
MOUSE: Inference In Non-volatile Memory for
Energy Harvesting Applications

Salonik Resch
resc0059@umn.edu

S. Karen Khatamifard
khatami@umn.edu

Zamshed I. Chowdhury
chowh005@umn.edu

Masoud Zabihi
zabih003@umn.edu

Zhengyang Zhao
zhaox526@umn.edu

Husrev Cilasun
cilas001@umn.edu

Jian-Ping Wang
jpwang@umn.edu

Sachin S. Sapatnekar
sachin@umn.edu

Ulya R. Karpuzcu
ukarpuzc@umn.edu

University of Minnesota, Twin Cities

Abstract—There is increasing demand to bring machine learn-
ing capabilities to low power devices. By integrating the computa-
tional power of machine learning with the deployment capabilities
of low power devices, a number of new applications become
possible. In some applications, such devices will not even have a
battery, and must rely solely on energy harvesting techniques.
This puts extreme constraints on the hardware, which must
be energy efficient and capable of tolerating interruptions due
to power outages. Here, we propose an in-memory machine
learning accelerator utilizing non-volatile spintronic memory. The
combination of processing-in-memory and non-volatility provides
a key advantage in that progress is effectively saved after every
operation. This enables instant shut down and restart capabilities
with minimal overhead. Additionally, the operations are highly
energy efficient leading to low power consumption.

Index Terms—Intermittent computing, Processing-in-Memory

I. INTRODUCTION

Machine learning is desirable for low-power, edge devices
as it provides the capability to solve a wide variety of prob-
lems. As a result, much research has been devoted to optimiz-
ing hardware for machine learning inference on such devices
[17], [51]. Going even further, energy harvesting techniques
[43] remove the need for a battery, enabling the placement
of such devices into almost any conceivable environment.
There are many exciting possible applications, such as low
power sensor networks [63], wearable tech, or even implants
[30]. Previous work has already experimentally demonstrated
machine learning capability on energy harvesting devices
using commercially available hardware [29].
Energy harvesting applications present numerous and

unique challenges. The energy harvested from the environment
may be less than what can be supplied by a battery, making en-
ergy efficiency even more critical than in mobile applications.
Significantly, the process of energy harvesting also introduces
the requirement for intermittent processing. Energy sources
(such as sunlight, heat, movement) may be unreliable, and a
device will have to shut down when the power source goes
away. Additionally, even when available, the power source
may be insufficient to run the device continually. In order
to operate within the power budget, the device must acquire
energy over time and consume it in bursts [9].
Intermittent processing introduces new considerations and

metrics for performance [53]. Significantly, correctness has to
be guaranteed over shut down and restart operations. If the
state is not properly stored – a process known as checkpointing
– restarting a device can lead to memory inconsistencies and
incorrect operation [14]. Additionally, the efficiency of these
shut down and restart operations becomes critical, as they take

This work was supported in part by NSF under Grant SPX-1725420

away precious energy from operations that enable forward
progress. Also critical, it has to be ensured that forward
progress can be made during phases of power-on time. If
the energy required between two checkpoints is too large,
the device will be unable to complete the computation. This
results in a program getting stuck, which is referred to as non-
termination. Thus, effective energy harvesting devices must
have efficient techniques which enable correctness and for-
ward progress, all while remaining within a modest hardware
budget.

A recently proposed spintronic processing in memory (PIM)
substrate, CRAM [12], is uniquely well suited for energy har-
vesting applications. Operations on CRAM are highly energy
efficient, enabling a low power budget. Further, as it is a PIM
solution, it removes the need for energy hungry data transfers
between processor logic and (volatile) memories. The main
advantage, however, is that progress is automatically saved
after every operation. CRAM consists entirely of non-volatile
devices and the results of all computation are immediately
stored in permanent memory. As there are very few variables
required to maintain the architectural state, these can also
be saved after each operation with minimal energy cost.
Effectively, checkpointing occurs after every operation.

Checkpointing after each operation is not a new idea [59],
and for most systems this would generally be considered ineffi-
cient [14]. However, as CRAM is a non-volatile PIM substrate
and all of the computation occurs within the memory array,
data backup for checkpointing happens automatically, i.e.,
non-volatile PIM is always performing data backup. Hence,
CRAM can restart a program from the very last operation with
fast and efficient shut down and restart. Additionally, CRAM is
always in a state that can be recovered from. The power can be
cut instantly and unexpectedly, and it will still restart correctly.
The maximum penalty is repeating the last instruction. We
refer to this capability as instant restartability. This provides
a significant advantage, as shut down and restart procedures
for more conventional energy harvesting devices introduce
additional latency and energy, and significant complexity.

In this paper, we introduce MOUSE (Minimal Overhead
Accelerator Utilizing Spintronic RAM for Energy Harvesting
Applications) which is built using CRAM [12]. While based
on CRAM, MOUSE has a different cell design which reduces
energy consumption during computation. For our applications,
we implement support vector machines (SVM) and binary
neural networks (BNN), which are widely used machine learn-
ing algorithms, especially promising in the energy harvesting
domain due to their small footprint. We demonstrate how
MOUSE can provide high performance and energy efficiency

400

2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)

978-1-7281-7383-2/20/$31.00 ©2020 IEEE
DOI 10.1109/MICRO50266.2020.00042

on such applications while also having efficient shut down
and restart procedures. Additionally, we consider how another
modification to the CRAM cell, the addition of a spin-hall ef-
fect (SHE) channel [96], can further increase energy efficiency
– by enabling independent optimization of the read and writes,
which otherwise come with conflicting requirements.
The contributions of this paper are as follows:

• We demonstrate that logic operations performed with
magnetic tunnel junctions (MTJs) are inherently idem-
potent.

• We utilize this property with processing-in-memory to
create an energy-efficient and intermittent-safe machine-
learning inference accelerator.

In Section II we provide the working principles of CRAM.
In Section III we describe the the support vector machines and
binary networks we use as applications. We introduce design
specifics of MOUSE in Section IV and show how we guarantee
correctness in Section V. A summary is provided in Section
VI and an example of application mapping is shown in Section
VII. We set up the evaluation in Section VIII, show our results
in Section IX, discuss related work in Section X, and conclude
in Section XI.

II. SPINTRONIC PIM

Spintronic memory in the form of STT-MRAM is an
emerging technology, with a few products already commer-
cially available [1]. Due to its non-volatility, high density,
speed, and endurance, STT-MRAM is being considered as a
universal memory replacement [22]. STT-MRAM arrays use
one magnetic tunnel junction (MTJ) and one access transistor
per cell. Being based on CRAM [12], MOUSE maintains
the same basic cell structure. By making light modifications
to the array, CRAM is able to connect MTJs in such a
way to enable logic operations to be implemented within the
array. Therefore, MOUSE is capable of being used as both a
standard STT-MRAM array and as a computational substrate.
CRAM is unique in that the computation does not require any
external logic circuits or the use of sense amplifiers, making
the computation contained entirely within the array. In the
following, we explain MTJ basics and show how they can
be used in logic operations. Then we demonstrate how these
operations can be performed within the array structure.

A. Magnetic Tunnel Junction (MTJ) Basics
STT-MRAM arrays are built with magnetic tunnel junctions

(MTJ). The MTJ is a resistive memory device which consists
of two magnetic layers (fixed layer and free layer) which are
separated by an insulator. The polarity of the free layer can
change but the fixed cannot. When the fixed and free layers
are aligned, the MTJ is in the parallel (P) state, which has
a low resistance and corresponds to logic value 0. When the
layers are opposing, the MTJ is in the anti-parallel (AP) state,
which has a high resistance and corresponds to logic value 1.
The state can be determined by applying a voltage across the

device and sensing the amount of current that travels through
it. If a sufficient amount of current is driven through the
device, it will change state. Importantly, the state it changes
to depends on the direction of the current. This is key to our
ability to ensure correctness in spite of power outages. When
current flows from the free layer (fixed layer) to the fixed layer
(free layer), it switches the MTJ to the AP (P) state.

B. Implementing Logic Gates in Memory
Before showing how logic can be implemented in the

MOUSE array, we demonstrate how CRAM performs logic
gates on MTJs in principle. The configuration for a two-input

logic gate is shown in Figure 1. The two MTJs in parallel
are the inputs to the logic gate, and the MTJ in series with
them is the output. The output must be preset to a known
value. For example, the output is preset to 0 (low resistance)
for a NAND gate. To implement a NAND gate, a voltage is
applied across the two terminals, V1 and V2, such that current
flows from the input MTJs to the output MTJ. If either of
the input MTJs is 0 (low resistance) there will be sufficient
current to switch the output MTJ to 1. If both input MTJs are
1 (high resistance), there will be insufficient current to change
the state of the output MTJ, and it will remain at 0. Therefore,
the state of the output MTJ follows the truth table for a NAND
gate, it is 0 only if both inputs are 1. Most importantly, per
basic MTJ physics, current flowing in the supplied direction
can only cause the output MTJ to switch to 1; it cannot cause
it to switch to 0.
Many other common gates –including universal ones– can

be implemented similarly, such as AND and (N)OR. In order
to implement other gates, we can change the number of inputs,
the preset value of the output, or the direction of the current.

Fig. 1. MTJs connected to implement a 2-input logic gate. The preset value of
the output MTJ and the polarity and magnitude of the voltage applied between
V1 and V2 determines the type of logic gate. The fixed layer is colored in
grey and the free layer in light blue.

More complex operations are broken down into these ba-
sic logic operations. For example, to perform a full-add in
MOUSE, we can perform 9 NAND gates sequentially and
use spare MTJs to hold 7 temporary bits. Using full-adds,
full-subtracts, and other primitive operations we can perform
integer or fixed-point arithmetic, thus enabling us to implement
our benchmarks. Naturally, the latency for each complex
operation is quite high, as it must be broken down into
its constituent gates which are then performed sequentially.
However, as we will show in later sections, this can be
easily compensated for by performing many data independent
operations in parallel, under intermittent power constraints.
Due to space limitations, we will focus on MOUSE-specific
CRAM adaptations next, but numerous papers [12], [94], [96]
cover the details of using MTJs to perform more complex logic
based on this basic CRAM principle.

Fig. 2. 4 cells in 2 columns and 2 rows in 1T1M (one access transistor, one
MTJ) STT configuration.

C. MOUSE Array Architecture
Based on CRAM, MOUSE essentially is an STT-MRAM

array with some additional hardware. As an example, four cells
located in adjacent rows and columns are shown in Figure

401

2. Each memory cell consists of one MTJ and one access
transistor. In each column there are two bit lines, bit line
even (BLE) and bit line odd (BLO), and a logic line (LL).
In each row there is a wordline (WL) that controls the access
transistor. Each MTJ is connected to the LL through the access
transistor and to one of the two bit lines. Cells in even rows
are connected to BLE and cells in odd rows are connected to
BLO. We now describe how memory and logic operations are
performed in the array.

Memory Operation: To read or write from row n, activate
WLn and apply a voltage differential across LL and the
bitlines. Current will only travel through the bitline with the
same parity as n. Current can be sensed on the bitlines to
perform a read, or a large current can be driven through the
MTJ to perform a write.

Fig. 3. Demonstration of how a (2-input) NAND gate is performed within
the array.

