
(sizing)
Area Area

(buffering)
Improve-
ment (%)

Run 
Time (min)

4-bit
ALU

Circuit No. Trans Clock

25ns 12.1 12.0 15 

20ns 13.7 13.2 22

15ns 22.5 20.2 75

14ns 29.1 25.1 89

8001C_unit

485 10ns 1.46 1.40 710

10

19

20

22

Table 1. Experimental Results

into the template window. A fast version of the TILOS
algorithm is then run on the window. The corresponding
original circuit cost is then computed from the size of the
transistors in the template window and the transistor mul-
tiplier factors. The con�guration with the lowest cost is
identi�ed. If this con�guration yields a total circuit cost
lower than that of the original, the con�guration is chosen
for bu�er insertion. The sizes from the template including
the size of the bu�er are then transferred into the original
circuit.

5. EXPERIMENTAL RESULTS

Our algorithm is implemented in C and contains an embed-
ded Pearl static timing analyzer modi�ed to handle incre-
mental updates. The algorithm has been tested on both
combinational circuits and sequential circuits with trans-
parent latches. Results obtained by applying our bu�er
insertion on two industrial test cases are shown in Table 1.
The improvement column of Table 1 represents the relative
reduction in size increase to meet timing as compared to
the circuit with minimum sized transistors. Both designs
in Table 1 use transparent latches and the resulting opti-
mized circuits make heavy use of cycle stealing to lower
cost(power). The layout of both circuits are implemented
using a transistor level place and route tool (LAS). The
netlist and complete parasitics for the optimization of each
test cases are extracted from this physical layout of the cir-
cuit.
The �rst test case C unit is a control block in a micro-

processor based design. The second test case 4-bit-ALU is
a small arithmetic unit. Five bu�ers in C unit and 3 bu�ers
in 4-bit-ALU were inserted by our algorithm. Table 1 com-
pares the active area (total of all transistor gate areas) using
sizing alone with the active area achieved using our concur-
rent sizing and bu�er insertion algorithm. Run times are
on a Sparc 5 computer with 32MEG of main memory.
Table 1 shows that improvements of 10% to 20% can be

obtained and that the improvement increases as the timing
constraints become tighter. The existing bu�ers in the cir-
cuit were not removed and both circuits had bu�ers before
optimization. Experiments are being performed to investi-
gate how much further power and area improvements can
be achieved by removing all the bu�ers before performing
optimization.

6. CONCLUSION

A method for concurrent sizing and bu�er insertion based
on area delay cost curves is proposed. The bu�er insertion
algorithm is incorporated into the TILOS sizing loop At
each iteration the method examines potential bu�er inser-
tion locations along the critical path. For each promising
bu�er position, the cost of the bu�ered circuit for the same

delay values of the current TILOS iteration are computed.
The decision where to insert bu�ers is based on these costs.
Through bu�er insertion the feasible reason of the cost-
delay curve is extended to encompass the envelop of area
delay curves for all bu�er positions.

REFERENCES

[1] J. Fishburn and A. Dunlop, \TILOS: A Posynomial
programming approach to transistor sizing," Proceed-
ings of the IEEE International Conference on CAD
1985, pp. 326-328.

[2] S. Sapatnekar, V.B. Rao, P. Vaidya, and S.M. Kang,
\An exact solution to the transistor sizing problem
for CMOS circuits using convex optimization," IEEE
Transactions on Computer-Aided Design, vol. 12, Nov
1993, pp. 1621-1634.

[3] K.J. Singh and A. Sangiovanni-Vincentelli, \A heuris-
tic algorithm for the fanout problem," Proceedings of
the IEEE Design Automation Conference, 1988, pp.
357-360.

[4] C.L. Berman, J.L. Carter, and K.L. Day, \The fanout
problem: From theory to practice," Advanced Research
in VLSI: Proceedings of the 1989 Decennial Caltech
Conference, 1989, pp. 69-99.

[5] J. Cherry, \Static Timing Analyzer-Pearl," 25th IEEE
Design Automation Conference, 1988.

[6] P. Winston, \Arti�cial Intelligence 2nd Edition,"
Addison-Wesley Publishing Company 1984.



estimated from the speedup for the bu�ered and unbu�ered
branches, and the sensitivities and slacks for each of the
paths using the following formulas:

�T (Sunbuffered) =
RG(Ctotal � interconnectCap(Sunbuffered

�Cbuffer �
P

Gate caps(Sunbuffered))

�T (Sbuffered) =
RG(Ctotal � interconnectCap(Sunbuffered)

�PGate caps(Sunbuffered))
�buffer delay

�Cunbuffered =
P

i
(�T (Sunbuffered)� slacki)=sensitivityi)

+CostOf(buffer)

�Cbuffered =
P

j
(�T (Sbuffered) � slackj)=sensitivityj)

