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Abstract

This work presents a Steiner tree construction pro-
cedure, MVERT, to meet speci�ed sink arrival time
constraints. It is shown that the optimal tree requires
the use of non-Hanan points. The procedure works in
two phases: a minimum-delay Steiner tree is �rst con-
structed, after which the tree is iteratively modi�ed,
using an e�cient binary search method, to reduce its
length. Experimental results show that this procedure
works particularly well for technologies where the in-
terconnect resistance dominates, and signi�cant cost
savings are generated.

1 Introduction

In recent years, interconnect delay has become an
increasingly critical factor in VLSI systems. The in-
creased e�ect of interconnect resistance has played a
signi�cant role as feature sizes have entered the deep
submicron range and will become more dramatic in
the future. To deal with this trend, many meth-
ods have been proposed to reduce interconnect delay,
among which performance-driven routing has been an
active area of research. Typically, the objective of
a performance-driven routing algorithm has been to
minimize the source-to-sink delay using various mod-
els of abstraction. Several types of problems have
been tackled by researchers in the past, including
minimizing the average source-to-sink delay over all
sinks, minimizing the maximum source-to-sink delay,
and minimizing a weighted sum of the delay from the
source to some critical sink(s).

In this paper, we develop a performance-driven
routing formulation whose objective is to meet a spec-

i�ed delay constraint at each sink. The approach can
also be generalized to solve the problem of minimizing
the maximum delay over all sink nodes. It is shown
here that the use of Steiner points o� the Hanan grid
[5] can reduce the cost of the Steiner tree.

1.1 Previous work

Early work solved the problem of building
performance-driven routing topologies by solving the
minimum-length Steiner tree routing problem. This
was based on the observation that in the domain where
interconnect behaves purely as a capacitance, mini-
mizing the tree length minimizes the source-sink delay.
After Hwang's work [9] that proved that the ratio of
the cost of a rectilinear minimum spanning tree (MST)
to that of a minimum cost (length) rectilinear Steiner
tree (RST) is within a factor of 3/2, many heuristic
algorithms [6, 7, 8, 10, 13] used the MST as a starting
point to derive the RST. Kahng et al. [11] developed
the iterated 1-Steiner heuristic method, which intro-
duces only one Steiner point into a net at one time
such that the current minimum spanning tree cost is
minimized. A good overview of these techniques is
provided in [12].

However, in the deep submicron range, the inter-
connect capacitance and resistance have become com-
parable to or dominate the gate capacitance and the
output driver resistance and cannot be ignored dur-
ing delay calculation any more. Therefore, it is ap-
parent that for leading-edge technologies, minimum
net lengths do not always yield minimum delay. Thus
performance-driven methods are introduced to mini-
mize the source-to-sink delay. The A-tree algorithm
[4] and SERT [3] use the Elmore delay model, with a
justi�cation of its �delity in [1] being provided as a ba-
sis for doing so. SERT is based on a greedy algorithm
that optimizes the Elmore delay directly as the routing
tree is constructed. Signi�cant improvements over ex-
isting performance-driven routing tree constructions
were demonstrated in this work. However, the area
overhead of SERT is discouragingly large and for some



technologies, it tends to generate star-like topolo-
gies due to its greedy nature. Lillis [14] proposed
a method that is a departure from the constructive
greedy heuristics. The method builds routing topolo-
gies induced by sink permutations and then maps the
topologies to a routing layout. The P � TreeAT al-
gorithm in this paper derives an area/delay tradeo�
under the Elmore delay model and incorporates simul-
taneous wire-sizing by using dynamic programming.

1.2 Motivation

All of the above techniques have a common bottom-
line: they are based on Hanan's theory [5], which
showed that if one were to draw horizontal and verti-
cal grid lines through the source and sinks of the given
signal net, there would be an minimum-length recti-
linear Steiner tree whose Steiner points are all chosen
from among the intersection points in the resulting
grid. Thus the possible Steiner points can be chosen
from a �nite set, namely, the so-called Hanan grid.
In [3], it was proved that only points on the Hanan
grid need be considered while solving the problem of
minimizing the weighted sum of critical sink delays.
For the minmax problem of minimizing the maximum
sink delay, it was shown in [2] that it is possible to
build a better solution by considering points o� the
Hanan grid, but it was stated that such situations are
uncommon and can be ignored. In this work we show
that it is possible in cases to arrive at signi�cantly bet-
ter solutions by considering non-Hanan points during
Steiner tree construction for two problems:
(a) the minmax problem, and
(b) the problem of achieving a speci�ed delay at each
sink node.