Logic Operation: To perform a logic operation with inputs
in rows n1, n2 and with output in row m, preset row m
by performing a write operation. n1 and n2 must have the
same parity (i.e., both even or both odd) and m the opposite.
Activate WLn1, WLn2 and WLm. Apply a voltage differential
across BLE and BLO. Due to the parity requirement, in
Figure 1, if V1 is connected to BLE, V2 must be connected to
BLO, and vice versa. In this case, the junction connecting
the free layers (in light blue) of the inputs and the ouput
corresponds to LL. Current travels from one bit line (be it BLO
or BLE, depending on the parity of the input cells), through
the MTJs in rows n1 and n2, through the LL, through the
MTJ in row m, and back to the other bitline. Depending on
the states of the MTJs in rows n1 and n2, the state of the MTJ
in row m will either change or not. As an illustrative example,
Figure 3 demonstrates the formation of a NAND gate.
Voltage which drives the operation is applied to every

column (over the respective bitlines) in which the specified
operation should take place. The peripheral circuitry deter-
mines which columns these are, which can be specified by
dedicated instructions as will be described in Section IV-B.
Hence, while only one operation can be performed in a column
at a time, an operation can be performed in many columns
simultaneously. This gives MOUSE column level parallelism,
which bears some resemblance to bit-serial architectures.

D. Alternative Memory Cell Architecture
Augmenting each MTJ in the MOUSE cell with a Spin Hall

Effect (SHE) channel can further improve energy efficiency.
This is the same technology as Spin-Orbit Torque (SOT)
MRAM [27], [66], which will likely replace STT-MRAM.

Fig. 4. 4 cells in 2 columns and 2 rows in 2T1M SHE configuration.

The SHE channel provides separate paths for reads and writes
(where optimization targets conflict), allowing for separate
optimization, thereby better energy-efficiency. SHE channels
are CMOS/MTJ-compatible and fabricated prototypes exist
[27]. Technology details of SHE integration in CRAM is
covered in [96]. Four augmented cells in two rows and two
columns are shown in Figure 4.
In this case, there are two word lines per row, word line for

read (WLR) and word line for write (WLW). WLR connects
the cell to the read path, via tread. WLW connects the cell
to the write path, via twrite. When twrite is activated, current
only passes through the SHE channel (and not the respective
MTJ). This current, while not affected by the state of the
MTJ, can still change its state. This configuration is used when
writing to the MTJ or when the MTJ is the target output of
a logic operation. When tread is activated, on the other hand,
current passes through the SHE channel and the MTJ. This
allows the MTJ state to affect the current that travels through
it. This is used when reading the MTJ state and when the MTJ
is used as an input to a logic operation.
The SHE channel has important benefits. Due to the sep-

aration of read and write paths, the required current density
to induce switching is lower, allowing for a reduction in the
energy of write and logic operations. This increased energy
efficiency can provide a decrease in the overall execution
time in energy harvesting scenarios, as will be shown in
our evaluation. Additionally, as the output MTJ resistance no
longer is in series with the input MTJ resistances in a logic
operation, different input values become easier to distinguish,
increasing the robustness of logic operations.

III. CASE STUDIES

To show the capability of MOUSE, we implement Support
Vector Machines (SVM) and Binary Neural Networks (BNN).
Both are widely used machine learning algorithms. Generally
speaking, whether SVMs or neural networks are a superior
choice depends on the target problem, but applications overlap
considerably and both are applicable in the energy harvesting
domain, where both the energy and the area budget is stringent.
SVMs are effective and simple classifiers for typically

smaller data sets. Particularly, we found SVMs to perform well
on MNIST image recognition and human activity recognition.
However, there is a trade-off, as SVMs can struggle with some
problems. For example, we were unable to achieve reasonable
accuracy on the speech recognition data set, which neural
networks have performed well on [29].
For all SVM benchmarks we use a polynomial kernel with a

degree of 2. For inference, the main computation is effectively
performing the dot product between an input vector and each
of the support vectors. The results of these dot products are
then squared, multiplied by a set of coefficients, and finally

402

Fig. 5. Overview of MOUSE. Each tile contains an array of MTJs along with a row and column decoder. Sense amplifiers are required for read/writes but
aren’t used in computation. Shown here is the STT (1T1M) configuration.

summed together. By design, SVMs have two class outputs,
where the sign of the output value is the classification.
In this work, we opt for the simplest extension to multi-class

problems: we train a separate SVM for each possible output
class. Each SVM has the task of identifying its assigned class.
For example, MNIST has 10 different classes for digits 0-9.
We train 10 SVMs each identifying each digit. The output
is 10 scores for “how similar” the input is to each digit. We
take the highest-score output of the 10 classifiers to be the final
classification. We perform training offline in software and only
consider inference acceleration on MOUSE.
BNNs are neural networks that have neurons and weights

represented by a single bit each [18]. This enables multi-
plications to be replaced by XNOR operations and addition
is simplified to a popcount operation. As a result, BNNs
are much more energy efficient than full- or fixed-precision
networks. They have been implemented efficiently in FPGAs
in FINN [84] and FP-BNN [50]. We mimic their network
configurations, modified only in transforming them to run on
our PIM substrate. Hence, our accuracy is identical. Neural
networks [11], [90] and BNNs [81], [92] have been previ-
ously mapped to PIM substrates for acceleration, including on
CRAM [70]. However, those designs rely on continuous power
and have not considered correctness in intermittent computing
and thus are not capable of functioning in the targeted energy
harvesting domain.

IV. MOUSE DESIGN

Energy harvesting systems are powered by their environ-
ment. If the environment does not provide enough power, the
system will have to accumulate energy over time and consume
it in bursts [29]. Therefore, such devices must consume as little
energy as possible and be capable of tolerating power outages
while maintaining program correctness. MOUSE is a natural
fit for such a paradigm as logic operations are highly energy
efficient and the memory is entirely non-volatile. Additionally,
all computation occurs within the memory so progress is
effectively saved after each operation. This greatly simplifies
strategies to maintain correctness. In this section, we detail
a basic MOUSE design which is tightly tailored to energy
harvesting applications.

A. Hardware Organization
MOUSE has a tiled architecture. Certain MOUSE tiles are

dedicated for instructions, while all others are dedicated for
data and computation, as shown in Figure 5. MOUSE has a
larger storage capacity than is typical for energy harvesting
devices. This is due to two reasons. First, MRAM is dense

and has extremely low standby power, giving the memory a
low area and energy impact. For example, NVSIM [23] reports
the size of 64MB STT-MRAM array –which is nearly twice
the size of our largest configuration– as 15.12mm2. 256MB
and 1GB STT-MRAM memory manufactured by Everspin [1],
[2] comes in a package that is 130mm2. For reference, just
the MSP430FR5994 micro-controller itself, commonly used
as a sub-component of energy harvesting systems [15], [29],
[33]–[35], [74], consumes over 100mm2. Second, as there is
no need for external processor logic or area costly volatile
memory (such as SRAM), and due to minimal peripheral
circuitry, nearly the entire area budget of MOUSE is available
for memory arrays. That said, the SHE configuration has more
area overhead than the STT configuration due to the presence
of a 2nd transistor, which we expand upon in Section VIII.
However, the area budget still remains modest.
There are only five components of MOUSE that are not

memory arrays:

1) A memory controller that reads instructions from the
instruction tiles and issues all instructions;
2) An 128B memory buffer that facilitates reads and writes
to the tiles;
3) A non-volatile register for Program Counter (PC);
4) A non-volatile register for buffering a single instruction;
5) Voltage sensing circuitry for monitoring the power source.

The memory controller only needs to differentiate between
three instruction types as will be described in Section IV-B.
All computation and memory operations are performed in the
tiles, hence the controller need only broadcast the appropriate
command to the tiles. The memory buffer is the same size
as one row of the MOUSE tiles and is used for intermediate
storage when transferring data to and from the tiles. The non-
volatile registers are used for maintaining correctness during
power outages, as will be described in Section IV-D. Finally,
the voltage sensing circuitry is standard for energy harvesting
systems, and is as described in [53].
B. Instructions
Instructions for MOUSE are 64-bit and the formats are

shown in Figure 6. There are three types of instructions,
logic operations, memory operations, and column activation.
Memory operations are the same as standard read and write op-
erations for MRAM. Instructions for logic operations specify
the type of operation (which determines the applied voltage
level) and the rows on which input and output cells reside.
When a logic instruction is issued, it will be applied to every
column that is currently active. Columns are activated by the
Activate Columns instruction, which provides a list of column

403

addresses to a column decoder. Once columns are activated
they are held active by a latching mechanism as proposed
by [49]. This allows columns to remain active over multiple
instructions. As columns need to be changed infrequently,
typically staying active for many instructions, the peripheral
cost for activation is amortized. This cost is further reduced by
modifying the encoding to allow for bulk addressing, similar
to the procedure in [78].

Fig. 6. MOUSE instruction formats. There are three types of instructions,
logic, memory, and an additional activate columns instruction for configura-
tion. Opcodes are 4 bits; tile addresses, 9 bits; and row and column addresses,
10 bits each. Dashed items are optional.

Compiling instructions for MOUSE requires some knowl-
edge of the hardware to make efficient use of potential
parallelism. This situation is analogous to compiling for GPU
architectures from Open-CL or CUDA code. Unfortunately
there is no generic equivalent for PIM. In the following we will
provide pointers for efficient compilation, but inevitably leave
detailed exploration of this rich design space to future work.
Otherwise, architecture and data layout for MOUSE is similar
to a number of other works which have mapped applications
to PIM substrates [49], [78], including BNN implementations
[70].

While operations can occur in multiple tiles simultaneously,
tiles do not operate autonomously. All operations are triggered
by the memory controller (discussed in more detail in Section
V). Effectively, there is a single controlling “thread”, and
hence there are no concurrency concerns between individual
tiles.

A subset of the tiles are dedicated to store the instructions.
In the prototype MOUSE implementation, instruction and data
tiles are homogeneous in design. The instructions are written
into these tiles before deployment. Once active, the memory
controller fetches each instruction from the instruction tiles,
decodes it, and then broadcasts it to the tiles storing data.
Instructions vary in the amount of time they take to complete.
This is because specifying row and column addresses has
an associated latency, and different instructions have differ-
ent numbers of addresses. Logic operations can use 2 or 3
rows and column activation can specify up to 5 columns
at a time. To ensure that every instruction finishes in time,
the memory controller waits longer than the longest taking
instruction needs before issuing the next. This time lapse forms
a cycle. While this conservative approach comes at some cost
of performance (more complex techniques could potentially
issue instructions faster, in an event-driven fashion), MOUSE
already is capable of extreme performance relative to other
devices in this domain, as shown in Section VIII. Additionally,
energy efficiency (rather than throughput) is the limiting factor
for energy harvesting devices. Hence, we opt for simplicity at
the cost of some performance loss.

Finally, as we are only performing inference in MOUSE,
the sequence of instructions performed doesn’t change as a
function of inputs at runtime. Instructions are performed in
sequential order one by one until the program repeats.