�C(Sunbuffered; Sbuffered) = �Cunbuffered +�Cbuffered

It is assumed that the �rst inverter in the bu�er
does not get upsized much so Cbuffer is that of
a minimum sized inverter. Also the bu�er is as-
sumed to be sized having the same driving capability
as that of the original gate. The values of the in-
terconnect capacitances interconnectCap(Sbuffered) and
interconnectCap(Sunbuffered) are obtained using routing
estimates and the original layout parasitics. These routing
estimates can be determined from information in the layout
model described in section 3.1..
Given a net N connecting n objects and occupying a

bounding box of length L and width W , the routing ca-
pacitance of N is estimated by:

Capacitance = k(L+W )
p
n with k = constant

Let n0; n1 and n2 be the number of objects connected
to respectively the original, unbu�ered and bu�ered fanout
nets. Also let (L0;W0); (L1;W1) and (L2;W2) be the
length and width of respectively the original, unbu�ered
and bu�ered nets. The values of L0; L1; L2 and W1;W2;W3

are obtained from the layout model. The layout model
maintains and manages the physical location of all transis-
tors in the layout. Except for a small perturbation during
bu�er insertion these locations are the same as in the orig-
inal layout. Applying the above formula for the parasitic
capacitance to the unbu�ered, bu�ered and original case
yields.

interconnectCap(Sunbuffered) = k(L1 +W1)
p
n
1

interconnectCap(Sbuffered) = k(L2 +W2)
p
n
2

where k = Ctotal=(L0 +W0)
p
n
0

4.2. Template Window Acceleration Method

For a given potential bu�er insertion location a fast but
accurate mechanism is needed for determining whether the
proper conditions for bu�er insertion are met. The mech-
anism must also return the proper sizes for transistors af-
ter bu�er insertion. These are sizes that transistors in the
bu�ered circuit must have so that the delay of the circuit
after bu�er insertion is that of the original circuit. This op-
eration puts the circuit on the \sizing and bu�ering" curve
at delay in Figure 1.

TO1

TO2

TO3

TI T I

TO1

TO2

TO3

mapping

cost, sizes

(a) (b)

Original Circuit Template

Figure 5. Cost Analysis using a Template Window

To accomplish this e�ciently, a model of the bu�ered
circuit in the vicinity of the bu�ered node is built. To be
accurate the template must extend to encompass the en-
tire circuit. In practice a small local neighborhood of the
bu�ered node is modeled using a �xed1 template similar to
the one shown in Figure 5 (b). A bu�ered version of the
original circuit of Figure 5 (a) is modeled by the template
of Figure 5 (b).
The timing boundary conditions of Figure 5 (a) are im-

posed on the template of Figure 5 (b). This is achieved
through the use of latches on the periphery of the tem-
plate. The timing on the clock of the template latches cor-
respond to those of the corresponding ports of Figure 5 (a).
The latches are not present in the original circuit and are
placed in the template as a mechanism to enforce timing
constraints. After sizing, the template window will have
the same boundary timing conditions as the circuit of Fig-
ure 5 (a).

4.2.1. Increasing Template Accuracy

Although inverters are used to model the gates in Fig-
ure 5 (a), due consideration is given to the number of tran-
sistors in series in each of the complex gates. To account for
the fact that the inverter has only one pullup or pulldown
whereas the corresponding gate may have several transis-
tors in series, the inverter transistors are given a multiplier
factor for proper calculation of the �nal cost.
The template window usually stops at the �rst level of

logic after the bu�ered node. Increasing the template win-
dow to include more levels of logic downstream of the fanout
node allows the algorithm to produce a more realistic re-
sult. Stopping the template window after the �rst level of
logic assumes that only those gates in this �rst level of logic
are sized resulting in a overly pessimistic assumption. The
pessimistic assumption causes the cost-delay curve of the
template window to rise more sharply than necessary. The
cost-delay curve of the template is manipulated to more ac-
curately re
ect the real circuit thus making it appear as
if the template actually encompassed several levels of logic
after the fanout node. By adding capacitance at the output
of the fanout inverters and appropriately adding delay to
the latch clocks, the cost-delay curve of the template can
be made to rise more slowly. At the output of each fanout
inverter in the template, an additional capacitor is added
and the latch clock signal is delayed appropriately. The ca-
pacitor value is computed based on the number of levels of
logic to the nearest latch, the capacitance on each of the
nodes on that path and the type of gates on the path.

4.2.2. Mapping Con�gurations to the Template Window

Each con�guration proposed by the bu�er location gen-
erator for each of the nodes in the critical path is plugged

1The number of fanouts in the template is not �xed



This involves �nding the overall cost of the circuit with the
bu�er inserted if it were required to meet the timing of the
unbu�ered circuit at the current TILOS iteration. One way
to achieve this is to run the TILOS algorithm from the start
on the bu�ered circuit. To avoid the enormous computa-
tional burden of this, TILOS is run on a small local neigh-
borhood of the inserted bu�er as described in Section 4.2..
First the local neighborhood of the circuit is copied into
the template window. TILOS is then run on the template
window. From the results of this local TILOS run the cost
of the overall circuit is extrapolated. The bu�er insertion
part of the overall algorithm is summarized below.

