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Abstract. Randomness and uncertainty are rearing their heads in sur-
prising and contradictory ways in nanometer technologies. On the one
hand, uncertainty and variability is becoming a dominant factor in the
design of integrated circuits, and on the other hand, algorithms based on
randomness are beginning to show great promise in solving large scale
problems. This paper overviews both aspects of this issue.

1 Introduction

A historical look at integrated circuit technologies shows several inflection points
that have characterized the 250nm, 180nm and 130nm nodes. The move to the
sub-100nm regime is projected to bring about the most revolutionary of these
changes, in terms of how it impacts the way in which design is carried out. Most
notably, randomness will become a fact of life that designers will be forced to
confront, and perhaps, paradoxically, the only certainty in nanometer designs
will be the presence of uncertainty. Several issues related to uncertainty and
randomness will be discussed in this paper.

We will begin, in Section 2, by exploring the origins of randomness in nanome-
ter circuits, and will then discuss methods that must be used in next-generation
designs to handle such variations in Section 3. This first aspect of randomness,
caused by process and environmental variations, is “problematic” and requires
new solutions to overcome its effects, since such variations manifest themselves
as changes in the delay and power dissipation of a circuit. As a consequence, the
analysis of timing will move from a purely deterministic setting to a statistical
analysis, as will the analysis of leakage power, which is becoming a major com-
ponent of the total power dissipation. This has already lead to intense efforts
in statistical static timing analysis (SSTA) and statistical power analysis in re-
cent years. Finding efficient solutions to these problems presents numerous new
challenges, and while some first steps have been taken, many problems remain
unsolved.

Amid all these problems also lies an opportunity: there is a second facet of
randomness that is likely to have very positive consequences in the future, as
discussed in Section 4. As the electronic design automation world becomes more
educated in the use of stochastic techniques, new opportunities will arise on the
algorithmic side, as novel statistical approaches will be developed for solving



design problems. This has already been set into motion: problems as diverse as
capacitance extraction, power estimation, Vdd net analysis, crosstalk analysis,
placement, and ESD analysis are seeing viable stochastic solution techniques.
An attractive feature of the random techniques is that when used in appropriate
settings, they can scale extremely well with increasing problem sizes, and for
several problems, they have the potential for localized computation. This paper
will overview such algorithms and raise the challenge of harnessing the power of
such methods for solving the problems of tomorrow.

2 Sources of Uncertainty

Current-day integrated circuits are afflicted with a wide variety of variations
that affect their performance. Essentially, under true operating conditions, the
parameters chosen by the circuit designer are perturbed from their nominal
values due to various types of variations. As a consequence, a single SPICE-
level transistor or interconnect model (or an abstraction thereof) is seldom an
adequate predictor of the exact behavior of a circuit. These sources of variation
can broadly be categorized into two classes

Process variations result from perturbations in the fabrication process, due
to which the nominal values of parameters such as the effective channel
length (L¢fys), the oxide thickness (¢,;), the dopant concentration (N,), the
transistor width (w), the interlayer dielectric (ILD) thickness (¢;.,p), and
the interconnect height and width (h;,; and w;y:, respectively).

Environmental variations arise due to changes in the operating environment
of the circuit, such as the temperature or variations in the supply voltage
(Via and ground) levels. There is a wide body of work on analysis techniques
to determine environmental variations, both for thermal issues [8, 7,20, 10],
and for supply net analysis [18].

Both of these types of variations can result in changes in the timing and power
characteristics of a circuit.
Process variations can also be classified into the following categories:

Inter-die variations are the variations from die to die, and affect all the de-
vices on same chip in the same way, e.g., they may cause all of the transistor
gate lengths of devices on the same chip to be larger or all of them to be
smaller.

Intra-die variations correspond to variability within a single chip, and may
affect different devices differently on the same chip, e.g., they may result in
some devices having smaller oxide thicknesses than the nominal, while others
may have larger oxide thicknesses.

