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t. Randomness and un
ertainty are rearing their heads in sur-prising and 
ontradi
tory ways in nanometer te
hnologies. On the onehand, un
ertainty and variability is be
oming a dominant fa
tor in thedesign of integrated 
ir
uits, and on the other hand, algorithms based onrandomness are beginning to show great promise in solving large s
aleproblems. This paper overviews both aspe
ts of this issue.1 Introdu
tionA histori
al look at integrated 
ir
uit te
hnologies shows several in
e
tion pointsthat have 
hara
terized the 250nm, 180nm and 130nm nodes. The move to thesub-100nm regime is proje
ted to bring about the most revolutionary of these
hanges, in terms of how it impa
ts the way in whi
h design is 
arried out. Mostnotably, randomness will be
ome a fa
t of life that designers will be for
ed to
onfront, and perhaps, paradoxi
ally, the only 
ertainty in nanometer designswill be the presen
e of un
ertainty. Several issues related to un
ertainty andrandomness will be dis
ussed in this paper.We will begin, in Se
tion 2, by exploring the origins of randomness in nanome-ter 
ir
uits, and will then dis
uss methods that must be used in next-generationdesigns to handle su
h variations in Se
tion 3. This �rst aspe
t of randomness,
aused by pro
ess and environmental variations, is \problemati
" and requiresnew solutions to over
ome its e�e
ts, sin
e su
h variations manifest themselvesas 
hanges in the delay and power dissipation of a 
ir
uit. As a 
onsequen
e, theanalysis of timing will move from a purely deterministi
 setting to a statisti
alanalysis, as will the analysis of leakage power, whi
h is be
oming a major 
om-ponent of the total power dissipation. This has already lead to intense e�ortsin statisti
al stati
 timing analysis (SSTA) and statisti
al power analysis in re-
ent years. Finding eÆ
ient solutions to these problems presents numerous new
hallenges, and while some �rst steps have been taken, many problems remainunsolved.Amid all these problems also lies an opportunity: there is a se
ond fa
et ofrandomness that is likely to have very positive 
onsequen
es in the future, asdis
ussed in Se
tion 4. As the ele
troni
 design automation world be
omes moreedu
ated in the use of sto
hasti
 te
hniques, new opportunities will arise on thealgorithmi
 side, as novel statisti
al approa
hes will be developed for solving



design problems. This has already been set into motion: problems as diverse as
apa
itan
e extra
tion, power estimation, Vdd net analysis, 
rosstalk analysis,pla
ement, and ESD analysis are seeing viable sto
hasti
 solution te
hniques.An attra
tive feature of the random te
hniques is that when used in appropriatesettings, they 
an s
ale extremely well with in
reasing problem sizes, and forseveral problems, they have the potential for lo
alized 
omputation. This paperwill overview su
h algorithms and raise the 
hallenge of harnessing the power ofsu
h methods for solving the problems of tomorrow.2 Sour
es of Un
ertaintyCurrent-day integrated 
ir
uits are a�i
ted with a wide variety of variationsthat a�e
t their performan
e. Essentially, under true operating 
onditions, theparameters 
hosen by the 
ir
uit designer are perturbed from their nominalvalues due to various types of variations. As a 
onsequen
e, a single SPICE-level transistor or inter
onne
t model (or an abstra
tion thereof) is seldom anadequate predi
tor of the exa
t behavior of a 
ir
uit. These sour
es of variation
an broadly be 
ategorized into two 
lassesPro
ess variations result from perturbations in the fabri
ation pro
ess, dueto whi
h the nominal values of parameters su
h as the e�e
tive 
hannellength (Leff ), the oxide thi
kness (tox), the dopant 
on
entration (Na), thetransistor width (w), the interlayer diele
tri
 (ILD) thi
kness (tILD), andthe inter
onne
t height and width (hint and wint, respe
tively).Environmental variations arise due to 
hanges in the operating environmentof the 
ir
uit, su
h as the temperature or variations in the supply voltage(Vdd and ground) levels. There is a wide body of work on analysis te
hniquesto determine environmental variations, both for thermal issues [8, 7, 20, 10℄,and for supply net analysis [18℄.Both of these types of variations 
an result in 
hanges in the timing and power
hara
teristi
s of a 
ir
uit.Pro
ess variations 
an also be 
lassi�ed into the following 
ategories:Inter-die variations are the variations from die to die, and a�e
t all the de-vi
es on same 
hip in the same way, e.g., they may 
ause all of the transistorgate lengths of devi
es on the same 
hip to be larger or all of them to besmaller.Intra-die variations 
orrespond to variability within a single 
hip, and maya�e
t di�erent devi
es di�erently on the same 
hip, e.g., they may result insome devi
es having smaller oxide thi
knesses than the nominal, while othersmay have larger oxide thi
knesses.Inter-die variations have been a longstanding design issue, and for severalde
ades, designers have striven to make their 
ir
uits robust under the unpre-di
tability of su
h variations. This has typi
ally been a
hieved by simulating thedesign at not just one design point, but at multiple \
orners." These 
orners are