For each node on critical path
Run bu�er location generator function on node
Add all good locations into candidate location set Sc

For each con�guration in Sc
Map con�guration onto template window
Run quick sizing in template window
Identify best con�guration BestC from template runs
If BestC lowers power cost for current timing
Add a bu�er and update sizes

Else go to sizing

4.1. Bu�er Location Generation

The purpose of the bu�er location generator is to produce
bu�er insertion locations that will be fed into the template
window. Given a node N on the critical path the bu�er
location generator identi�es bu�er locations that have the
potential of reducing circuit cost for the same circuit delay.
Each con�guration splits the fanouts of N into a bu�ered
set Sbuffered and an unbu�ered set Sunbuffered. For a node
N with n fanouts there are 2n possible con�gurations, each
one corresponding to a bu�er insertion location. Because
of the large number of con�gurations, enumerating all pos-
sibilities and rejecting the unsuitable ones is not computa-
tionally practical. A branch and bound [6] like strategy is
developed to reduce the number of con�gurations that need
to be explored. When considering a candidate location the
bu�er location, generator takes into account both circuit
delay and routing capacitance. The routing capacitance
translates into cost which is minimized by our algorithm.
The gates in the fanout set of a node N can be categorized

into four distinct classes. Each class relates to the criticality
of the corresponding path. The four classes of paths are
critical path, violating path, near-violating path, and non-
violating path. The de�nitions of the critical and violating
paths are in section 2. A path which has the delay slightly
smaller than the worst path at the current TILOS iteration
is de�ned as a near-violating path. Thus it is possible for the
near-violating path to become a violating path if a bu�er
is inserted on the path. A path which in all likelihood will
never become violating even if a bu�er is inserted along the
path is de�ned as a non-violating path. Figure 3 shows
the four categories of paths for the fanouts of gate G. By
categorizing the paths in this fashion, the good candidate
bu�er insertion locations become more apparent.
To classify paths into the four categories shown in Fig-

ure 3 the slack values on each of the fanout gates of G must
be computed prior to bu�er location generation. A back-
ward PERT-like algorithm from the primary outputs to the
primary inputs is used to compute the slack at each of the
fanout gates. Using the slack at each fanout, a path can be
categorized into the four categories described earlier.
Figure 3 shows four bu�er locations (B1;B2;B3 and B4)

that become apparent after classi�cation of the fanouts of

G

B 1

B 2

B 3

B 4

critical

violating

near-violating

non-violating

Figure 3. Potential Bu�er Locations in Fanouts

Put all fanouts in Sbuffered
Sconfigurations = ;
ExplorePossibility(Sbuffered ; ;;�C(Sbuffered; ;))
return(Sconfigurations)

ExplorePossibility(Sbuffered ; Sunbuffered; current�C)
If current�C > 0 (or some minimum amount)

Sconfigurations = Sconfigurations+
(Sbuffered; Sunbuffered)

For each fanout Fi in Sbuffered
new�C = �C(Sbuffered � Fi; Sunbuffered + Fi)
if (current�C < new�C)

ExplorePossibility(Sbuffered � Fi;
Sunbuffered + Fi;
new�C)

Figure 4. Bu�er Location Generation Algorithm

gate G. Position B4 is usually safe in that since no bu�er
is inserted in any of the violating paths, the violating paths
are almost always sped up. However the capacitance of only
the non-violating paths is o� loaded from the critical path.
By moving the bu�er to positions B3 and B2 additional
capacitance is o�oaded from the critical path. However
the additional delay introduced by the bu�er may adversely
a�ect the violating and near-violating paths. Position B1

is useful only if the increased drive capability of the bu�er
over gate G o�sets the delay introduced by the bu�er.
The above-mentioned classi�cation of fanout gates and

bu�er positions avoids considering obviously poor bu�er lo-
cation choices such as bu�ering critical and non-violating
paths but not violating and near-violating paths. The
branch and bound algorithm described below is inspired
from the above observations. Given a bu�er insertion
location the algorithm uses some of the estimates intro-
duces in sections 2.2.1. and 2.2.2. to estimate the cost
di�erence �C(bufferedSet; unbufferedSet) between the
bu�ered and unbu�ered circuit for the current TILOS it-
eration delay. The algorithm begins by placing all the
fanouts in the bu�ered set Sbuffered. Fanouts are then
moved to the unbu�ered set Sunbuffered only if this im-
proves the cost �C. The bu�er location generation algo-
rithm is shown in Figure 4. The algorithm performs recur-
sively. After moving a fanout to the unbu�ered set pro-
cedure ExplorePossibility calls itself recursively to further
explore the rami�cations of that move.
The cost function �C for a given con�guration can be