Inter-die variations have been a longstanding design issue, and for several
decades, designers have striven to make their circuits robust under the unpre-
dictability of such variations. This has typically been achieved by simulating the
design at not just one design point, but at multiple “corners.” These corners are



chosen to encapsulate the behavior of the circuit under worst-case variations,
and have served designers well in the past. In nanometer technologies, designs
are increasingly subjected to numerous sources of variation, and these variations
are too complex to capture within a small set of process corners.
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Fig. 1. The feasible region in (a) the performance parameter space and (b) the de-
sign/process parameter space.

To illustrate this, consider the design of a typical circuit. The specifications
on the circuit are in the form of limits on performance parameters, p;, such as
the delay or the static or dynamic power dissipation, which are dependent on a
set, of design or process parameters, d;, such as the transistor width or the oxide
thickness. In Figure 1(a), we show the behavior of a representative circuit in the
performance space of parameters, p;, whose permissible range of variations lies
within a range of [p;min, Pi,maz] for each parameter, p;, which corresponds to a
rectangular region. However, in the original space of design parameters, d;, this
may translate into a much more complex geometry, as shown in Figure 1(b).
This may conservatively be captured in the form of process corners at which the
circuit is simulated.

In nanometer technologies, intra-die variations have become significant and
can no longer be ignored. As a result, a process corner based methodology, which
would simulate the entire chip at a small number of design corners, is no longer
sustainable. A true picture of the variations would use one process corner in each
region of the chip, but it is clear that the number of simulations would increase
exponentially with the number of such regions. If a small number of process
corners are to be chosen, they must be very conservative and pessimistic. For
true accuracy, a larger number of process corners may be used, but this number
may be too large to permit computational efficiency.

The sources of these variations may be used to create another taxonomy:



Random variations (as the name implies) depict random behavior that can
be characterized in terms of a distribution. This distribution may either be
explicit, in terms of a large number of samples provided from fabrication line
measurements, or implicit, in terms of a known probability density function
(such as a Gaussian or a lognormal distribution) that has been fitted to
the measurements. Random variations in some process or environmental pa-
rameters (such as those in the temperature, supply voltage, or L.;f) can
often show some degree of local spatial correlation, whereby variations in
one transistor in a chip are remarkably similar in nature to those in spa-
tially neighboring transistors, but may differ significantly from those that
are far away. Other process parameters (such as t,; and N,) do not show
much spatial correlation at all, so that for all practical purposes, variations
in neighboring transistors are uncorrelated.

Systematic variations show predictable variational trends across a chip, and
are caused by known physical phenomena during manufacturing. Strictly
speaking, environmental changes are entirely predictable, but practically,
due to the fact that these may change under a large number (potentially
exponential in the number of inputs and internal states) of operating modes
of a circuit, it is easier to capture them in terms of random variations. Exam-
ples of systematic variations include those due to (i) spatial intra-chip gate
length variability, also known as across-chip linewidth variation (ACLV),
which observes systematic changes in the value of L.¢s across a reticle due
to effects such as changes in the stepper-induced illumination and imaging
nonuniformity due to lens aberrations [15], and (ii) ILD variations due to the
effects of chemical-mechanical polishing (CMP) on metal density patterns:
regions that have uniform metal densities tend to have more uniform ILD
thicknesses than regions that have nonuniformities.

The existence of correlations between intra-die variations complicates the
task of statistical analysis. These correlations are of two types:

Spatial correlations To model the intra-die spatial correlations of parameters,
the die region may be tesselated into n grids. Since devices or wires close to
each other are more likely to have similar characteristics than those placed
far away, it is reasonable to assume perfect correlations among the devices
[wires] in the same grid, high correlations among those in close grids and
low or zero correlations in far-away grids. Under this model, a parameter
variation in a single grid at location (z,y) can be modeled using a single
random variable p(z,y). For each type of parameter, n random variables are
needed, each representing the value of a parameter in one of the n grids.

Structural correlations The structure of the circuit can also lead to correla-
tions that must be incorporated in SSTA. Consider the reconvergent fanout
structure shown in Figure 2. The circuit has two paths, a-b-d and a-c-d. If,
for example, we assume that each gate delay is a Gaussian random variable,
then the PDF of the delay of each path is easy to compute, since it is the
sum of Gaussians, which admits a closed form. However, the circuit delay is
the maximum of the delays of these two paths, and these are correlated since
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Fig. 2. An example to illustrate structural correlations in a circuit.

the delays of a and d contribute to both paths. It is important to take such
structural correlations, which arise due to reconvergences in the circuit, into
account while performing SSTA.