C. Power Draw
Most energy harvesting devices utilize an energy buffer (ca-

pacitor), rather than having the power source directly attached
[54]. This prevents the need to match the power consumption
with the power source. A switched-capacitor voltage converter
can be used to apply the all appropriate voltages to the device
[32], [42], [68], including the voltages required to perform
all logic gates (explained further in Section VIII). MOUSE
performs a single type of operation in each cycle. A portion
of each cycle must be dedicated to changing the output voltage
of the converter, if consecutive operations require different
voltage levels. The converter may have an efficiency anywhere
between 35-80%, hence the energy harvesting power source
will have to provide energy in addition to that which MOUSE
consumes.
By utilizing an energy buffer, MOUSE acquires energy over

time and then consumes it in bursts. Hence, MOUSE could
consume more power during power-on time than the energy-
harvesting power source provides. However, we note that it is
possible to reconfigure MOUSE to consume a specified power
(to stay within a specified power budget), if this is known prior
to deployment. By adjusting the amount of parallelism in the
computation, the power consumption of MOUSE can be finely
tuned. This enables a trade-off between latency and power
draw. However, this can place strict limitations on potential
parallelism. For example, if the power source can only deliver
low power, e.g., 60 μW (an efficiency of 35% from a 171 μW
power source), MOUSE would only be able to perform logic
operations in 4 columns simultaneously (using the least energy
efficient configuration described in Section VIII).
D. Intermittent Processing
As energy harvesting systems frequently experience power

outages, they must be designed to perform intermittent pro-
cessing. This involves addressing the challenge of maintaining
correct state while repeatedly shutting down and restarting.
The mechanism for maintaining correct state also needs to be
efficient, as to avoid consuming the precious energy avail-
able for program execution. A number of techniques have
been designed to ensure correctness [14], [28], [62], [71].
These studies have devised sophisticated techniques to ensure
correctness while introducing minimal backup and restart
overhead. In contrast, MOUSE maintains correctness with just
a program counter (PC) and an additional non-volatile status
bit. While extremely simple, and would be crude for other
architectures, it is a natural fit for MOUSE. The simplicity
of this technique is enabled by our novel architecture. More
sophisticated techniques are unsuitable and unnecessary as
MOUSE has no volatile data to backup. As MOUSE performs
all computation within the non-volatile memory, progress is
saved after each operation. This makes restarting after the last
instruction possible and ideal.

When MOUSE restarts, only two pieces of information are
required: the last instruction that was performed and the
columns that were active. In order to restart from the last
instruction, MOUSE writes; i.e., checkpoints, the PC into a
non-volatile register after each instruction. When MOUSE
gains sufficient power to restart, it simply reads the next
instruction from the address in the PC. In the worst case, the
power is cut after the last instruction is issued and performed,
but before the update to the PC register. This does not break
correctness as the same result is obtained if a single instruction
is repeated multiple times, i.e., each such repetition is idem-
potent [37], [86] as will be shown in Section V-A. The only
requirement is that the PC checkpoint happens strictly after
each instruction is performed. Restarting after the very last

404

TABLE I
FOUR POSSIBLE CASES FOR RE-PERFORMING AN INTERRUPTED AND GATE. THE OUTPUT MTJ EITHER SHOULD OR SHOULD NOT SWITCH FOR CORRECT

OPERATION, AND IT EITHER DID OR DID NOT PRIOR TO THE POWER BEING CUT.

Output did not switch before interrupt Output did switch before interrupt
Output should not switch Repeating the operation is the same as performing it for the first

time; no switching will occur (correct output).
Not possible. There cannot be sufficient current to induce
switching at any point of the operation (be it before of after the
interrupt). Repetition cannot induce switching by construction.

Output should switch Repeating the operation is the same as performing it for the first
time, and will now result in switching (correct output).

The output has already switched to 0 (correct output). Repetition,
i.e., re-applying the same voltage will result in a larger current.
Due to the direction of the current, however, staying the same
(as before the interrupt), the output will remain at 0 (and cannot
switch back to 1).

instruction not only minimizes the amount of work potentially
lost on shutdown, but it also simplifies the restart process. The
simple correctness guarantee, an operation being idempotent,
does not hold if we were to repeat multiple instructions. This
is because over the course of multiple instructions, temporary
values can be created. These temporary values may be used
later in the computation or periodically overwritten. Repeating
multiple instructions on startup would require some method
for ensuring correctness of these temporary values, such as
performing additional presetting operations. This is certainly
possible to do, but it introduces additional (and unnecessary,
as we will see shortly) complexity.
The second requirement is to restore the previously active

columns, for which we use a similar procedure. Whenever
an Activate Columns instruction is issued, it is stored in
an additional instruction register. Reissuing this last Activate
Columns instruction is the first action on restart.
This scheme gives MOUSE minimal backup and restart

overhead. To summarize, the cost is 1) continuous checkpoint-
ing of the program counter and Activate Columns registers and
2) an additional issue of an Activate Columns instruction on
every restart. Both of these actions incur far less energy than a
typical logic instruction. We make sure that operations happen
in the correct order by performing them sequentially; updates
to architectural state occur only after the current instruction
is performed. It is noteworthy that MOUSE is always in a
state which is safe to shut down in. Hence, MOUSE maintains
correctness even if power is cut unexpectedly. We provide
more detail on maintaining correct state in Section V-B.
There is an efficiency trade-off in the frequency of check-

pointing [60]. Doing so more often results in less work
potentially lost on shut-down, however this also increases the
checkpointing overhead. The optimal approach will depend
on the power source. MOUSE consumes energy on every
cycle to perform checkpointing. If energy-harvesting is able
to supply sufficient power, making power interruptions less
frequent, it is possible that MOUSE would be more energy
efficient performing checkpointing less often. However, we
opt to checkpoint on every cycle as this keeps the design
complexity minimal, which is enabled by the energy efficiency
of MOUSE’s checkpointing.
E. System Integration
During inference, MOUSE itself holds all static data re-

quired and performs all the computation. To be integrated into
an energy harvesting system, MOUSE needs to receive energy
from an energy harvester, receive input from a sensor, and
send output to a transmitter. In this work, we assume input
data is stored in a non-volatile buffer in the sensor prior to
inference. The sensor’s buffer is assigned a tile address and is
treated as one of the tiles. Additionally, the buffer contains a
non-volatile valid bit indicating that new input is ready. When
MOUSE is ready for new input, the memory controller can
check the valid bit and trigger a memory transfer. The memory
transfer then consists of reads from the buffer and writes to the
MOUSE data tiles. These reads and writes can be controlled by

instructions at the beginning of the program. When MOUSE
finishes inference, the memory controller reads out the data
from the tiles. This data is then available to be transferred to
the transmitter. In this work, we focus only on the accelerator
and do not consider any overhead for the sensor or transmitter.
MOUSE can also handle potential sensor data corruption

due to power outage. A dedicated non-volatile register along
with an instruction to orchestrate sensor reads achieves this.
When sensor read begins, this instruction stores current PC in
a dedicated register. If power goes out during reading sensor
data, on restart, MOUSE checks the valid bit in the sensor
buffer (which stays zero under corruption). If zero, MOUSE
goes back to first instruction handling sensor read (getting PC
from the dedicated register). MOUSE can checkpoint such PC
at any code location. As an alternative design point, MOUSE
can offload this orchestration to software, as well. Otherwise,
if power outage happens during computation, MOUSE does go
back in time, but at most by one operation. Going further back
is unnecessary. The most recent checkpoint is guaranteed to be
correct. Idempotency ensures that neither following operation
nor following checkpoint can corrupt it. All data remains
consistent, hence there cannot be corruption on reboot.

V. CORRECTNESS GUARANTEE

We show that correctness is guaranteed in spite of power
outages, even when unexpected. There are two components,
the correctness of individual operations when interrupted or
re-performed (Section V-A) and correctness of state variables
in transitions between states (Section V-B).

A. Operation Level Correctness
In this section we show that correctness is maintained if

a single operation is repeated, i.e., that repeating any single
operation is idempotent [37], [86]. Given that the power may
be cut at any moment, we must consider what happens when
an operation is interrupted in all its possible stages. Since
all operations in MOUSE are threshold operations, the two
stages are pre- and post-switching. Additionally, switching of
the output MTJ either should or should not occur depending
on the inputs. To be explicit, we use AND as an example,
however, our observations here apply to all gates.
The preset value for the output of an AND gate is 1,

meaning the MTJ has a high resistance. During operation,
current is applied in a direction that could change the output
state to 0. If either of the two inputs is 0, there will be a
sufficient current to change the state, otherwise it will remain
at 1. We show the four possible cases in Table I: If, due to the
inputs, the output is not supposed to switch, the output MTJ
will not switch before the power is cut or after the power is
restored. On the other hand, if the output is supposed to switch,
it does not matter if it switches before the power outage or
after.

If the output MTJ does not switch before the power outage,
it will switch once power is restored and the operation is re-
performed. If the output MTJ does switch to 0 before the power

405

outage, re-performing the operation once the power is restored
will leave the output at 0. This is because the direction of the
current can only change the output to 0, it cannot revert it
back to 1 due to basic MTJ physics.
The catch here is that repeating a logic gate is effectively

the same as performing the gate for a longer duration. Doing
so results in an identical outcome, regardless of whether the
output MTJ switched before interruption (i.e., power outage)
or not. The case for writes is even simpler. The result of a
write operation does not depend on the preset value, hence
repeating a write is effectively writing the value twice. Such
power interruptions can lead to wasted energy (as we may
end up re-performing unnecessary work) but cannot result in
corruption of logical values.
We do not require idempotency beyond a single logic gate as

we perform only one logic gate per cycle (per column). More
complex operations (such as additions or multiplications) are
broken down into individual gate operations, which are then
performed sequentially in consecutive cycles (hence separated
by checkpoints, as will be explained in Section V-B). Our
Boolean gate set is universal, allowing arbitrary computation.

Fig. 7. Memory controller’s state transitions to ensure correctness of the
program counter as MOUSE transitions from one instruction to the next.
Effect of interrupts are dashed and highlighted in red, corrective measures in
blue, and forward progress (guaranteed completion of an instruction) in green.

B. Maintaining Correct State
It must also be ensured that the memory controller can tol-

erate unexpected interruptions and that MOUSE can maintain
correctness as it transitions from one operation to the next
during program execution. Here, we describe how correctness
of the architectural state variables and data is guaranteed
during this process.

1) Architectural State: The memory controller reads in-
structions from the address held in the non-volatile program
counter (PC), decodes them, and broadcasts them to the data
tiles. It then updates the PC. If power is cut during a write
operation to the PC, the value may be corrupt. We solve this by
using two PC registers and maintaining a parity bit. We refer
to these two registers as PC-A and PC-B. If the parity bit is
0 then PC-A is valid and if the parity bit is 1 then PC-B is
valid. The valid PC register points to the instruction currently
being executed.
After an instruction is completed, the value stored in the

valid PC register is read, updated (to point to the next instruc-
tion), and the new value is then written into the invalid PC
register. At this point the invalid (valid) PC register keeps the
address of the next (current) instruction that is to be executed

(completed). After the PC register update, the parity bit is
flipped. This process is depicted in Figure 7.
With this scheme, a write is never performed on the cur-

rently valid PC, hence, a valid copy of the PC is maintained
at all times. If power is cut after the update to the invalid
PC but before the parity bit is flipped, the memory controller
will consider the old PC to be valid on restart. This results
in the previous instruction being re-performed, and cannot
introduce errors (since individual instructions are idempotent),
as explained in Section V-A. The register holding the last
Activate Columns instruction is also duplicated, and is handled
in an identical fashion to the PC. Hence, power can be cut
at any point during the execution of an instruction and the
memory controller can always guarantee correct operation
upon restart.

2) Data: The broadcast from the memory controller –which
initiates an operation in the data tiles, and is depicted as Com-
mand(s) in Figure 5– is not atomic, and thus can be interrupted
at any stage. However, this cannot cause corruption as the
broadcast itself is idempotent. There are two cases to consider,
1) a broadcast initiating memory and logic instructions and 2)
a broadcast initiating Activate Columns instructions.