hosen to en
apsulate the behavior of the 
ir
uit under worst-
ase variations,and have served designers well in the past. In nanometer te
hnologies, designsare in
reasingly subje
ted to numerous sour
es of variation, and these variationsare too 
omplex to 
apture within a small set of pro
ess 
orners.p2
p2;minp2;max

p1;min p1;max d1

d2
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Fig. 1. The feasible region in (a) the performan
e parameter spa
e and (b) the de-sign/pro
ess parameter spa
e.To illustrate this, 
onsider the design of a typi
al 
ir
uit. The spe
i�
ationson the 
ir
uit are in the form of limits on performan
e parameters, pi, su
h asthe delay or the stati
 or dynami
 power dissipation, whi
h are dependent on aset of design or pro
ess parameters, di, su
h as the transistor width or the oxidethi
kness. In Figure 1(a), we show the behavior of a representative 
ir
uit in theperforman
e spa
e of parameters, pi, whose permissible range of variations lieswithin a range of [pi;min; pi;max℄ for ea
h parameter, pi, whi
h 
orresponds to are
tangular region. However, in the original spa
e of design parameters, di, thismay translate into a mu
h more 
omplex geometry, as shown in Figure 1(b).This may 
onservatively be 
aptured in the form of pro
ess 
orners at whi
h the
ir
uit is simulated.In nanometer te
hnologies, intra-die variations have be
ome signi�
ant and
an no longer be ignored. As a result, a pro
ess 
orner based methodology, whi
hwould simulate the entire 
hip at a small number of design 
orners, is no longersustainable. A true pi
ture of the variations would use one pro
ess 
orner in ea
hregion of the 
hip, but it is 
lear that the number of simulations would in
reaseexponentially with the number of su
h regions. If a small number of pro
ess
orners are to be 
hosen, they must be very 
onservative and pessimisti
. Fortrue a

ura
y, a larger number of pro
ess 
orners may be used, but this numbermay be too large to permit 
omputational eÆ
ien
y.The sour
es of these variations may be used to 
reate another taxonomy:



Random variations (as the name implies) depi
t random behavior that 
anbe 
hara
terized in terms of a distribution. This distribution may either beexpli
it, in terms of a large number of samples provided from fabri
ation linemeasurements, or impli
it, in terms of a known probability density fun
tion(su
h as a Gaussian or a lognormal distribution) that has been �tted tothe measurements. Random variations in some pro
ess or environmental pa-rameters (su
h as those in the temperature, supply voltage, or Leff ) 
anoften show some degree of lo
al spatial 
orrelation, whereby variations inone transistor in a 
hip are remarkably similar in nature to those in spa-tially neighboring transistors, but may di�er signi�
antly from those thatare far away. Other pro
ess parameters (su
h as tox and Na) do not showmu
h spatial 
orrelation at all, so that for all pra
ti
al purposes, variationsin neighboring transistors are un
orrelated.Systemati
 variations show predi
table variational trends a
ross a 
hip, andare 
aused by known physi
al phenomena during manufa
turing. Stri
tlyspeaking, environmental 
hanges are entirely predi
table, but pra
ti
ally,due to the fa
t that these may 
hange under a large number (potentiallyexponential in the number of inputs and internal states) of operating modesof a 
ir
uit, it is easier to 
apture them in terms of random variations. Exam-ples of systemati
 variations in
lude those due to (i) spatial intra-
hip gatelength variability, also known as a
ross-
hip linewidth variation (ACLV),whi
h observes systemati
 