3 Analysis of Uncertainty

As an example, we will now illustrate the concepts involved in the statistical
analysis of timing; similar techniques are being developed for power analysis.

The geometrical parameters associated with the gate and interconnect can
reasonably be modeled as normally distributed random variables. Before we
introduce how the distributions of gate and interconnect delays will be modeled,
let us first consider an arbitrary function d = f(P) that is assumed to be a
function on a set of parameters P, where each p; € P is a random variable with
a normal distribution given by p; ~ N (pyp,,0p,). We can approximate d linearly
using a first order Taylor expansion:

d=dy+ > [af_LApi (1)

v parameters p;

where dj is the nominal value of d, calculated at the nominal values of parameters
in the set P, {%} . is computed at the nominal values of p;, Ap, = p; — p,, is a

normally distributed random variable and Ap; ~ N(0,0p,). The delay function
here is arbitrary, and may include, for example, the effects of the input transition
time on the gate/wire delay.

If all of the parameter variations can be modeled by Gaussian distributions,
this approximation implies that d is a linear combination of Gaussians, which is
therefore Gaussian. Its mean j4, and variance o2 are:

Hd = do (2)
E e e
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where cov(p;, p;) is the covariance of p; and p;.

This approximation is valid when Ap; has relatively small variations, in which
domain the first order Taylor expansion is adequate and the approximation is
acceptable with little loss of accuracy. This is generally true of the impact of
intra-chip variations on delay, where the process parameter variations are rela-
tively small in comparison with the nominal values, and the function changes by
a small amount under this perturbation. For this reason, the gate and intercon-
nect delays, as functions of the process parameters, can be approximated as a
normal distributions when the parameter variations are assumed to be normal.

The existence of on-chip variations requires an extension of traditional STA
techniques to move beyond their deterministic nature. The SSTA approach,
which overcomes these problems, treats delays not as fixed numbers, but as
probability density functions (PDF’s), taking the statistical distribution of para-
metric variations into consideration while analyzing the circuit. The simplest way
to achieve this, in terms of the complexity of implementation, may be through
Monte Carlo analysis. While such an analysis can handle arbitrarily complex
variations, its major disadvantage is in its extremely large run-times. Therefore,
more efficient methods are called for.

The task of static timing analysis can be distilled into two types of operations:

— A gate is being processed in STA when the arrival times of all inputs are
known, at which time the candidate delay values at the output are computed
using the “sum” operation that adds the delay at each input with the input-
to-output pin delay.

— Once these candidate delays have been found, the “max” operation is applied
to determine the maximum arrival time at the output.

In SSTA, the operations are identical to STA; the difference is that the pin-to-pin
delays and the arrival times are PDF's instead of single numbers.

The first method for statistical static timing analysis to successfully process
large benchmarks under probabilistic delay models was proposed by Berkelaar in
[4]. In the spirit of static timing analysis, this approach was purely topological,
and ignored the Boolean structure of the circuit. It assumed that each gate in
the circuit has a delay distribution that is described by a Gaussian PDF, and
assumed that all process variations were uncorrelated.

The approach maintains an invariant that expresses all arrival times as Gaus-
sians. As a consequence, since the gate delays are Gaussian, the “sum” operation
is merely an addition of Gaussians, which is well known to be a Gaussian. The
computation of the max function, however, poses greater problems. The set of
candidate delays are all Gaussian, so that this function must find the maximum
of Gaussians. In general, the maximum of two Gaussians is not a Gaussian. How-
ever, given the intuition that if @ and b are Gaussian random variables, if a > b,
max(a, b) = a, a Gaussian; if a = b, max(a,b) = a = b, a Guassian, it may be
reasonable to approximate this maximum using a Gaussian. In later work in [11],
a precise closed-form approximation for the mean and variance was utilized.