As explained in Section V-A, data in the MOUSE tile
cannot be corrupted by an interruption during memory and
logic operations –no matter what stage in its progression the
operation gets interrupted. As a direct result, the broadcast
cannot cause corruption as it’s only effect is the initiation of
the operation. Power can be cut before the broadcast reaches
a tile, while the operation is being performed, or after the
operation has finished –none of these cases can introduce error.
The second case of Activate Columns instructions cannot result
in any corruption either, as the peripheral circuitry is always
re-configured after restart, which overwrites the action of the
previous Activate Columns instruction. More fundamentally,
no corruption can be the case if power was cut during an
Activate Columns instruction, simply because no logic or
memory operation can take place as an Activate Columns is
in progress in the same tile.

VI. PUTTING IT ALL TOGETHER

Energy-harvesting devices need energy efficient execution
and checkpointing capabilities. MOUSE uses non-volatile PIM
to provide both.
A high-level program can be converted to computational

blocks, such as multiplications or additions. These blocks can
be broken into individual gates. For example, n-bit addition
can be implemented by performing n full-adds, each of which
can be performed with 9 NAND gates. These individual gates
can be performed in the columns of MOUSE’s tiles. The gates
are highly energy-efficient, and applications can exploit high-
degrees of paralellism available in the MOUSE tiles to achieve
performance.
Scheduling these gates in the tiles is a two-dimensional

problem in space and time, where we leave the rich design
space for automation and optimization for future work. A
multi-dimensional trade-off exists between parallelism, data-
transfer, area consumption, and energy efficiency. Mapping
computation to use more columns can increase parallelism,
as computation can proceed in each column simultaneously.
However, not only does this increase memory usage, but it also
incurs a potential data-transfer overhead. Intermediate values
will have to be transferred between columns, via reads and
writes, in order to produce the final result. This decreases the
energy efficiency. Without loss of generality, in this paper we
stick to greedy scheduling in minimizing energy consumption

406

and area usage by using the minimal number of columns; at
a cost of latency.
For example, vector dot-products constitute the majority

of SVM classification. We place as many as possible bits
of the elements of two vectors into a single column, with
extra rows available for scratch bits. The elements that do not
fit are placed (aligned) into other columns. The vectors are
next element-wise multiplied and then summed together with
a sequence of gates. Finally, the partial sums are moved, via
reads and writes, to a single column, where they are summed
to produce the end result. By using many columns and multiple
tiles, this can be performed for many vectors simultaneously.
Hence, a program on MOUSE consists of a sequence of

logic gates in-memory, along with reads and writes to perform
I/O and transfer data between tiles. These operations can
be fully specified by instructions shown in Fig. 6. Memory
instructions are either read or write. Logic instructions cor-
respond directly to logic gates, such as NAND, NOT, etc.
Activate Columns is a single instruction. Instructions of this
format are stored in MOUSE’s instruction tiles.
A simple memory-controller is responsible for reading the

instructions, decoding the opcode, and then broadcasting the
instruction (and necessary addresses) to the data tiles. After
waiting a sufficient period of time (for instruction completion),
the memory-controller updates the PC and “commits” the
instruction by flipping the parity bit. The memory-controller
needs only basic logic circuitry (for decoding) and a clock to
keep track of time. Its functionality is analogous to the 1st,
2nd, and 5th stages of the classic 5-stage pipeline. It performs
1-Instruction Read, 2-Instruction Decode, and 5-Write Back
(setting parity bit). The memory handles 3-Execution and 4-
Memory Access.
MOUSE’s strength is in its simplicity. All operations per-

formed in-memory are inherently idempotent and automati-
cally stored in non-volatile memory. Hence, MOUSE can be
made intermittent-safe with lightweight additions to the mem-
ory controller. This includes duplicated, non-volatile copies of
the PC and active columns registers.

VII. APPLICATION MAPPING

We next provide a basic illustrative example for applica-
tion mapping: 2-bit addition. Figure 8 shows the stages of
converting high-level code to MOUSE instructions. The first
step is conversion from high-level to intermediate-level, i.e.,
functional translation to required logic and memory opera-
tions for the underlying computation along with basic spatio-
temporal optimization. Next, all of the specified operations get
converted directly into MOUSE format instructions.
In Figure 8 two 2-bit integers are added to form a 3-bit

integer. We can perform these additions in parallel, and choose
for these to occur in columns 0 and 1 of tile 1. The first
addends (a and c) are assigned to rows 0 and 2, and the second
addends (b and d) are placed in rows 4 and 6. The sums (x
and y) are chosen to be placed in rows 8, 10, and 12. The
computation will require additional scratch bits (workspace),
for which we assign the odd rows between the addends and
sum, and some additional even and odd rows at higher row
addresses, picked based on availability.
Given the location of the addends, sum, and workspace, the

ADD function will generate the sequence of gates required to
compute the sum. It does this by performing a half-add, and
then as many full-adds required to complete the addition; in
this case just 1. Note that all gates have inputs and outputs
on opposite parity rows. The parallelism of these gates is de-
termined by the active columns, which are set by the Activate

Columns instruction. Since the operands are in columns 0 and
1, a single Activate Columns instruction is issued to activate
these two columns for computation. Prior to this computation,
the preset value for outputs for gates will need to be written
into the respective columns. For simplicity we do not show this
step, but it consists only of write instructions. After finishing
all instructions, the sums reside in rows 8, 10, and 12, with x
in column 0 and y in column 1.
Once the sequence of gates has been fully specified, it gets

converted directly to instructions by replacing the gate with the
corresponding opcode and inserting the tile and row addresses.
The opcode specifies how many row or column addresses are
required. As all instructions are 64-bit, a number of bits remain
as don’t care.

VIII. EVALUATION SETUP

Benchmarks: Energy harvesting systems are ideal for appli-
cations in which the system is difficult or inconvenient to
power directly or with batteries. Examples include remote
sensors and wearable tech. We choose benchmarks which are
representative of different possible use cases, along with an
additional standard benchmark.
MNIST [47], as an example small-scale image recognition

for sensor networks, is a digit recognition data set, where
there are 10 classes for digits 0-9. The input is a grey scale
28× 28 pixel image with 8-bit precision. We use both BNNs
and SVMs on this benchmark. For the SVM, the pixels are
placed row wise into a 784 element vector. We also use
a binarized version, where pixels that are greater than a
threshold value are set to 1 and others to 0. This allows us to
replace multiplications with AND gates for most parts of the
computation. For BNNs, we tailor the network configuration of
FPGA-based FINN [84] and FP-BNN [50] to function properly
on MOUSE, by converting it to sequences of logic gates. Our
logical configuration is exactly the same. Hence, our accuracy
is identical. The FINN configuration only uses binarized input.
It has three hidden layers of 1024 neurons (bits) each, and an
output layer of 10 neurons with 10-bit precision. The FP-BNN
configuration only uses 8-bit inputs. It has three hidden layers
of 2048 neurons and the output layer has 10 neurons with
16-bit precision.
Human Activity Recognition (HAR) [3], as an example for

wearable tech, is a data set containing measurements from
an accelerometer and gyroscope embedded in a smartphone,
which is carried by participants performing a variety of
activities. The task is to classify each set of readings to which
activity is being performed. We represent the input with fixed
point integer format with 8-bit precision. Each input is a vector
of 561 elements.
ADULT [44] is a commonly used benchmark for SVMs that

contains census information and the task is to classify whether
an individual makes greater than $50K per year or not. We use
a reformatted version of the data set from libSVM [10]. Each
input is a 15 element vector where each element is an 8-bit
integer.
Our SVMs are trained and tested in R [67]. They are custom

designed, however we do compare our results with libSVM
[10] with the same inputs and obtain similar accuracy. In
our custom implementation we do not use any operations that
would be inefficient in MOUSE; all programs consist of bit-
wise and integer arithmetic.
Performance and Energy Model: We simulate the bench-
marks on MOUSE with an in-house simulator, also imple-
mented in R. MOUSE has a tiled architecture. We set each tile
to have a capacity of 128KB, which is an 1024x1024 array.
We chose this size as it is a commonly recommended subarray

407

Fig. 8. An application mapping example of parallel 2-bit integer addition. Variables are assigned to rows and columns. Independent operations are mapped to
separate columns for parallel execution. Computation is broken down into individual logic gates, which directly correspond to individual MOUSE instructions.
During operation the memory controller issues each instruction in sequence. The MOUSE instructions shown are in the formats specified in Figure 6.

TABLE II
PARAMETERS FOR MTJ DEVICES.

Parameter Modern Projected
P State Resistance 3.15 kΩ 7.34 kΩ
AP State Resistance 7.34 kΩ 76.39 kΩ
Switching Time 3ns [65], [72] 1 ns [39], [94]
Switching Current 40 μA [72] 3 μA [94]

size for non-volatile memories from NVSIM [23]. While only
one logic gate can be performed in one column in each cycle,
the gate can be performed in all 1024 columns simultaneously
(column-parallelism) and in each tile simultaneously (tile-
parallelism). Note that operating 1024 columns in parallel
would require approximately 15mW (on the least energy-
efficient MOUSE configuration), which may exceed available
energy. Additionally, high levels of parallelism can increase
the restart cost during intermittent computing. This is because
re-performing the last instruction on restart would cost more
energy if it is highly parallel.
We experiment with both modern MTJ parameters [73] and

projections of MTJ parameters in the next few years [94],
[96]. Projected improvements in MTJ devices are expected to
significantly increase energy efficiency. The MTJ parameters
we use are shown in Table II. For projected MTJs, two
techniques enable a reduction in the switching current, 1)
decreasing the damping constant of ferromagnetic materials
[24], [64], [76] and 2) using a dual-reference layer structure
[21], [38]. To be conservative, we assume 3 μA, however,
switching currents as low as 1 μA are possible. For projected
MTJs, we test with both the STT and SHE based architectures.
The main benefit of SHE is providing a write path through the
SHE channel, rather than through the MTJ itself. To capture
this effect, we assume a 1 kΩ resistance for the SHE channel,
which is in series with the input MTJs in logic operations. This
provides a conservative estimate of the SHE energy efficiency.
For Modern MTJs MOUSE operates at 30.3MHz and for

projected MTJs MOUSE operates at 90.9MHz. This enables
sufficient time for MTJ switching and peripheral circuitry
latency.
To estimate latency and energy cost due to peripheral

circuitry, we take data from NVSIM [23] which reports results

for modern MRAM memories. We set our peripheral circuitry
costs so that they consume the same percentage share of the
total latency and energy as reported by NVSIM. In addition
to the latency and energy required for performing the instruc-
tions, we also account for the overhead involved in reading
the instructions from the tiles, updating the program counter
and valid bits, specification of row and column addresses,
storing the most recent Activate Columns instruction, and the
re-issuing of the last Activate Columns instruction whenever
the system restarts.
We first evaluate the performance of MOUSE under contin-

uous power. Then, we evaluate MOUSE under energy harvest-
ing conditions. We model our energy harvester as a constant
power source which is filling an energy buffer (capacitor).
MOUSE will start executing when the voltage on the capacitor
is sufficiently high, and will shutdown when the voltage drops
to a pre-determined level.
For Modern MTJs, the voltage on the capacitor fluctuates

between 320mV and 340mV, and for Projected MTJs the
range is 100mV to 120mV. We use switched-capacitor con-
verters for upconversion and downconversion [32] to supply
the required voltage for the operations. By using conversion
ratios of 0.75, 1, 1.5, and 1.75 [42], [68], we can supply all
voltages required. We evaluate MOUSE on the power supplied
by the converter, the evaluation does not include regulator
efficiency overhead. The converter may have an efficiency
anywhere between 35-80%, hence the energy harvester may
need to provide roughly 1.25-2.85× the energy that MOUSE
consumes.
While energy harvesters can fluctuate in the amount of

power they provide (e.g., amount of sunlight), this model
captures a representative operation. We sweep the power
source over a wide range, from levels well below the operating
power of MOUSE, incurring numerous power outages, up to
levels where MOUSE can nearly be continuously powered.
Additionally, MOUSE assumes no knowledge when power
will run out or when it will be restored. Effectively all outages
are “unexpected”.
Following metrics provided in [75], we report energy ded-

icated to different components. In addition to total energy,

408

TABLE III
AREA REQUIRED FOR MOUSE FOR DIFFERENT BENCHMARKS AND

CONFIGURATIONS. UNITS ARE IN mm2 .

