,w, represent the
actual transistor widths in the circuit. Then w'’s can be
expressed as

wt= Y wh1<i<m (12)
ge{l---n}

All occurrences of value of w;~!, which is a basic variable

in the characterization equation (see the last paragraph
of Section III-B.1), can be substituted as above in Equa-
tion (11), maintaining the generalized posynomial property
of the delay equation.

VI. EXPERIMENTAL RESULTS

The accuracy of the new model for different gates with
respect to the SPICE is demonstrated in Table I. Refer-
ring to Equation (9), a value of m = 1 was chosen, and it
was observed that the use of higher values for j did not of-
fer significant improvements in accuracy, and it was found
that these values of m and j were adequate for our needs.
The characterization was performed in a A = 0.25um tech-
nology by varying transistor widths to up to 30 A, 7 from
20 to 300 ps and C}, up to 600 fF. Characterizations over
other ranges also showed similar behavior.

The table shows a comparison of the accuracies obtained
(relative to a SPICE simulation) using generalized posyn-
omials with those from correspondingly fitted parameters

Logic Gate || Gen. Posy. fit Elmore fit
Error | 0Error Error | 0Error

Inverter 1.2% | 1.4% 8.2% | 9.0%

Nand2 7.2% | 6.9% || 23.3% | 17.9%

Nor2 6.1% | 6.8% | 23.5% | 18.3%

Nand3 13.2% | 11.5% || 28.2% | 20.4%

Nor3 58% | 4.5% | 19.3% | 16.5%

TABLE I

ACCURACY OF THE DELAY MODEL

Output Capcitance = 30fF
Delay without any constraint = 934ps

Model Delay | SPICE Delay | Error | Area
(ps) (ps)
840 835 059 % | 6.67
745 752 -094 % | 7.75
655 670 -2.30 % | 10.01
560 594 -6.07 % | 14.05
TABLE II

COMPARISON OF MODEL DELAY FOR C17 wiTH SPICE

(for the same data) for the Elmore model. In each case, the
average error was significantly smaller (from half to a quar-
ter of the error), and the standard deviation in the error
values was substantially smaller. This reinforces the fact
that Elmore delays cannot be considered reliable, and the
proposed approach presents more accurate delay models.

The delay models developed in this paper were incorpo-
rated into iCONTRAST [3] in a C program. The input to
the program is a SPICE-like transistor-level netlist. The
results of running the algorithm on various test circuits are
shown in Table III. The cost function is set to be the area
of the circuit, estimated as the sum of the transistor sizes.

An important point in judging the correctness of our
model is correspondence of the model delay of a sized cir-
cuit with that of its SPICE delay. We used the circuit
C17 from the ISCAS85 benchmark suit. First we measure
the input-to-output delay of the circuit with all transistor
sizes set to minimum, that is unsized delay. In our case
this input-to-optput delay was 934ps. Once this delay is
known we enforce a tighter delay requirement and optimize
the circuit. We then measure the delay of the optimized
circuit using SPICE and compare it with the model de-
lay. The results of this comparison, for the target delay of
90%, 80%, 70% and 60% of unszied delay, are shown in the
Table II. Also given in the table is the associated area. It
can observed, as expected, that as the specification is made
tighter, the required area to meet these specifications in-
creases.

To show that our model is computationally efficient we
optimized several datapath as well as ISCAS85 benchmark
circuits. We measured the unsized delay of each circuit
and then forced the target delays of 80%,70% and 60%
of the unsized delay. The run times remain reasonable;



Circuit | Unsized | Unsized | Typec | Sized | Exec
Area | Delay Area | Time

Inv10 5| 1.68ns | 1.35ns | 7.52 | 0.24s
1.20ns | 10.07 | 0.34s

1.00ns | 16.06 | 0.33s

Add2 13 | 1.80ns | 1.45ns | 20.07 | 3.8s
1.26ns | 30.84 | 4.1s

1.08ns | 71.62 | 4.7s

Add8 52 6.3ns 5.0ns | 98.1 7.2s
4.4ns | 148.0 | 5.4s

3.8ns | 286.0 | 24.0s

Add32 208 | 24.2ns | 21.8ns 271 240s
19.4ns | 378 68s

17.0ns | 716 150s

C432 251 9.3ns 7.4ns 424 129s
6.5ns 625 54s

5.6ns 954 25s

C880 441.5 7.4ns 5.9ns 665 830s
5.2ns 915 257s

4.4ns 1565 48s

C499 701 10.7ns 8.5ns 1125 | 2897s
7.4ns | 1308 | 1851s

6.3ns 1783 911s

TABLE III

RESULTS OF SIZING VARIOUS CIRCUITS

a thousand transistor circuit, c432, is seen to be sized in
about 2 min.