hanges in the value of Leff a
ross a reti
le dueto e�e
ts su
h as 
hanges in the stepper-indu
ed illumination and imagingnonuniformity due to lens aberrations [15℄, and (ii) ILD variations due to thee�e
ts of 
hemi
al-me
hani
al polishing (CMP) on metal density patterns:regions that have uniform metal densities tend to have more uniform ILDthi
knesses than regions that have nonuniformities.The existen
e of 
orrelations between intra-die variations 
ompli
ates thetask of statisti
al analysis. These 
orrelations are of two types:Spatial 
orrelations To model the intra-die spatial 
orrelations of parameters,the die region may be tesselated into n grids. Sin
e devi
es or wires 
lose toea
h other are more likely to have similar 
hara
teristi
s than those pla
edfar away, it is reasonable to assume perfe
t 
orrelations among the devi
es[wires℄ in the same grid, high 
orrelations among those in 
lose grids andlow or zero 
orrelations in far-away grids. Under this model, a parametervariation in a single grid at lo
ation (x; y) 
an be modeled using a singlerandom variable p(x; y). For ea
h type of parameter, n random variables areneeded, ea
h representing the value of a parameter in one of the n grids.Stru
tural 
orrelations The stru
ture of the 
ir
uit 
an also lead to 
orrela-tions that must be in
orporated in SSTA. Consider the re
onvergent fanoutstru
ture shown in Figure 2. The 
ir
uit has two paths, a-b-d and a-
-d. If,for example, we assume that ea
h gate delay is a Gaussian random variable,then the PDF of the delay of ea
h path is easy to 
ompute, sin
e it is thesum of Gaussians, whi
h admits a 
losed form. However, the 
ir
uit delay isthe maximum of the delays of these two paths, and these are 
orrelated sin
e
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Fig. 2. An example to illustrate stru
tural 
orrelations in a 
ir
uit.the delays of a and d 
ontribute to both paths. It is important to take su
hstru
tural 
orrelations, whi
h arise due to re
onvergen
es in the 
ir
uit, intoa

ount while performing SSTA.3 Analysis of Un
ertaintyAs an example, we will now illustrate the 
on
epts involved in the statisti
alanalysis of timing; similar te
hniques are being developed for power analysis.The geometri
al parameters asso
iated with the gate and inter
onne
t 
anreasonably be modeled as normally distributed random variables. Before weintrodu
e how the distributions of gate and inter
onne
t delays will be modeled,let us �rst 
onsider an arbitrary fun
tion d = f(P) that is assumed to be afun
tion on a set of parameters P, where ea
h pi 2 P is a random variable witha normal distribution given by pi � N(�pi ; �pi). We 
an approximate d linearlyusing a �rst order Taylor expansion:d = d0 + X8 parameters pi � �f�pi �0�pi (1)where d0 is the nominal value of d, 
al
ulated at the nominal values of parametersin the set P, h �f�pi i0 is 
omputed at the nominal values of pi, �pi = pi��pi is anormally distributed random variable and �pi � N(0; �pi). The delay fun
tionhere is arbitrary, and may in
lude, for example, the e�e
ts of the input transitiontime on the gate/wire delay.If all of the parameter variations 
an be modeled by Gaussian distributions,this approximation implies that d is a linear 
ombination of Gaussians, whi
h istherefore Gaussian. Its mean �d, and varian
e �2d are:�d = d0 (2)�2d =X8i � �f�pi �20 �2pi + 2X8i6=j � �f�pi �0 � �f�pj �0 
ov(pi; pj) (3)



where 
ov(pi; pj) is the 
ovarian
e of pi and pj .This approximation is valid when�pi has relatively small variations, in whi
hdomain the �rst order Taylor expansion is adequate and the approximation isa