Example 1: We illustrate a simple example showing
that a non-Hanan node is required to minimize the
maximum source-sink delay during tree construction.
We caution the reader not to be unduly swayed by
the modest performance improvements in this simple
example as our experimental results will show that it
is possible to achieve more signi�cant improvements
on other larger examples.

Consider a net with a source at (0,0) and two sinks,
a and b, at (3,0) and (1,4), respectively. We assume,
for simplicity, a unit resistance and a unit capacitance
per unit length. The driver has a source resistance of
6, and the sinks a and b have load capacitances of 1
unit and 4.5 units, respectively. The delays are cal-
culated here under the Elmore delay model, described
in Section 2.1. The variation of the delay at each sink
as the Steiner point x is moved from (0,0) to (1,0) is

shown in Figure 11. The maximum sink delay for the
tree is minimized at x = 0.33.

This example illustrates that in real design prob-
lems, the timing requirements at di�erent sinks are
often contradictory and it is necessary to arrive at a
solution where all of the sinks are considered together.
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Figure 1: Illustrating the e�ects of non-Hanan Steiner
points

For the problem of achieving a speci�ed timing con-
straint Tspec, it is also easy to show that the optimal
solution may lie at a non-Hanan point. Any procedure
that restricts of Steiner points to Hanan points alone
would lead to a larger than optimal tree cost. There-
fore, for the problems of achieving a set of speci�ed
sink delays, and of minimizing the maximum source-
sink delay, the best Steiner points do not necessarily
lie on the Hanan grid.

However, the routing problem is clearly more dif-
�cult when the number of Steiner points becomes in-
�nite, and the search space becomes extremely large.
This paper utilizes the properties of the delay function
to arrive at a simple and e�cient method to overcome
this challenge.

2 Preliminaries

2.1 Delay model

The delay in this work is modeled using Elmore
delays [15], which are brie
y described here. Given
a routing tree T (N) rooted at the source n0, let ev
denote the edge from node v to its parent in T (N).
The resistance and capacitance of edge ev are denoted
by rev and cev , respectively. Let Tv denote the sub-
tree of T rooted at v, and Cd;v denote the down-
stream tree capacitance of Tv, which is the sum of
sink and edge capacitances in Tv. The Elmore delay
from the predecessor of node v along edge ev is equal
to rev(cev=2 + Cd;v). This procedure can be used to
recursively compute the delays. Given that the root
node is driven by a driver of resistance rd, the Elmore

1The logic in [1] can be extended to show that a Steiner point

to the right of (1,0) is suboptimal.



delay tED(ni) at sink ni is calculated as:

tED(ni) = rdCno + rev
X

all fanouts

(
cev
2

+ Cd;v) (1)

2.2 The SERT method

In this section, we provide a brief overview of the
SERT (Steiner Elmore Routing Tree) algorithm in
[3]. Before proceeding further, we de�ne the follow-
ing terms:

De�nition [3]: A segment of a tree T is de�ned as a
contiguous set of straight edges in T that are either
all horizontal or all vertical. A maximal segment is a
segment not properly contained in any other segment.
The root of a segment is the extremal node of the
segment that is closer to the root n0 of the tree.

The essential idea of the SERT method is based on
building a greedy Steiner tree using an approach sim-
ilar to Prim's algorithm. Starting with a trivial tree
consisting of only the source n0, the tree is iteratively
built by adding a pin ni in the tree and a sink nj
outside the tree so that adding edge (ni, nj) yields a
tree with the minimum Elmore delay. The iterations
continue until all sinks have been included in the tree.
The algorithm is predicated on two results:

(a) Selecting ni to be downstream of the closest con-
nection (CC) from nj to the partial tree will yield
a larger delay than connecting it to the CC.