Total Modern Projected SHE
Benchmark Memory STT [95] STT [95]

SVM MNIST 64MB 50.98 38.67 77.35
Binarized 8MB 5.43 4.13 8.24
SVM HAR 16MB 10.86 8.24 16.48

SVM ADULT 1MB 0.71 0.53 1.06
BNN FINN MNIST 8MB 5.43 4.13 8.24
BNN FPBNN MNIST 16MB 10.86 8.24 16.48

we report Backup energy, Dead energy, and Restore energy.
Backup captures operations performed prior to shut down to
save state. For us, this is the continual writing of the PC,
parity bit, and storing each Activate Columns instruction in
an additional instruction register. Dead energy is energy spent
re-performing work that was lost during shut down, which in
this case is repeating the last instruction on restart. Restore
energy includes any operation needed to prepare MOUSE for
computation on restart. For us, this is issuing the most recent
Activate Columns instruction.
We also report Dead latency, which is the latency associated

with re-performing instructions, and Restore latency, which is
the time it takes to re-activate the columns on restart. There
is no Backup latency, as backup operations occur during the
same cycle as each instruction.
Area Overhead: MOUSE tiles have a similar area overhead
to MRAM arrays. MOUSE has an extra bit line per column
for the STT configuration. For the SHE configuration, it has an
extra transistor and a SHE channel for each cell. The impact of
the additional bit line is minor but the additional transistor has
significant overhead. To estimate area overhead for MOUSE,
we create estimates for cell size keeping access transistor
resistance less than 1 kΩ. The access transistors dominate the
area overhead. This is for two reasons: 1) the MTJs and SHE
channel can be placed on a separate layer from the access
transistors and 2) the access transistors are much larger. As
the SHE design has twice as many access transistors, the cell
area is approximately twice as large. To estimate peripheral
circuitry area overhead, we take NVSIM [23] results for area
efficiency for the same sized arrays and adjust our estimates by
the same ratio. As NVSIM only works with memory capacities
that are a power of 2, we assign the smallest memory size
for which the entire benchmark will fit. For example, SVM
MNIST requires only 34.5MB yet we assume MOUSE will
consume 64MB of memory to perform this benchmark. Our
conservative area estimates are shown in Table III.

IX. EVALUATION

Continuous Power: Results for MOUSE under continuous
power are summarized in Table IV. Also reported are results
for the same benchmarks using both our custom SVM and
libSVM on a CPU, and a representative energy harvesting
system SONIC [29] under continuous power. The CPU im-
plementations are run on a supercomputing cluster using Intel
Haswell 5-2680v3 processors. To be conservative, we account
only for the processor power consumption and assume it
operates at its idle power. SONIC uses a TI-MSP430FR5994
microcontroller and is powered by a Powercast P2210B energy
harvester.
Overall, MOUSE shows significant energy efficiency advan-

tages over other implementations, and competitive latencies.
MOUSE does require more memory than SONIC, however,
we believe this to be reasonable given that MOUSE is im-
plemented in high density MRAM and does not need external

processing logic or area costly volatile memory. MOUSE ben-
efits greatly from binarizing the MNIST input. One bit inputs
enable us to replace multiplications with AND gates, which
significantly reduces the amount of computation required. This
comes at a small cost in accuracy. The libSVM implementation
struggles on the binarized MNIST inputs, and attempts to
increase accuracy by adding many more support vectors. This
increases the latency and energy of inference.
Let us next look into the significant difference in perfor-

mance between MOUSE and SONIC [29]. SONIC is imple-
mented on a conventional, low performance microprocessor.
That design is highly economical, makes use of very scarce
memory capacity, uses currently commercially available hard-
ware, and has been proven experimentally. Additionally, the
authors note that there is room for significant improvement
in the efficiency. While we are reporting a significant latency
and energy advantage, MOUSE is not fabricated yet. However,
MTJ based logic has been experimentally demonstrated [87].
That said, MOUSE uses roughly the same area budget –that
SONIC allocates for energy-hungry volatile memory and rel-
atively complex logic– for more non-volatile memory (within
which computation can be performed)1.
Energy Harvesting: Now we consider MOUSE in a more
realistic energy harvesting scenario. We test MOUSE with a
range of power sources, from 60 μW, approximately what can
be harvested from a 1cm2 thermal energy harvester running
on body heat [43], [48], up to 5mW, the power harvested
by SONIC [29]. The power source charges an energy buffer
(capacitor) on chip. We allow the voltage to fluctuate between
320mV and 340mV when using Modern MTJs and between
100mV and 120mV when using Projected MTJs. When the
voltage drops below the desired range, MOUSE shuts down
and waits until the voltage reaches the upper end of the
range. We assume that MOUSE starts with a capacitor with
less charge than what would correspond to the shutdown
voltage. Hence, all benchmarks begin with an initial charging
time. We use a 100 μF capacitor (energy buffer) with Modern
MTJs and a 10 μF capacitor for Projected MTJs. The optimal
capacitor size depends on the technology and the program
being executed. When deployed, a system such as Capybara
[16] could be used to tune the parameters of the energy buffer.
Results for latency are plotted and compared to SONIC for

Modern STT, Projected STT, and SHE in Figure IX. Consistent
with and as noted by [29], the latency is mostly determined by
energy efficiency. This is because the majority of the latency
is spent powered off, waiting for the capacitor to charge.
The fewer recharges required, the lower the latency. Hence,
latency increases significantly as the power source is reduced.
Because the SHE design is more energy efficient, it draws
significantly less power and thus drains the capacitor less
often. This results in fewer power outages, fewer shutdown and
restart operations, and hence also requires fewer operations to
complete the program. This gives SHE a latency advantage
over STT while in energy harvesting conditions. However,
with all configurations, MOUSE achieves a significantly lower
latency than SONIC, even with a much lower power budget.
The dependency of latency on energy efficiency results in a

cross-over of the latency between FP-BNN and SVM MNIST
(Bin) benchmarks. FP-BNN costs more total energy, and hence
has a higher latency at lower power sources. However, due to

1Our largest configuration uses 35MB (fits in an 64MB array). Ever-
spin’s commercially available 64MB STT-MRAM device (similarly sized) is
130mm2 [1]. Everspin’s new 1GB product is the same (package) size [2]. In
comparison, SONIC’s microcontroller takes 100mm2, which is only a sub-
component.

409

TABLE IV
CONTINUOUSLY POWERED MOUSE (USING STT DESIGN AND MODERN MTJ DEVICES) AND RELATED WORK UNDER CONTINUOUS POWER. THE CPU

DOES NOT BENEFIT FROM MNIST BINARIZATION AS IT STILL PERFORMS 64-BIT INTEGER MULTIPLICATION.

Benchmark Latency (μs) Energy (μJ) #SV I/D Mem (MB) Area (mm2) Accuracy

SVM (CPU)
MNIST 169,824 5,094,702 11,813 - - 97.55

MNIST (Binarized) 192,370 5,771,085 12,214 - - 97.37
HAR (integer) [3], [83] 127,494 3,824,822 2,809 - 95.96

ADULT 4,368 131,052 1,909 - - 76.12

MOUSE SVM (Modern STT)
MNIST 23,936 1,384 11,813 4.5 / 30.0 50.98 97.55

MNIST (Binarized) 6,575 65.49 12,214 1.25 / 6.0 5.43 97.37
HAR (integer) [3], [83] 11,805 468.6 2,809 2.25 / 10.0 10.86 94.57

ADULT 1,189 7.24 1,909 0.25 / 0.5 0.71 76.12

MOUSE BNN (Modern STT)
MNIST (Binarized) FINN 1,485 14.33 NA 3.15/1.71 5.43 98.4

MNIST FP-BNN 2,007 99.9 NA 4.20 / 8.00 10.86 98.24

libSVM [10]
MNIST 7,830 234,900 8,652 - - 98.05

MNIST (Binarized) 19,037 571,116 23,672 - - 92.49
HAR (integer) 1,701 51,042 2,632 - - 93.69

ADULT 379 11,370 15,792 - - 78.62

SONIC [29]
MNIST 2,740,000 27,000 NA 0.256 > 100 99
HAR 1,100,000 12,500 NA 0.256 > 100 88

(a) Modern STT (b) Projected STT (c) SHE

Fig. 9. Latency (μs) vs. Power Source (W) for each MOUSE configuration and SONIC [29].

(a) Latency (b) Energy
Fig. 10. Latency/Energy Breakdown: Modern STT.

a higher degree of exploited parallelism, FP-BNN has a lower
latency if sufficient power can be supplied.
As MOUSE spends negligible amounts of energy while

powered off, the energy consumption is nearly independent of
the power supply. The total energy is plotted in Figure 10(b)
for Modern STT; in Figure 11(b) for Projected STT; and in
Figure 12(b) for SHE; assuming a 60 μW power source.
Also of interest, as noted by [75], is the Backup, Restore,

and Dead latency and energy. These are also reported in Figure

(a) Latency (b) Energy
Fig. 11. Latency/Energy Breakdown: Projected STT.

10 for Modern STT; in Figure 11, for Projected STT; and in
Figure 12, for SHE. Note that the y-axis is log scale. The total
energy encapsulates all energy used for computation, as well
as Backup, Restore, and Dead energy. An efficient intermittent
computing system will have low Backup, Restore, and Dead
energy relative to the total energy, which can be seen is the
case for MOUSE. Also note the total latency is provided for
all architectures in Figure 9 – where the breakdown figures
capture the data for the 60 μW power source.

410

(a) Latency (b) Energy
Fig. 12. Latency/Energy Breakdown: SHE.