VII. CONCLUSION

We have presented a new delay model for CMOS gates
that is better suited for modern technologies than the El-
more model, but maintains the convexity properties. A
new class of functions called generalized posynomials is pro-
posed and are shown to have the same relation to convex
functions as posynomials. Experimental results illustrating
the effectiveness of this model have been reported, and the
results of running the sizing algorithm with the improved
model have also been included.

Although we have not done so in this work, the accu-
racy of the model may be increased by enhancing the rich-
ness of the modeling functions. For the transition time
expression in Equation 11, a sum of terms could be used
and this could be shown to maintain the convexity prop-
erties of the formulation. For delay modeling, one could
use the “max” operator to further enhance accuracy, if
required. If fi, fo,---, fr are convex functions then the
function F' = max(f1, f2,---, fr) is also a convex function
and hence can be used to improve accuracy of the approxi-
mation, while retaining the convexity properties of the de-
lay function. However, to implement such a scheme, the
number of characterization constants will increase, thereby
increasing the characterization effort. Nevertheless, it may
be a useful extension if the accuracy achieved using current
model is not deemed sufficient. Since the current model-

ing approach is a special case of this, where k = 1, the
extension is guaranteed to do no worse than our approach.
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APPENDIX

I. PROOF OF CONVEXITY OF GENERALIZED
POSYNOMIALS

It is well known that a generalized posynomial of order
0, Go(x), is transformed to a convex function, Gg(z) in the
z domain [16]. Since the functional form of the functions
Gr(x),k > 0, is different from that of Go(x) due to the
additional nonnegativity constraint on the «;; variables,
they are treated separately.

The proof of Theorem 1 proceeds by considering Gy (z)
for k > 1; to prove its convexity, it is enough to prove the



convexity of

m

L =PJ](Gr-1)%,8 >0,

i=1

(13)

since a sum of convex functions is convex. The gradient
and Hessian of this function are, respectively, given by

= Pi{( H Gk—l,j)ﬂj>ﬂi(Gk—1,i)ﬂ"_1

J=1,i#j

/Bz \V Gk 1,4
=Ly P koL 14
vGr 1, } ,_Zl Gk—l,i ( )
G Bi v Gk 1
2L - 7 ﬁz V Gi—1,i 44 +
v { <; Gk 1,2 Zl Gk 1,4
Z 2 Gk—l,z’ V2 Gr-1,i — VGh-1,i V Gz_u)} (15)

We will prove that L is a convex function by showing
that the matrix s72L is positive semidefinite. Since the first
term is easily seen to be positive semidefinite, the function
L is convex if (Gr1,; V> Gr1,i— VGr 14V Gf_y ;) is
positive semidefinite. We will now show this by proving
the following result, by induction and the proof of The-
orem 1 follows as an immediate consequence. The ma-
trix (Gr, V2 Gx — VG vV G}) is positive semidefinite for
all k > 0.

Basis case Consider a zeroth order generalized posynomial
given by

p n 14
G() = E Wi Hea"jzj = E hz',
i=1 7j=1 i=1

where h; = wj; H?:l e . It is easy to see that the value
of each h; is positive for all z; this observation is used later
in the proof.

Now consider the matrix H = (Go v? Go — VGo v G{).
The (q,1)* term of this matrix is given by

aijzj

P P P P
= (35 (35 ) (S ) (35 )
i—1 i—1 i=1 i=1
p P
= Y > [hihj(aig — ajy) - al
i=1 j=1,j#i
p P
= ) i (aig — ajq) - (au — aji)]
i=1 j= z+1
Therefore, we can write
p P .
H = > Y hih;(@ - a)- (@ — )
=1 j=i+1
where @; = [aq1, a2, ---ain]T. Therefore, H is positive

definite since each h; > 0.

Induction hypothesis: For a generalized posynomial
Gi—1(z) of order k — 1, where k > 1,

G-1(2) V° Gi-1(2) — VGi-1(2) V Gr-1(2)"

is positive semidefinite.
For the inductive step, we write

Gy = ZLk’l = ZP H (Gr—1,:,5)%,
i=1 j=1

so that each Ly is of the form of the function L defined in
Equation (13). We may use the expressions for the gradient
and Hessian of L in Equations (14) and (15) to write

(16)

G V? G, - vGr v Gi
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If we set
ﬂ V Gk 1,1,
P § : J J

17
Gk 1,4, ( )

7j=1

this may be rewritten as

S5 Luallaa{oi] Z

=1 g=1 —1,q,1

V?Gh-1,0,i = VGh-1,i V Gk—l,q,i)})

Z Z LyLyq Z Gzﬂz

=1 g=1 k—1,q,%

(Gr— l,q,'v G- l,qVGk l,q,'VGkT 1,48) T

Z Z Ly Ly, Z — ) (i@, — )7,

=1 g=l+1

Gk 1,q,i

g
- Lk,lLk,quluq

which is positive semidefinite by the induction hypothesis.
QED.