eptable with little loss of a

ura
y. This is generally true of the impa
t ofintra-
hip variations on delay, where the pro
ess parameter variations are rela-tively small in 
omparison with the nominal values, and the fun
tion 
hanges bya small amount under this perturbation. For this reason, the gate and inter
on-ne
t delays, as fun
tions of the pro
ess parameters, 
an be approximated as anormal distributions when the parameter variations are assumed to be normal.The existen
e of on-
hip variations requires an extension of traditional STAte
hniques to move beyond their deterministi
 nature. The SSTA approa
h,whi
h over
omes these problems, treats delays not as �xed numbers, but asprobability density fun
tions (PDF's), taking the statisti
al distribution of para-metri
 variations into 
onsideration while analyzing the 
ir
uit. The simplest wayto a
hieve this, in terms of the 
omplexity of implementation, may be throughMonte Carlo analysis. While su
h an analysis 
an handle arbitrarily 
omplexvariations, its major disadvantage is in its extremely large run-times. Therefore,more eÆ
ient methods are 
alled for.The task of stati
 timing analysis 
an be distilled into two types of operations:{ A gate is being pro
essed in STA when the arrival times of all inputs areknown, at whi
h time the 
andidate delay values at the output are 
omputedusing the \sum" operation that adds the delay at ea
h input with the input-to-output pin delay.{ On
e these 
andidate delays have been found, the \max" operation is appliedto determine the maximum arrival time at the output.In SSTA, the operations are identi
al to STA; the di�eren
e is that the pin-to-pindelays and the arrival times are PDFs instead of single numbers.The �rst method for statisti
al stati
 timing analysis to su

essfully pro
esslarge ben
hmarks under probabilisti
 delay models was proposed by Berkelaar in[4℄. In the spirit of stati
 timing analysis, this approa
h was purely topologi
al,and ignored the Boolean stru
ture of the 
ir
uit. It assumed that ea
h gate inthe 
ir
uit has a delay distribution that is des
ribed by a Gaussian PDF, andassumed that all pro
ess variations were un
orrelated.The approa
h maintains an invariant that expresses all arrival times as Gaus-sians. As a 
onsequen
e, sin
e the gate delays are Gaussian, the \sum" operationis merely an addition of Gaussians, whi
h is well known to be a Gaussian. The
omputation of the max fun
tion, however, poses greater problems. The set of
andidate delays are all Gaussian, so that this fun
tion must �nd the maximumof Gaussians. In general, the maximum of two Gaussians is not a Gaussian. How-ever, given the intuition that if a and b are Gaussian random variables, if a� b,max(a; b) = a, a Gaussian; if a = b, max(a; b) = a = b, a Guassian, it may bereasonable to approximate this maximum using a Gaussian. In later work in [11℄,a pre
ise 
losed-form approximation for the mean and varian
e was utilized.



Another 
lass of methods in
ludes the work in [3℄, whi
h uses bounding te
h-niques to arrive at the delay distribution of a 
ir
uit, but again, these ignore anyspatial 
orrelation e�e
ts, and it is important to take these into 
onsideration.Figure 3 shows a 
omparison of the PDF yielded by an SSTA te
hnique thatis unaware of spatial 
orrelations, as 
ompared with a Monte Carlo simulationthat in
orporates these spatial 
orrelations. The 
lear di�eren
e between the
urves demonstrates the need for developing methods that 
an handle thesedependen
ies.
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Fig. 3. A 
omparison of the results of SSTA when the random variables are spatially
orrelated. The line on whi
h points are marked with stars represents the a

urateresults obtained by a lengthy Monte Carlo simulation, and the the solid 
urve showsthe results when spatial 
orrelations are entirely ignored. The upper plot shows theCDFs, and the lower plot, the PDFs [6℄.The approa
h in [6℄ presents a novel and simple method based on the appli-
ation of prin
ipal 
omponent analysis (PCA) te
hniques [13℄ to 
onvert a set of
orrelated random variables into a set of un
orrelated variables in a transformedspa
e; the PCA step 
an be performed as a prepro
essing step for a design. Theoverall idea is similar to that of Berkelaar's, but the use of PCA permits rapidand eÆ
ient pro
essing of spatial 
orrelations. In reality, some parameters maybe spatially 
orrelated and others (su
h as Tox and Nd) may be un
orrelated:this method is easily extended to handle these issues.The overall 
ow of the algorithm is shown in Figure 4. The 
omplexity of themethod is p � n times the 
omplexity of CPM, where n is the number of squaresin the grid and p is the number of 
orrelated parameters, plus the 
omplexity of�nding the prin
ipal 
omponents, whi
h requires very low runtimes in pra
ti
e.