(b) For a maximal segment, if x is the distance from
its rootm0 to the point ni in the partial tree, then
it was shown that the Elmore delay to any sink
is a concave function of x when the connection
point ni lies between m0 and CC, both inclusive.
Therefore, any weighted sum of the Elmore delays
to a �xed set of critical sinks is a concave function
of x and is minimized by setting ni to be either
the root m0 or CC.

These observations reduce the search space consid-
erably as m0 and CC are the only candidate connec-
tion points for a segment in each iteration. As both
m0 and CC lie on the Hanan grid, all Steiner points
in the SERT tree must necessarily lie on the Hanan
grid.

Note, however, that the concavity logic does not
extend to the use of minmax formulations or formula-
tions where the delay at each sink is a constraint. This
is due to the fact that while the positive weighted sum
of concave functions is concave, the maximum of con-
cave functions is not concave, as seen from Figure 1.

3 The MVERT algorithm

3.1 Problem formulation

The procedure described in this work is referred to
as the Maximum delay Violation Elmore Routing Tree
(MVERT) algorithm. A basic concept that is used in
this work is the idea of a delay violation, which is
de�ned as the amount by which the delay d(ni) at
sink i violates its speci�cation, i.e.,

V iolation(i) = d(ni)� Tspec(i) (2)

Clearly, a positive value of the violation implies that
the constraints could not be met. A large negative
value of the violation, on the other hand, indicates
the possibility of overdesign, and it is possible in some
cases to reduce the cost of the Steiner tree by bringing
the violation value to be closer to zero. This idea mo-
tivates the formal statement of the MVERT problem
as follows:
MVERT Problem: Given a signal net N = fn0, n1,
..., nkg with source n0, construct a Steiner routing
tree T (N) such that the total length of the net is min-
imized while the delay violation at each sink node is
less than 0, i.e.,

minimize
P
all segments k

wklk (3)

subject to d(ni) � Tspec(i) for i = 1; 2:::n:

3.2 Properties of the formulation

The MVERT problem formulation is quite general
in nature. If the value of Tspec at each node is spec-
i�ed to be zero, then the problem is identical to the
maximum source-sink delay problem. The user may
specify di�erent delay speci�cations at di�erent sinks
as desired.
Theorem 1: Consider any Steiner tree T connecting a
source n0 to sinks n1, n2, ..., nm. Let the node nj be
connected to the tree at a point nk along a maximal
segment s of the tree, where nk is possibly a Steiner
point. Let T 0 be the subtree rooted at nj , let CC be

a closest connection connecting nj to the tree TnT 0

along maximal segment s0 (with s0 being possibly the
same as s), and let m0 be the root of s

0. Let T1 be the
tree formed by connecting nj to TnT 0 at CC. Then

(a) The tree obtained by connecting nj to TnT 0 at

a point downstream of CC on segment s0 results in a
tree with a larger length and larger delays at each sink
than T1.
(b) If x is the distance from m0 to the point ni in the
partial tree, then the Elmore delay to any sink is a
concave function of x when the connection point ni
lies between m0 and CC, both inclusive.
Proof: Parallel to that of a similar result in [3].



3.3 Tree construction procedure

As mentioned earlier, the set of candidate Steiner
points is in�nite, and it is necessary to �nd an e�cient
method to �nd the best Steiner points. The MVERT
algorithm is divided into two phases:
(a) The initial tree construction phase, where an ini-
tial tree is heuristically built to minimize delay.
(b) The cost-improvement phase, where the tree is it-
eratively re�ned to reduce its cost while ensuring that
it meets all timing speci�cations.

3.3.1 Phase 1: Initial tree construction

The �rst step in tree construction is similar to the
ERT construction procedure in [3], with the di�erence
that we minimize the maximum delay violation rather
than the maximum delay. This procedure considers
only candidate points on the Hanan grid.