Another class of methods includes the work in [3], which uses bounding tech-
niques to arrive at the delay distribution of a circuit, but again, these ignore any
spatial correlation effects, and it is important to take these into consideration.

Figure 3 shows a comparison of the PDF yielded by an SSTA technique that
is unaware of spatial correlations, as compared with a Monte Carlo simulation
that incorporates these spatial correlations. The clear difference between the
curves demonstrates the need for developing methods that can handle these
dependencies.
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Fig. 3. A comparison of the results of SSTA when the random variables are spatially
correlated. The line on which points are marked with stars represents the accurate
results obtained by a lengthy Monte Carlo simulation, and the the solid curve shows
the results when spatial correlations are entirely ignored. The upper plot shows the
CDFs, and the lower plot, the PDFs [6].

The approach in [6] presents a novel and simple method based on the appli-
cation of principal component analysis (PCA) techniques [13] to convert a set of
correlated random variables into a set of uncorrelated variables in a transformed
space; the PCA step can be performed as a preprocessing step for a design. The
overall idea is similar to that of Berkelaar’s, but the use of PCA permits rapid
and efficient processing of spatial correlations. In reality, some parameters may
be spatially correlated and others (such as T,, and N;) may be uncorrelated:
this method is easily extended to handle these issues.

The overall flow of the algorithm is shown in Figure 4. The complexity of the
method is p - n times the complexity of CPM, where n is the number of squares
in the grid and p is the number of correlated parameters, plus the complexity of
finding the principal components, which requires very low runtimes in practice.



Input: Process parameter variations
Output: Distribution of circuit delay

1. Partition the chip into n = nrow x ncol grids, each modeled by spatially
correlated variables.

2. For each type of parameter, determine the n jointly normally distributed
random variables and the corresponding covariance matrix.

3. Perform an orthogonal transformation to represent each random variable
with a set of principal components.

4. For each gate and net connection, model their delays as linear combinations
of the principal components generated in step 3.

5. Using “sum” and “max” functions on Gaussian random variables, perform
a CPM-like traversal on the graph to find the distribution of the statistical
longest path. This distribution achieved is the circuit delay distribution.

Fig. 4. Overall flow of the PCA-based statistical timing analysis method.

The overall CPU times for this method have been shown to be low, and the
method yields high accuracy results.

4 Uncertainty as a virtue

4.1 Introduction

The concept of uncertainty can also be harnessed to advantage in providing
efficient solutions to many difficult problems. Examples of such problems are as
follows:

Randomized algorithms have been proposed in [14] for the solution of many
combinatorial problems, including problems such as partitioning that arise
in CAD. However, these have not been significantly developed in EDA.

Monte Carlo methods have been used very successfully to compute the av-
erage power dissipation of a circuit by applying a small fraction of the expo-
nentially large space of possible input vectors to a circuit [5]. Such methods
have also been employed for SSTA, as described earlier.

Random walk methods have been used to analyze large systems with local-
ized behavior, such as in capacitance extraction [9], power grid analysis [16],
and we are currently investigating their application to the analysis of electro-
static discharge (ESD) networks and to the problem of placement in physical
design.

Other miscellaneous applications of random methods include techniques for
crosstalk analysis [19] and in the probabilistic analysis of routing congestion
[12,21].

All of these point to the fact that the use of statistical methods in design is
a vibrant and growing field with many upcoming challenges, particularly as,
when used in the right contexts (e.g., when the computation is localized), these



methods can scale extremely well. We will illustrate one such method in the
following section.

4.2 Case Study: Power grid analysis using random walks

On-chip power grids play an important role in determining circuit performance,
and it is critical to analyze them accurately and efficiently to check for signal
integrity, increasingly so in nanometer technologies.

A typical power grid consists of wire resistances, wire inductances, wire capac-
itances, decoupling capacitors, VDD pads, and current sources that correspond
to the currents drawn by logic gates or functional blocks. There are two sub-
problems to power grid analysis: DC' analysis to find steady-state node voltages,
and transient analysis which is concerned with finding voltage waveforms con-
sidering the effects of capacitors, inductors and time-varying current waveform
patterns.