Input: Pro
ess parameter variationsOutput: Distribution of 
ir
uit delay1. Partition the 
hip into n = nrow � n
ol grids, ea
h modeled by spatially
orrelated variables.2. For ea
h type of parameter, determine the n jointly normally distributedrandom variables and the 
orresponding 
ovarian
e matrix.3. Perform an orthogonal transformation to represent ea
h random variablewith a set of prin
ipal 
omponents.4. For ea
h gate and net 
onne
tion, model their delays as linear 
ombinationsof the prin
ipal 
omponents generated in step 3.5. Using \sum" and \max" fun
tions on Gaussian random variables, performa CPM-like traversal on the graph to �nd the distribution of the statisti
allongest path. This distribution a
hieved is the 
ir
uit delay distribution.Fig. 4. Overall 
ow of the PCA-based statisti
al timing analysis method.The overall CPU times for this method have been shown to be low, and themethod yields high a

ura
y results.4 Un
ertainty as a virtue4.1 Introdu
tionThe 
on
ept of un
ertainty 
an also be harnessed to advantage in providingeÆ
ient solutions to many diÆ
ult problems. Examples of su
h problems are asfollows:Randomized algorithms have been proposed in [14℄ for the solution of many
ombinatorial problems, in
luding problems su
h as partitioning that arisein CAD. However, these have not been signi�
antly developed in EDA.Monte Carlo methods have been used very su

essfully to 
ompute the av-erage power dissipation of a 
ir
uit by applying a small fra
tion of the expo-nentially large spa
e of possible input ve
tors to a 
ir
uit [5℄. Su
h methodshave also been employed for SSTA, as des
ribed earlier.Random walk methods have been used to analyze large systems with lo
al-ized behavior, su
h as in 
apa
itan
e extra
tion [9℄, power grid analysis [16℄,and we are 
urrently investigating their appli
ation to the analysis of ele
tro-stati
 dis
harge (ESD) networks and to the problem of pla
ement in physi
aldesign.Other mis
ellaneous appli
ations of randommethods in
lude te
hniques for
rosstalk analysis [19℄ and in the probabilisti
 analysis of routing 
ongestion[12, 21℄.All of these point to the fa
t that the use of statisti
al methods in design isa vibrant and growing �eld with many up
oming 
hallenges, parti
ularly as,when used in the right 
ontexts (e.g., when the 
omputation is lo
alized), these



methods 
an s
ale extremely well. We will illustrate one su
h method in thefollowing se
tion.4.2 Case Study: Power grid analysis using random walksOn-
hip power grids play an important role in determining 
ir
uit performan
e,and it is 
riti
al to analyze them a

urately and eÆ
iently to 
he
k for signalintegrity, in
reasingly so in nanometer te
hnologies.A typi
al power grid 
onsists of wire resistan
es, wire indu
tan
es, wire 
apa
-itan
es, de
oupling 
apa
itors, VDD pads, and 
urrent sour
es that 
orrespondto the 
urrents drawn by logi
 gates or fun
tional blo
ks. There are two sub-problems to power grid analysis: DC analysis to �nd steady-state node voltages,and transient analysis whi
h is 
on
erned with �nding voltage waveforms 
on-sidering the e�e
ts of 
apa
itors, indu
tors and time-varying 
urrent waveformpatterns.The DC analysis of a power grid is formulated as a problem of solving asystem of linear equations: GX = E (4)where G is the 
ondu
tan
e matrix for the inter
onne
ted resistors, X is theve
tor of node voltages, and E is a ve
tor of independent sour
es. Traditionalapproa
hes exploit the sparse and positive de�nite nature of G to solve thissystem of linear equations for X. However, the 
ost of doing so 
an be
omeprohibitive for a modern-day power grid with hundreds of millions of nodes,and this will only be
ome worse as the 
ir
uit size is ever growing from onete
hnology generation to the next.
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(b)Fig. 5. (a)A representative power grid node. (b) An instan
e of a random walk \game."For the DC analysis of a VDD grid, let us look at a single node x in the
ir
uit, as illustrated in Figure 5(a). Applying Kir
ho�'s Current Law, Kir
ho�'s