Dead latency and energy is due to the possible re-execution
of the previous instruction on restart. Dead latency and energy
also increase with the number of restarts required and is also
variable on when the interrupt occurred. The best case is if an
interrupt occurred immediately after the parity bit is flipped
(indicating the completion of an instruction per Section V-B
and Figure 7). In this case, there is effectively no penalty. The
worst case is if the interrupt happened just before the flipping
of the parity bit, where the current instruction has been fully
performed but not considered complete. In this case, the entire
instruction will be re-performed on restart.
As Modern STT is the least energy efficient, it must restart

the most and hence has the largest relative Dead energy.
At the extremely low power of 60 μW, on average, across
all benchmarks, Dead energy is 7.4% of the total energy.
Higher energy efficiencies reduce this significantly, where
Dead energy (on average) becomes 2.52% of the energy for
Projected STT and 0.61% of the total for SHE. Dead latency,
on the other hand, is 0.47% of the total for Modern STT,
0.09% of the total for Projected STT, and 0.044% of the total
for SHE.
Restore is the time and energy required to re-activate the

columns every time MOUSE restarts. Restore latency and
energy naturally increase with the number of restarts required,
but is also variable depending on where in the program an
interrupt occurred. The more columns that were active at the
time of an interrupt, the higher the respective Restore cost
of re-activating them will be. However, overall, as the restore
process is fast and energy efficient, the Restore latency and
energy remain a small fraction of the total. On average across
all benchmarks, Restore is only 0.91% of the latency and
0.50% of the energy for Modern STT; 0.14% of the latency
and 0.13% of the energy for Projected STT; and 0.04% of
the latency and 0.13% of the energy for SHE. As Restore
latency and energy is due to peripheral circuitry, SHE has
no advantage over STT for an individual restart. However,
SHE still requires fewer restart operations due to its overall
increased energy efficiency.
Backup energy entails the continual writing of architectural

state variables (PC and parity bit). Backup energy corresponds
to writing only a few bits on every cycle. An interrupt can
cause at most a single additional write. Hence, Backup energy
is not significantly affected by interrupts and is determined
mostly by the length of the program. Backup energy is, on
average across all benchmarks, 0.24% for Modern STT; 0.27%
for Projected STT; and 0.007% for SHE. Backup has no
associated latency as it is performed at the same time as each
instruction on every cycle.
Restore and Dead latency and energy are all zero for the

case of a continuously powered system. This is because there

are no power outages and, hence, never a need to restart the
system or re-perform any potentially unfinished instructions.

X. RELATED WORK

Non-volatile processors (NVP) [53], [59] are uniquely de-
signed for intermittent computing by integrating non-volatile
memory near the compute units. Unlike MOUSE, these de-
vices have a structure similar to traditional CPUs. MOUSE has
three advantages over these architectures. Due to PIM, it is ca-
pable of high degrees of parallelism in order to achieve perfor-
mance. Additionally, MOUSE doesn’t need to perform energy-
hungry loads and stores in order to operate on data. Finally,
MOUSE doesn’t perform additional backup operations prior
to shut-down, making it effectively immune to unexpected
power outages. The authors of [53] propose a system using
a THU1010N non-volatile processor for energy harvesting ap-
plications. They describe trade-offs in designing such a system
and demonstrate its capability on a number of benchmarks.
There is follow up work in [57], [58] which makes the NVPs
more resistant to power interruptions. The NVP in [57] can
complete the FFT benchmark from MiBench [31] in 4.2ms.
A recent paper [19] has evaluated FFT implementations on
CRAM, the same substrate which MOUSE uses. Performing
a similarly sized problem, the best latency they were able to
achieve is 1.63ms. Naturally, adapting this implementation to
be intermittent safe in the same manner in MOUSE would
introduce a latency penalty. Another non-volatile processor is
presented in [79] which features PIM components. There is a
controlling CPU that performs logic and control. A few RRAM
arrays are used to accelerate computing in neural networks. In
this case, the PIM is a sub-component of the system, which
also contains more traditional logic circuitry and an external
processor. Due to this complexity, this implementation cannot
make use of the same checkpointing strategy used in MOUSE.
A recent paper, ResiRCA, proposes an adaptable RRAM

crossbar accelerator for MAC (multiply+accumulate) opera-
tions for CNNs in energy harvesting environments. It proposes
clever methods to adapt the power consumption to varying
power sources. While the crossbar is powered by an energy
harvester, it assumes a battery powered host processor. Unlike
MOUSE, computation also occurs outside the memory array
(only MACs are processed by the memory). Hence, the auto-
matic check-pointing mechanism we use is not applicable to
this design. A number of RRAM PIM technologies also exist
[80], [82], [91], [93]. However, the RRAM array is used as
an accelerator as a sub-component of the system. Hence, there
is much additional circuitry and logic that occurs outside the
memory. This significantly increases the difficulty to adapt to
intermittent processing. Additionally, many RRAM accelera-
tors rely heavily on ADCs (analog to digital converters), which
have a significant area and energy overhead. RRAM typically
suffers from a lower endurance, as well.
Capybara uses a re-configurable hardware energy storage

mechanism and a software interface that allows the specifica-
tion of energy needs for different tasks. This gives the system
more flexibility in satisfying the requirements of different
kinds of tasks. While we do not focus on the power delivery
system in this work, systems such as Capybara could be used
to optimally supply MOUSE with power. Hibernus [7], on
the other hand, is a system that reactively hibernates and
wakes up. This is a similar shutdown policy to MOUSE.
However, Hibernus performs an additional back-up operation
before shutting down, whereas MOUSE does not need to.
A number of techniques have been developed to enable

intermittent computation on more traditional hardware. For

411

example, CleanCut [14] works with LLVM to compile pro-
grams with checkpoints, and uses a statistical energy model
to find potential non-terminating paths. Chinchilla [62] uses
adaptive checkpointing, where the frequency of checkpoints is
a function of the number of interrupts. Coati [71] developed
methods to ensure correctness in the presence of interrupts
for intermittent systems. The What’s Next Intermittent Ar-
chitecture [26] uses approximation to improve performance.
Rather than following an all-or-nothing approach, What’s Next
computes approximate results and continually improves the
output. If an acceptable output is achieved it will skip to
processing the next input. This enables the device to process
more inputs as it does not waste time and energy achieving
unnecessary accuracy.

The EH model [75] facilitates early design space exploration
for energy harvesting architectures. It helps finding a good
balance to achieve minimal overhead for allowing maximal
forward progress. As noted by the authors of [75], energy
harvesting systems can generally be divided into two types,
multi-backup, which perform many backups between power
outages, and single back-up, which only save state once before
a power outage. Multi-backup systems include Mementos,
[69], DINO [55], Chain [13], Alpaca [61], Mayfly [36],
Ratchet [86], and Clank [37]. Single-backup systems include
Hibernus [6], QuickRecall [40], and many others [4], [5],
[8], [52], [56]. According to this categorization, MOUSE fits
under a multi-backup system as we are constantly saving the
architectural state.

PIM has been studied for non-volatile memories with
Pinatubo [49], for DRAM with Ambit [78], and for SRAM
with Neural Cache [25]. These technologies are meant to be
integrated into the memory hierarchy of traditional CPUs and
have not been considered for energy harvesting applications.
Ambit and Neural Cache are not suitable for energy harvesting
as they are volatile technologies. Pinatubo could be adapted
and used similarly as CRAM in MOUSE. However, Pinatubo
uses logic external to the memory array for some operations.
This adds complexity as these circuits would need to be pro-
tected against errors in intermittent computing. Additionally,
Pinatubo uses sense amplifiers to perform computation, which
is less energy efficient than the logic operations in CRAM.

The Phoenix processor [77] is an extremely low power
processor with a sophisticated sleep strategy. However, it is
not designed to be safe for intermittent processing. Similarly,
while not safe for intermittent computing (and where adding
this functionality would likely incur a significant performance
and efficiency cost), a number of accelerators have demon-
strated high performance and energy efficiency on inference.
PuDianNao [51] is an ASIC accelerator which also targets
SVM. A microcontroller based system was used as a BNN
accelerator in [17]. An in/near memory SRAM substrate is
proposed in [88], which performs bit-serial arithmetic, and
which was shown to have high performance and efficiency
on the AlexNet [46] network. A few analog PIM accelerators
also exist. For example, the accelerator in [41] uses BNN to
perform Cifar-10 image classification. The accelerator in [97]
uses SRAM cells and analog computation to achieve high en-
ergy efficiency while classifying MNIST. Another example is
[85] for MNIST and Cifar-10 recognition. Generally, adapting
such accelerators to support safe intermittent computing is not
straight-forward and would likely come –if at all possible– at
significant performance and efficiency cost.

Orthogonal to our work, recent papers have made progress
on problems relevant in the energy harvesting domain. Low
power and accurate time keeping was developed in [20].

SRAM was used as a an efficient check-pointing memory,
being able to maintain state for short periods of power off time
[89]. A new platform for intermittent computing is proposed
in [45] which simplifies the task of adapting pre-existing
embedded applications to work in intermittent environments.

XI. CONCLUSION

In this paper we presented MOUSE, a machine learning
accelerator in (non-volatile) memory for energy harvesting
applications. The requirements for energy harvesting appli-
cations are extreme energy efficiency, efficient shut down
and restart procedures, and correctness during intermittent
execution. MOUSE provides all of these by having highly
energy efficient logic operations with simple and effective
shut down and restart procedures. The non-volatility com-
bined with processing in memory provides a natural progress
saving mechanism which demands very little overhead. By
simulation, we demonstrated that such a device would provide
significant latency and energy efficiency advantages over state
of the art approaches, and is a promising candidate to bring
machine learning to new domains.

REFERENCES

[1] https://www.everspin.com/supportdocs/EMD3D256M08G1-150CBS1,
2019, accessed: 2019-08-10.

[2] https://www.everspin.com/family/emd4e001g?npath=3557, 2019, ac-
cessed: 2019-11-25.

[3] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “A public
domain dataset for human activity recognition using smartphones.” in
Esann, 2013.

[4] F. A. Aouda, K. Marquet, and G. Salagnac, “Incremental checkpointing
of program state to nvram for transiently-powered systems,” in 2014
9th International Symposium on Reconfigurable and Communication-
Centric Systems-on-Chip (ReCoSoC). IEEE, 2014, pp. 1–4.

[5] D. Balsamo, A. Das, A. S. Weddell, D. Brunelli, B. M. Al-Hashimi, G. V.
Merrett, and L. Benini, “Graceful performance modulation for power-
neutral transient computing systems,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 35, no. 5, pp.
738–749, 2016.

[6] D. Balsamo, A. S. Weddell, A. Das, A. R. Arreola, D. Brunelli, B. M. Al-
Hashimi, G. V. Merrett, and L. Benini, “Hibernus++: a self-calibrating
and adaptive system for transiently-powered embedded devices,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 35, no. 12, pp. 1968–1980, 2016.

[7] D. Balsamo, A. S. Weddell, G. V. Merrett, B. M. Al-Hashimi,
D. Brunelli, and L. Benini, “Hibernus: Sustaining computation during
intermittent supply for energy-harvesting systems,” IEEE Embedded
Systems Letters, vol. 7, no. 1, pp. 15–18, 2014.

[8] G. Berthou, T. Delizy, K. Marquet, T. Risset, and G. Salagnac, “Periph-
eral state persistence for transiently-powered systems,” in 2017 Global
Internet of Things Summit (GIoTS). IEEE, 2017, pp. 1–6.

[9] A. P. Chandrakasan, D. C. Daly, J. Kwong, and Y. K. Ramadass, “Next
generation micro-power systems,” in 2008 IEEE Symposium on VLSI
Circuits. IEEE, 2008, pp. 2–5.

[10] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector
machines,” ACM transactions on intelligent systems and technology
(TIST), vol. 2, no. 3, p. 27, 2011.

[11] L. Chen, J. Li, Y. Chen, Q. Deng, J. Shen, X. Liang, and L. Jiang,
“Accelerator-friendly neural-network training: Learning variations and
defects in rram crossbar,” in Proceedings of the Conference on Design,
Automation & Test in Europe. European Design and Automation
Association, 2017, pp. 19–24.