3.3.2 Phase 2: Cost improvement

The initial tree constructed above attempts to mini-
mize the maximum delay violation at any leaf node.
Since the criticality of a sink is dependent on the tim-
ing constraints and the positions of the other sinks,
this provides a natural technique for automatically de-
tecting critical sinks and providing more importance
to them in the tree construction process.

However, the tree so constructed may be conserva-
tive as its objective is to minimize the violation, rather
than to simply ensure that the constraints are never
violated2. Moreover, the Phase 1 procedure considers
only Hanan grid points as candidate Steiner points.
Therefore, it attempts to connect each point either to
the closest connection (CC) in the partial tree, or to
the root node m0 of a maximal segment. If the delay
violation associated with a CC connection were larger
than the delay associated with a connection to m0,
then the algorithm would make a connection to m0.
However, due to the interactions between paths the
MVERT solution may lie at a di�erent (and possibly
non-Hanan) point, and the connection to m0 results is
a larger net length than is necessary. Therefore, we ex-
amine the tree constructed in Phase 1 and move node
connections from the root of a segment towards CC in
a bid to reduce the tree length, as shown in Figure 2,
while ensuring that all timing constraints are satis�ed.

Thus in Phase 2, we re�ne the tree built in Phase
1 to reduce its length while ensuring that the timing

2The idea is that the minimum-length Steiner tree minimizes
tree length and the minimum-delay Steiner tree minimizes the
delay; the middle ground between these extremes would solve

the MVERT problem.
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Figure 2: Creating a non-Hanan Steiner point that
meets timing speci�cations

constraints are satis�ed. The pseudocode for this pro-
cedure is shown below:

Input: Routing tree T1 = (V;E) from Phase 1

Output: An optimal routing tree T2
if (T1 did not satisfy constraints) OR

(all sinks were connected to CC in T1)
T2 = T1; exit

Sort sinks v1,v2, v3... that are not

connected to a CC in T1 in descending

order of the distance to n0
for (each such sink vi ) do Improve Cost(vi)

Output resulting routing tree T2 = (V;E)

If the original tree T1 did not satisfy the given tim-
ing constraints, then moving the Steiner points to-
wards the CC for a sink node will not help meet the
constraints. Also, if T1 only has CC connections, then
no further improvements are possible in this phase. In
either case, the output of this phase will be the tree
T1. However, if neither of the two conditions hold,
then the Improve Cost routine is invoked to reduce
the cost of the tree T1 as follows:

Function Improve Cost(vi)
Find path p from n0 to vi Q = fu1; u2; � � � ; ukg,

where ui is a sink connected to a node

on the path between n0 and vi.
For each (ui connected to m0 6= CC) do

Remove connection of ui to m0, while keeping

the connection of ui to its

downstream nodes.

Define T 0 = Tnf(ei)(Tui)g, where ei
is the edge that connects ui to n0,
Tui is the downstream tree of ui in T.

Find CC for ui in T'

Reconnect ei to T 0 at the nearest point to

CC where constraints are satisfied.

The idea is illustrated in Example 1 for the constraint
of 98.8 units, where we see that a connection to (y,0)
is preferable to a connection to (0.33,0).



3.3.3 Finding the optimal reconnection point

Consider the set of constraints on the routing tree
from Equation (3). Rewriting them in the form
d(ni)�Tspec(i) � 0 for all sinks i, we see that the maxi-
mum violation must always be nonpositive. Since each
of the d(ni)'s is a concave function of the connection
point x by Theorem 1, and since any concave function
shifted by a constant is a concave function, this implies
that we must �nd a reconnection point x such that the
maximum of the set of concave functions is nonposi-
tive. This is pictorially shown in Figure 3 below for
a net with four sinks, v, w, y, and z; the maximum
violation function is shown by the darkened line. Note
that the graph shows that sink z is never critical in
this case, for any value of x. The delay violation at
each sink as a function of x is a concave function and
the objective is to �nd the value of x that is closest to
CC (corresponding to a minimal increase in the net
length) that satis�es all constraints. In Figure 3, this
point is found to be x�. This point would, in general,
be a non-Hanan point.
Corollary 2: The search space for the reconnection
point in the pseudocode in Section 3.3.2 can be re-
stricted to the interval between n0 and a closest con-
nection point, CC.
Proof: This follows directly from Theorem 1.