Voltage Law and the devi
e equations for the 
ondu
tan
es, we 
an write downthe following equation: degree(x)Xi=1 gi(Vi � Vx) = Ix (5)where the nodes adja
ent to x are labeled 1; 2; � � � ; degree(x), Vx is the voltageat node x, Vi is the voltage at node i, gi is the 
ondu
tan
e between node i andnode x, and Ix is the 
urrent load 
onne
ted to node x. Equation (5) 
an bereformulated as follows:Vx = degree(x)Xi=1 giPdegree(x)j=1 gj Vi � IxPdegree(x)j=1 gj (6)We 
an see that this implies that the voltage at any node is a linear fun
tionof the voltages at its neighbors. We also observe that the sum of the linear
oeÆ
ients asso
iated with the Vi's is 1. For a power grid problem with N non-VDD nodes, we have N linear equations similar to the one above, one for ea
hnode. Solving this set of equations will give us the exa
t solution.We will equivalen
e this problem to a random walk \game," for a given �niteundire
ted 
onne
ted graph (for example, Figure 5(b)) representing a street map.A walker starts from one of the nodes, and goes to an adja
ent node i every daywith probability px;i for i = 1; 2; � � � ; degree(x), where x is the 
urrent node,and degree(x) is the number of edges 
onne
ted to node x. These probabilitiessatisfy the following relationship:degree(x)Xi=1 px;i = 1 (7)The walker pays an amount mx to a motel for lodging everyday, until he/sherea
hes one of the homes, whi
h are a subset of the nodes. If the walker rea
heshome, he/she will stay there and be awarded a 
ertain amount of money, m0.We will 
onsider the problem of 
al
ulating the expe
ted amount of money thatthe walker has a

umulated at the end of the walk, as a fun
tion of the startingnode, assuming he/she starts with nothing.The gain fun
tion for the walk is therefore de�ned asf(x) = E[total money earned jwalk starts at node x℄ (8)It is obvious that f(one of the homes) = m0 (9)For a non-home node x, assuming that the nodes adja
ent to x are labeled1; 2; � � � ; degree(x), the f variables satisfyf(x) = degree(x)Xi=1 px;if(i)�mx (10)



For a random-walk problem with N non-home nodes, there are N linear equa-tions similar to the one above, and the solution to this set of equations will givethe exa
t values of f at all nodes.It is easy to draw a parallel between this problem and that of power gridanalysis. Equation (10) be
omes identi
al to (6), and equation (9) redu
es tothe 
ondition of perfe
t VDD nodes ifpx;i = giPdegree(x)j=1 gj i = 1; 2; � � � ; degree(x)mx = IxPdegree(x)j=1 gj m0 = VDD f(x) = Vx (11)A natural way to approa
h the random walk problem is to perform a 
ertainnumber of experiments and use the average money left in those experiments asthe approximated solution. If this amount is averaged over a suÆ
iently largenumber of walks by playing the \game" a suÆ
iently large number of times, thenby the law of large numbers, an a

eptably a

urate solution 
an be obtained.This is the idea behind the proposed generi
 algorithm that forms the mostbasi
 implementation. Numerous eÆ
ien
y-enhan
ing te
hniques are employedin the implementation, and these have been des
ribed in [16, 17℄. The DC solutionabove has also been extended to solve the transient analysis problem, whi
h 
anbe handled similarly, and with greater eÆ
ien
y.5 Con
lusionThe e�e
ts of variability and un
ertainty are here to stay in nanometer VLSIdesigns, and CAD te
hniques must be found to over
ome them. This paper hasoutlined the basi
s of how a CAD engineer will have to deal with randomnessin the future: not only in terms of dealing with it during design, but also in thesense of exploiting it by using algorithms that exploit randomness. This paperonly skims the very surfa
e of this issue, and there is likely to be 
onsiderablework in this �eld in the future.Referen
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