[12] Z. Chowdhury, J. D. Harms, S. K. Khatamifard, M. Zabihi, Y. Lv,
A. P. Lyle, S. S. Sapatnekar, U. R. Karpuzcu, and J.-P. Wang, “Efficient
in-memory processing using spintronics,” IEEE Computer Architecture
Letters, vol. 17, no. 1, pp. 42–46, 2017.

[13] A. Colin and B. Lucia, “Chain: tasks and channels for reliable inter-
mittent programs,” in ACM SIGPLAN Notices, vol. 51, no. 10. ACM,
2016, pp. 514–530.

[14] ——, “Termination checking and task decomposition for task-based
intermittent programs,” in Proceedings of the 27th International Con-
ference on Compiler Construction. ACM, 2018, pp. 116–127.

[15] A. Colin, E. Ruppel, and B. Lucia, “A reconfigurable energy storage
architecture for energy-harvesting devices,” in ACM SIGPLAN Notices,
vol. 53, no. 2. ACM, 2018, pp. 767–781.

[16] ——, “A reconfigurable energy storage architecture for energy-
harvesting devices,” in ACM SIGPLAN Notices, vol. 53, no. 2. ACM,
2018, pp. 767–781.

412

[17] F. Conti, P. D. Schiavone, and L. Benini, “Xnor neural engine: A
hardware accelerator ip for 21.6-fj/op binary neural network inference,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 37, no. 11, pp. 2940–2951, 2018.

[18] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Ben-
gio, “Binarized neural networks: Training deep neural networks with
weights and activations constrained to+ 1 or-1,” arXiv preprint
arXiv:1602.02830, 2016.

[19] H. Cılasun, S. Resch, Z. I. Chowdhury, E. Olson, M. Zabihi, Z. Zhao,
T. Peterson, J.-P. Wang, S. S. Sapatnekar, and U. Karpuzcu, “Crafft:
High resolution fft accelerator in spintronic computational ram,” in Pro-
ceedings of the 57th Annual ACM/IEEE Design Automation Conference,
2020.

[20] J. de Winkel, C. Delle Donne, K. S. Yildirim, P. Pawełczak, and J. Hes-
ter, “Reliable timekeeping for intermittent computing,” in Proceedings
of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, 2020, pp. 53–67.

[21] Z. Diao, A. Panchula, Y. Ding, M. Pakala, S. Wang, Z. Li, D. Apalkov,
H. Nagai, A. Driskill-Smith, L.-C. Wang et al., “Spin transfer switching
in dual mgo magnetic tunnel junctions,” Applied Physics Letters, vol. 90,
no. 13, p. 132508, 2007.

[22] X. Dong, X. Wu, G. Sun, Y. Xie, H. Li, and Y. Chen, “Circuit and
microarchitecture evaluation of 3d stacking magnetic ram (mram) as
a universal memory replacement,” in 2008 45th ACM/IEEE Design
Automation Conference. IEEE, 2008, pp. 554–559.

[23] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “Nvsim: A circuit-level
performance, energy, and area model for emerging nonvolatile memory,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 31, no. 7, pp. 994–1007, 2012.

[24] P. Dürrenfeld, F. Gerhard, J. Chico, R. K. Dumas, M. Ranjbar,
A. Bergman, L. Bergqvist, A. Delin, C. Gould, L. W. Molenkamp et al.,
“Tunable damping, saturation magnetization, and exchange stiffness of
half-heusler nimnsb thin films,” Physical Review B, vol. 92, no. 21, p.
214424, 2015.

[25] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester,
D. Blaauw, and R. Das, “Neural cache: Bit-serial in-cache acceleration of
deep neural networks,” in Proceedings of the 45th Annual International
Symposium on Computer Architecture. IEEE Press, 2018, pp. 383–396.

[26] K. Ganesan, J. San Miguel, and N. E. Jerger, “The what’s next intermit-
tent computing architecture,” in 2019 IEEE International Symposium on
High Performance Computer Architecture (HPCA). IEEE, 2019, pp.
211–223.

[27] K. Garello, F. Yasin, S. Couet, L. Souriau, J. Swerts, S. Rao,
S. Van Beek, W. Kim, E. Liu, S. Kundu et al., “Sot-mram 300mm
integration for low power and ultrafast embedded memories,” in 2018
IEEE Symposium on VLSI Circuits. IEEE, 2018, pp. 81–82.

[28] G. Gobieski, N. Beckmann, and B. Lucia, “Intermittent deep neural
network inference,” 2018.

[29] G. Gobieski, B. Lucia, and N. Beckmann, “Intelligence beyond the edge:
Inference on intermittent embedded systems,” in Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems. ACM, 2019, pp.
199–213.

[30] H. Greenspan, B. Van Ginneken, and R. M. Summers, “Guest editorial
deep learning in medical imaging: Overview and future promise of
an exciting new technique,” IEEE Transactions on Medical Imaging,
vol. 35, no. 5, pp. 1153–1159, 2016.

[31] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “Mibench: A free, commercially representative
embedded benchmark suite,” in Proceedings of the fourth annual IEEE
international workshop on workload characterization. WWC-4 (Cat. No.
01EX538). IEEE, 2001, pp. 3–14.

[32] R. Harjani and S. Chaubey, “A unified framework for capacitive series-
parallel dc-dc converter design,” in Proceedings of the IEEE 2014
Custom Integrated Circuits Conference. IEEE, 2014, pp. 1–8.

[33] J. Hester, T. Peters, T. Yun, R. Peterson, J. Skinner, B. Golla, K. Storer,
S. Hearndon, K. Freeman, S. Lord et al., “Amulet: An energy-efficient,
multi-application wearable platform,” in Proceedings of the 14th ACM
Conference on Embedded Network Sensor Systems CD-ROM. ACM,
2016, pp. 216–229.

[34] J. Hester, L. Sitanayah, and J. Sorber, “Tragedy of the coulombs:
Federating energy storage for tiny, intermittently-powered sensors,” in
Proceedings of the 13th ACM Conference on Embedded Networked
Sensor Systems. ACM, 2015, pp. 5–16.

[35] J. Hester and J. Sorber, “Flicker: Rapid prototyping for the batteryless
internet-of-things,” in Proceedings of the 15th ACM Conference on
Embedded Network Sensor Systems. ACM, 2017, p. 19.

[36] J. Hester, K. Storer, and J. Sorber, “Timely execution on intermittently
powered batteryless sensors,” in Proceedings of the 15th ACM Confer-
ence on Embedded Network Sensor Systems. ACM, 2017, p. 17.

[37] M. Hicks, “Clank: Architectural support for intermittent computation,”
in 2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2017, pp. 228–240.

[38] G. Hu, J. Lee, J. Nowak, J. Sun, J. Harms, A. Annunziata, S. Brown,
W. Chen, Y. Kim, G. Lauer et al., “Stt-mram with double magnetic
tunnel junctions,” in 2015 IEEE International Electron Devices Meeting
(IEDM). IEEE, 2015, pp. 26–3.

[39] G. Jan, L. Thomas, S. Le, Y.-J. Lee, H. Liu, J. Zhu, R.-Y. Tong,
K. Pi, Y.-J. Wang, D. Shen et al., “Demonstration of fully functional
8mb perpendicular stt-mram chips with sub-5ns writing for non-volatile
embedded memories,” in 2014 Symposium on VLSI Technology (VLSI-
Technology): Digest of Technical Papers. IEEE, 2014, pp. 1–2.

[40] H. Jayakumar, A. Raha, and V. Raghunathan, “Quickrecall: A low
overhead hw/sw approach for enabling computations across power
cycles in transiently powered computers,” in 2014 27th International
Conference on VLSI Design and 2014 13th International Conference on
Embedded Systems. IEEE, 2014, pp. 330–335.

[41] H. Jia, H. Valavi, Y. Tang, J. Zhang, and N. Verma, “A programmable
embedded microprocessor for bit-scalable in-memory computing,” in
2019 IEEE Hot Chips 31 Symposium (HCS). IEEE, 2019, pp. 1–29.

[42] W. Jung, S. Oh, S. Bang, Y. Lee, D. Sylvester, and D. Blaauw,
“23.3 a 3nw fully integrated energy harvester based on self-oscillating
switched-capacitor dc-dc converter,” in 2014 IEEE International Solid-
State Circuits Conference Digest of Technical Papers (ISSCC). IEEE,
2014, pp. 398–399.

[43] S. Kim, R. Vyas, J. Bito, K. Niotaki, A. Collado, A. Georgiadis, and
M. M. Tentzeris, “Ambient rf energy-harvesting technologies for self-
sustainable standalone wireless sensor platforms,” Proceedings of the
IEEE, vol. 102, no. 11, pp. 1649–1666, 2014.

[44] R. Kohavi, “Scaling up the accuracy of naive-bayes classifiers: A
decision-tree hybrid.” in Kdd, vol. 96. Citeseer, 1996, pp. 202–207.

[45] V. Kortbeek, K. S. Yildirim, A. Bakar, J. Sorber, J. Hester, and
P. Pawełczak, “Time-sensitive intermittent computing meets legacy
software,” in Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2020, pp. 85–99.

[46] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[47] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[48] V. Leonov, “Thermoelectric energy harvesting of human body heat for
wearable sensors,” IEEE Sensors Journal, vol. 13, no. 6, pp. 2284–2291,
2013.

[49] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo: A
processing-in-memory architecture for bulk bitwise operations in emerg-
ing non-volatile memories,” in Proceedings of the 53rd Annual Design
Automation Conference. ACM, 2016, p. 173.

[50] S. Liang, S. Yin, L. Liu, W. Luk, and S. Wei, “Fp-bnn: Binarized neural
network on fpga,” Neurocomputing, vol. 275, pp. 1072–1086, 2018.

[51] D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng, X. Zhou,
and Y. Chen, “Pudiannao: A polyvalent machine learning accelerator,”
in ACM SIGARCH Computer Architecture News, vol. 43, no. 1. ACM,
2015, pp. 369–381.

[52] Q. Liu and C. Jung, “Lightweight hardware support for transparent
consistency-aware checkpointing in intermittent energy-harvesting sys-
tems,” in 2016 5th Non-Volatile Memory Systems and Applications
Symposium (NVMSA). IEEE, 2016, pp. 1–6.

[53] Y. Liu, Z. Li, H. Li, Y. Wang, X. Li, K. Ma, S. Li, M.-F. Chang, S. John,
Y. Xie et al., “Ambient energy harvesting nonvolatile processors: from
circuit to system,” in Proceedings of the 52nd Annual Design Automation
Conference. ACM, 2015, p. 150.

[54] B. Lucia, V. Balaji, A. Colin, K. Maeng, and E. Ruppel, “Intermittent
computing: Challenges and opportunities,” in 2nd Summit on Advances
in Programming Languages (SNAPL 2017). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2017.

[55] B. Lucia and B. Ransford, “A simpler, safer programming and execution
model for intermittent systems,” in ACM SIGPLAN Notices, vol. 50,
no. 6. ACM, 2015, pp. 575–585.

[56] G. Lukosevicius, A. R. Arreola, and A. S. Weddell, “Using sleep
states to maximize the active time of transient computing systems,”
in Proceedings of the Fifth ACM International Workshop on Energy
Harvesting and Energy-Neutral Sensing Systems. ACM, 2017, pp. 31–
36.

[57] K. Ma, X. Li, J. Li, Y. Liu, Y. Xie, J. Sampson, M. T. Kandemir, and
V. Narayanan, “Incidental computing on iot nonvolatile processors,” in
2017 50th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). IEEE, 2017, pp. 204–218.