Delay violation

x

Node z

Node v

Node y

Node w

CC0 p q x*

Figure 3: Finding the optimal value of x that satis�es
the timing constraints

In searching for x�, we observe that it is possible to
perform a binary search on the value of x from 0 to
CC, while taking advantage of the fact that the value
on each concave segment is minimized at its intersec-
tion with the concave segment on either side (if such a
segment exists), or at 0 or CC otherwise. In Figure 3,
this translates to the fact that for the minmax prob-
lem, the only candidate solutions are 0, p, q and CC.
This permits a reduction of the search space from the

Table 1: Results on technology 1 (IC)

Circuit Cost
After After Percentage

Phase 1 Phase 2 Improvement

Net 1 IC5 883 727 21.4%
Net 2 IC5 1049 954 10.0%
Net 3 IC5 820 758 8.2%
Net 4 IC5 936 813 15.1%
Net 5 IC5 645 563 14.6%
Net 6 IC5 745 525 41.9%

in�nity of points between 0 and CC.
For the problem of meeting timing speci�cations at

each sink, several pruning strategies are possible for
the binary search, and just one is described here due to
space constraints. If the value of max[d(ni)�Tspec(i)]
at each end of the concave segment is positive, then
the search would �nd the end point of the concave seg-
ment away from CC and repeat this procedure on the
next concave segment since each point on the concave
segment must necessarily have a positive violation.

4 Experimental results

The MVERT algorithm was applied to nets in two
technologies: an IC technology and an MCM technol-
ogy. Design parameters for each technology are taken
from [3]. The results are shown in Tables 1 and 2,
respectively. The CPU time required for the compu-
tations was insigni�cant (under a second).

It is seen that in each case, for the nets shown and
the timing constraints chosen, signi�cant reductions
in the cost function are permitted by this procedure.
Overall, it is seen that better results are achievable for
technology 2 than for technology 1. The explanation
for this stems from the fact that the driver resistance
is lower in technology 2, due to which the resistive
e�ects of interconnect are more pronounced. Under
such a situation, a SERT-like algorithm (or Phase 1
of our procedure) is more likely to generate star-like
connections that connect more nodes to the root node.
Since many of these connections may, under certain
timing constraints, be overkill, in Phase 2 these con-
nections are moved to be closer to CC. This has the
added bene�t of reducing the routing congestion near
the root node.

5 Conclusion

A new technique for �nding a minimum cost Steiner
tree subject to timing speci�cations at the sink nodes



Table 2: Results on technology 2 (MCM)

Circuit Cost
After After Percentage

Phase 1 Phase 2 Improvement

Net 1 MCM5 670 633 5.8%
Net 2 MCM5 659 600 9.8%
Net 3 MCM5 733 649 12.9%
Net 4 MCM5 734 425 72.7%
Net 5 MCM5 696 568 22.5%
Net 6 MCM5 760 726 4.7%
Net 7 MCM5 792 654 21.1%
Net 8 MCM5 812 676 20.1%
Net 9 MCM5 811 763 6.3%
Net 10 MCM5 669 605 10.6%
Net 11 MCM5 878 595 47.6%
Net 12 MCM5 819 731 12.0%
Net 13 MCM5 898 693 29.6%
Net 14 MCM5 619 513 20.7%
Net 15 MCM5 760 666 14.1%
Net 16 MCM5 794 685 15.9%

is presented. It is shown that the use of non-Hanan
Steiner nodes can provide noticeable bene�ts in im-
proving the cost of the tree. If the timing speci�ca-
tions at the sinks are very loose, a minimum length
Steiner tree will be the correct solution. If the timing
speci�cations are very tight, a minimum-delay Steiner
tree is desirable. It is in between these two extremes
that the MVERT proposed here paper is useful. In
real problems such situations are likely to occur of-
ten when routing trees have to be built to conform to
timing budgets. This work also shows utility of consid-
ering non-Hanan points as candidate Steiner points.
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