The DC analysis of a power grid is formulated as a problem of solving a
system of linear equations:

GX =E (4)

where G is the conductance matrix for the interconnected resistors, X is the
vector of node voltages, and E is a vector of independent sources. Traditional
approaches exploit the sparse and positive definite nature of G to solve this
system of linear equations for X. However, the cost of doing so can become
prohibitive for a modern-day power grid with hundreds of millions of nodes,
and this will only become worse as the circuit size is ever growing from one
technology generation to the next.
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Fig. 5. (a)A representative power grid node. (b) An instance of a random walk “game.”

For the DC analysis of a VDD grid, let us look at a single node z in the
circuit, as illustrated in Figure 5(a). Applying Kirchoff’s Current Law, Kirchoff’s



Voltage Law and the device equations for the conductances, we can write down
the following equation:

degree(z)
Yo aVi-V) =1, (5)
i=1
where the nodes adjacent to x are labeled 1,2, -, degree(x), V, is the voltage

at node x, V; is the voltage at node i, g; is the conductance between node 7 and
node x, and I is the current load connected to node z. Equation (5) can be
reformulated as follows:

degree(z)

i Iz
Vo= ) Vi — (6)
degree(z degree(z
i=1 Zj:gl ( )gj Zj:gl ( )gj

We can see that this implies that the voltage at any node is a linear function
of the voltages at its neighbors. We also observe that the sum of the linear
coefficients associated with the V;’s is 1. For a power grid problem with N non-
VDD nodes, we have N linear equations similar to the one above, one for each
node. Solving this set of equations will give us the exact solution.

We will equivalence this problem to a random walk “game,” for a given finite
undirected connected graph (for example, Figure 5(b)) representing a street map.
A walker starts from one of the nodes, and goes to an adjacent node i every day
with probability p, ; for i = 1,2,--- degree(x), where = is the current node,
and degree(z) is the number of edges connected to node x. These probabilities
satisfy the following relationship:

degree(z

()

i=1

The walker pays an amount m, to a motel for lodging everyday, until he/she
reaches one of the homes, which are a subset of the nodes. If the walker reaches
home, he/she will stay there and be awarded a certain amount of money, my.
We will consider the problem of calculating the expected amount of money that
the walker has accumulated at the end of the walk, as a function of the starting
node, assuming he/she starts with nothing.

The gain function for the walk is therefore defined as

f(x) = E[total money earned |walk starts at node z] (8)

It is obvious that
f(one of the homes) = myg (9)

For a non-home node z, assuming that the nodes adjacent to x are labeled

1,2, degree(z), the f variables satisty

degree(z)

Fa) = S peafli)—m, (10)

i=1



For a random-walk problem with N non-home nodes, there are N linear equa-
tions similar to the one above, and the solution to this set of equations will give
the exact values of f at all nodes.

It is easy to draw a parallel between this problem and that of power grid
analysis. Equation (10) becomes identical to (6), and equation (9) reduces to
the condition of perfect VDD nodes if

Gi
Z;izgj;[ree(z) 9;
I,

degree(z)
Zj:l 9j

A natural way to approach the random walk problem is to perform a certain
number of experiments and use the average money left in those experiments as
the approximated solution. If this amount is averaged over a sufficiently large
number of walks by playing the “game” a sufficiently large number of times, then
by the law of large numbers, an acceptably accurate solution can be obtained.

This is the idea behind the proposed generic algorithm that forms the most
basic implementation. Numerous efficiency-enhancing techniques are employed
in the implementation, and these have been described in [16, 17]. The DC solution
above has also been extended to solve the transient analysis problem, which can
be handled similarly, and with greater efficiency.

Dyi = 1=1,2,--- , degree(z)

mo = Vpp flz) =V, (11)

mqy =

5 Conclusion

The effects of variability and uncertainty are here to stay in nanometer VLSI
designs, and CAD techniques must be found to overcome them. This paper has
outlined the basics of how a CAD engineer will have to deal with randomness
in the future: not only in terms of dealing with it during design, but also in the
sense of exploiting it by using algorithms that exploit randomness. This paper
only skims the very surface of this issue, and there is likely to be considerable
work in this field in the future.
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