[58] K. Ma, X. Li, H. Liu, X. Sheng, Y. Wang, K. Swaminathan, Y. Liu,
Y. Xie, J. Sampson, and V. Narayanan, “Dynamic power and energy
management for energy harvesting nonvolatile processor systems,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 16, no. 4,
pp. 1–23, 2017.

[59] K. Ma, Y. Zheng, S. Li, K. Swaminathan, X. Li, Y. Liu, J. Sampson,
Y. Xie, and V. Narayanan, “Architecture exploration for ambient energy
harvesting nonvolatile processors,” in 2015 IEEE 21st International Sym-
posium on High Performance Computer Architecture (HPCA). IEEE,
2015, pp. 526–537.

[60] ——, “Architecture exploration for ambient energy harvesting non-
volatile processors,” in 2015 IEEE 21st International Symposium on
High Performance Computer Architecture (HPCA). IEEE, 2015, pp.
526–537.

413

[61] K. Maeng, A. Colin, and B. Lucia, “Alpaca: intermittent execution with-
out checkpoints,” Proceedings of the ACM on Programming Languages,
vol. 1, no. OOPSLA, p. 96, 2017.

[62] K. Maeng and B. Lucia, “Adaptive dynamic checkpointing for safe
efficient intermittent computing,” in 13th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 18), 2018, pp.
129–144.

[63] M. Manic, K. Amarasinghe, J. J. Rodriguez-Andina, and C. Rieger,
“Intelligent buildings of the future: Cyberaware, deep learning powered,
and human interacting,” IEEE Industrial Electronics Magazine, vol. 10,
no. 4, pp. 32–49, 2016.

[64] S. Mizukami, D. Watanabe, M. Oogane, Y. Ando, Y. Miura, M. Shirai,
and T. Miyazaki, “Low damping constant for co 2 feal heusler alloy films
and its correlation with density of states,” Journal of Applied Physics,
vol. 105, no. 7, p. 07D306, 2009.

[65] H. Noguchi, K. Ikegami, K. Kushida, K. Abe, S. Itai, S. Takaya,
N. Shimomura, J. Ito, A. Kawasumi, H. Hara et al., “7.5 a 3.3 ns-access-
time 71.2 μw/mhz 1mb embedded stt-mram using physically eliminated
read-disturb scheme and normally-off memory architecture,” in 2015
IEEE International Solid-State Circuits Conference-(ISSCC) Digest of
Technical Papers. IEEE, 2015, pp. 1–3.

[66] F. Oboril, R. Bishnoi, M. Ebrahimi, and M. B. Tahoori, “Evaluation
of hybrid memory technologies using sot-mram for on-chip cache
hierarchy,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 34, no. 3, pp. 367–380, 2015.

[67] R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria,
2016. [Online]. Available: https://www.R-project.org/

[68] Y. K. Ramadass and A. P. Chandrakasan, “Voltage scalable switched
capacitor dc-dc converter for ultra-low-power on-chip applications,” in
2007 IEEE Power Electronics Specialists Conference. IEEE, 2007, pp.
2353–2359.

[69] B. Ransford, J. Sorber, and K. Fu, “Mementos: system support for
long-running computation on rfid-scale devices,” in ACM SIGARCH
Computer Architecture News, vol. 39, no. 1. ACM, 2011, pp. 159–
170.

[70] S. Resch, S. K. Khatamifard, Z. I. Chowdhury, M. Zabihi, Z. Zhao, J.-P.
Wang, S. S. Sapatnekar, and U. R. Karpuzcu, “Pimball: Binary neural
networks in spintronic memory,” ACM Transactions on Architecture and
Code Optimization (TACO), vol. 16, no. 4, p. 41, 2019.

[71] E. Ruppel and B. Lucia, “Transactional concurrency control for inter-
mittent, energy-harvesting computing systems,” in Proceedings of the
40th ACM SIGPLAN Conference on Programming Language Design
and Implementation. ACM, 2019, pp. 1085–1100.

[72] D. Saida, S. Kashiwada, M. Yakabe, T. Daibou, N. Hase, M. Fukumoto,
S. Miwa, Y. Suzuki, H. Noguchi, S. Fujita et al., “Sub-3 ns pulse
with sub-100 μa switching of 1x–2x nm perpendicular mtj for high-
performance embedded stt-mram towards sub-20 nm cmos,” in 2016
IEEE Symposium on VLSI Technology. IEEE, 2016, pp. 1–2.

[73] ——, “Sub-3 ns pulse with sub-100 μa switching of 1x–2x nm perpen-
dicular mtj for high-performance embedded stt-mram towards sub-20 nm
cmos,” in 2016 IEEE Symposium on VLSI Technology. IEEE, 2016,
pp. 1–2.

[74] A. P. Sample, D. J. Yeager, P. S. Powledge, A. V. Mamishev, and
J. R. Smith, “Design of an rfid-based battery-free programmable sensing
platform,” IEEE transactions on instrumentation and measurement,
vol. 57, no. 11, pp. 2608–2615, 2008.

[75] J. San Miguel, K. Ganesan, M. Badr, C. Xia, R. Li, H. Hsiao, and N. E.
Jerger, “The eh model: Early design space exploration of intermittent
processor architectures,” in 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2018, pp. 600–612.

[76] H. Sato, E. Enobio, M. Yamanouchi, S. Ikeda, S. Fukami, S. Kanai,
F. Matsukura, and H. Ohno, “Properties of magnetic tunnel junctions
with a mgo/cofeb/ta/cofeb/mgo recording structure down to junction
diameter of 11 nm,” Applied Physics Letters, vol. 105, no. 6, p. 062403,
2014.

[77] M. Seok, S. Hanson, Y.-S. Lin, Z. Foo, D. Kim, Y. Lee, N. Liu,
D. Sylvester, and D. Blaauw, “The phoenix processor: A 30pw platform
for sensor applications,” in 2008 IEEE Symposium on VLSI Circuits.
IEEE, 2008, pp. 188–189.

[78] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim,
M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit: In-
memory accelerator for bulk bitwise operations using commodity dram
technology,” in Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture. ACM, 2017, pp. 273–287.

[79] F. Su, W.-H. Chen, L. Xia, C.-P. Lo, T. Tang, Z. Wang, K.-H. Hsu,
M. Cheng, J.-Y. Li, Y. Xie et al., “A 462gops/j rram-based nonvolatile
intelligent processor for energy harvesting ioe system featuring non-
volatile logics and processing-in-memory,” in 2017 Symposium on VLSI
Technology. IEEE, 2017, pp. T260–T261.

[80] X. Sun, X. Peng, P.-Y. Chen, R. Liu, J.-s. Seo, and S. Yu, “Fully parallel
rram synaptic array for implementing binary neural network with (+ 1,-
1) weights and (+ 1, 0) neurons,” in Proceedings of the 23rd Asia and
South Pacific Design Automation Conference. IEEE Press, 2018, pp.
574–579.

[81] T. Tang, L. Xia, B. Li, Y. Wang, and H. Yang, “Binary convolutional
neural network on rram,” in 2017 22nd Asia and South Pacific Design
Automation Conference (ASP-DAC). IEEE, 2017, pp. 782–787.

[82] ——, “Binary convolutional neural network on rram,” in Design Au-
tomation Conference (ASP-DAC), 2017 22nd Asia and South Pacific.
IEEE, 2017, pp. 782–787.

[83] https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+
using+smartphones, 2019, accessed: 2019-06-02.

[84] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,
and K. Vissers, “Finn: A framework for fast, scalable binarized neural
network inference,” in Proceedings of the 2017 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays. ACM, 2017,
pp. 65–74.

[85] H. Valavi, P. J. Ramadge, E. Nestler, and N. Verma, “A 64-tile 2.4-
mb in-memory-computing cnn accelerator employing charge-domain
compute,” IEEE Journal of Solid-State Circuits, vol. 54, no. 6, pp. 1789–
1799, 2019.

[86] J. Van Der Woude and M. Hicks, “Intermittent computation without
hardware support or programmer intervention,” in 12th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI}
16), 2016, pp. 17–32.

[87] J.-P. Wang, M. Jamaliz, A. K. Smith, and Z. Zhao, “Magnetic tunnel
junction based integrated logics and computational circuits,” Nano-
magnetic and Spintronic Devices for Energy-Efficient Memory and
Computing, p. 133, 2016.

[88] J. Wang, X. Wang, C. Eckert, A. Subramaniyan, R. Das, D. Blaauw, and
D. Sylvester, “A 28-nm compute sram with bit-serial logic/arithmetic op-
erations for programmable in-memory vector computing,” IEEE Journal
of Solid-State Circuits, vol. 55, no. 1, pp. 76–86, 2019.

[89] H. Williams, X. Jian, and M. Hicks, “Forget failure: Exploiting sram data
remanence for low-overhead intermittent computation,” in Proceedings
of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, 2020, pp. 69–84.

[90] L. Xia, T. Tang, W. Huangfu, M. Cheng, X. Yin, B. Li, Y. Wang, and
H. Yang, “Switched by input: Power efficient structure for rram-based
convolutional neural network,” in 2016 53nd ACM/EDAC/IEEE Design
Automation Conference (DAC). IEEE, 2016, pp. 1–6.

[91] ——, “Switched by input: power efficient structure for rram-based
convolutional neural network,” in Proceedings of the 53rd Annual Design
Automation Conference. ACM, 2016, p. 125.

[92] S. Yu, Z. Li, P.-Y. Chen, H. Wu, B. Gao, D. Wang, W. Wu, and
H. Qian, “Binary neural network with 16 mb rram macro chip for
classification and online training,” in 2016 IEEE International Electron
Devices Meeting (IEDM). IEEE, 2016, pp. 16–2.

[93] ——, “Binary neural network with 16 mb rram macro chip for classifi-
cation and online training,” in Electron Devices Meeting (IEDM), 2016
IEEE International. IEEE, 2016, pp. 16–2.

[94] M. Zabihi, Z. I. Chowdhury, Z. Zhao, U. R. Karpuzcu, J.-P. Wang,
and S. S. Sapatnekar, “In-memory processing on the spintronic cram:
From hardware design to application mapping,” IEEE Transactions on
Computers, vol. 68, no. 8, pp. 1159–1173, 2018.

[95] M. Zabihi, A. K. Sharma, M. G. Mankalale, Z. I. Chowdhury, Z. Zhao,
S. Resch, U. R. Karpuzcu, J.-P. Wang, and S. S. Sapatnekar, “Analyzing
the effects of interconnect parasitics in the stt cram in-memory compu-
tational platform,” IEEE Journal on Exploratory Solid-State Computa-
tional Devices and Circuits, vol. 6, no. 1, pp. 71–79, 2020.

[96] M. Zabihi, Z. Zhao, D. Mahendra, Z. I. Chowdhury, S. Resch, T. Peter-
son, U. R. Karpuzcu, J.-P. Wang, and S. S. Sapatnekar, “Using spin-hall
mtjs to build an energy-efficient in-memory computation platform,” in
20th International Symposium on Quality Electronic Design (ISQED).
IEEE, 2019, pp. 52–57.

[97] J. Zhang and N. Verma, “An in-memory-computing dnn achieving 700
tops/w and 6 tops/mm 2 in 130-nm cmos,” IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, vol. 9, no. 2, pp. 358–366,
2019.

414