2.2.2. Type B Bu�er Insertion

Figure 2(b) illustrates the second kind of bu�er insertion
called Type B bu�er insertion. Here the gate GB is driving
a number of fanout loads, some on violating paths and some
on non-violating paths. In this case it is bene�cial to add a
bu�er on the non-violating paths. This isolates the violating
paths from the slowdown due to the load Ck of non-violating
fanouts. Using a simple RC model the speedup of the vio-
lating path in Figure 2(b) after bu�er insertion is �T j

B =
RB � (Cj + Ck) � R0

B � (c+ Cj). The speedup for the non-
violating path is �T k

B = RB �(Cj+Ck)�R0

B �(c+Cj)�r�Ck.
An approximate estimate of the cost(power) reduction

due to bu�er insertion can also be derived for type B bu�er
insertion. This estimate is used to quickly identify promis-
ing type B bu�er locations. A more accurate method de-
scribed later in this paper is then applied on these promising
locations to get a good estimate of the actual cost reduction.

3. OVERALL ALGORITHM

The bu�er insertion algorithm is incorporated into the TI-
LOS algorithm main loop. TILOS starts with transistors in
their minimum sized con�guration. With minimum transis-
tor size the circuit delay is normally larger than the clock
speci�cation and latches in the circuit give rise to timing vi-
olations. In order to verify and update timing information,
the static timing analysis tool Pearl [5] is chosen as our
main timing engine. The static timing analyzer is modi�ed
to e�ciently handle incremental timing updates. When a
circuit element is changed, the e�ects of timing downstream
of its cone of in
uence are incrementally updated. Because
of convergent fanin and latches, the e�ects of a change usu-
ally die out after a few levels of logic.
Also, an e�cient priority queue heap data structure for

all timing constraints is maintained in our timing analy-
sis engine. The top of the heap contains the most violated
constraint. After a change to the circuit, the timing is incre-
mentally recomputed, all a�ected constraints are examined
and the heap is adjusted with new most violating constraint
at the top of the heap. This entire operation is very e�-
cient and a number of complete updates per second can be
performed even for circuits of several thousand transistors.
To perform bu�er insertion the TILOS main loop is aug-

mented to �rst sweep through the critical path for bu�er
insertion. Bu�er positions for which cost can be reduced
while maintaining the timing of the current iteration on all
circuit paths (same violations and slacks on all latch in-
puts) are considered and the best such location is identi�ed.
If such a location exists then the cost-delay curve for this
bu�er position is below the cost-delay curve of sizing alone
for the current delay (see Figure 1). The best bu�er location
will have a low cost and a small cost slope for the current
circuit delay. As mentioned earlier it is assumed (and is
generally the case) that the bu�er curve will remain below
the sizing curve for smaller circuit delays. Without this as-
sumption it could become necessary to remove bu�ers as
the circuit speed is increased during optimization.
If a suitable bu�er position is found, the bu�er is inserted,

the neighborhood of the bu�er is resized to maintain the
same circuit delay and sizing is skipped for the current TI-
LOS iteration. Otherwise the critical path is scanned again
to determine the best transistor to size according to the
TILOS algorithm. After the circuit has been modi�ed ei-
ther through bu�er insertion or sizing, timing on all paths
is incrementally recomputed and the constraint heap read-
justed.

An overview of the overall algorithm is given below. De-
tails of how the bu�er insertion position is found are given
in the next section.

Downsize transistors to minimum size or cost
While (slack(WorstConstraint) < 0)
For each node in critical path
See if a bu�er can help reduce cost

If there is a good bu�er position
Insert bu�er at best position
Resize bu�er neighborhood for same delay

else
For each transistor on critical path
Find improvement by sizing transistor

Increase size of best transistor
Update timing and critical path information

3.1. Layout Model

In most existing circuit optimization methodologies that
take into account layout parasitics, optimization and phys-
ical layout generation operate as two loosely coupled al-
ternating steps. Optimization is performed after an initial
estimate of placement is known. The placement is recom-
puted after optimization and the loop is repeated until all
constraints are met. For high performance design it is ben-
e�cial to couple the two steps more closely so that updated
layout information is available at all times to the optimizer.
In our approach a model for layout is maintained and kept
updated as the optimization progresses. Through the use
of this model the optimizer capitalizes on available layout
area and steers the optimization process to preferentially
upsize those devices as well as insert bu�ers with the least
impact on area. Since the circuit with the smallest active
area is not necessarily the one with the smallest layout area,
the optimizer under user control can be adjusted to favor
a reduction in active area, layout area, or a combination of
both.
During sensitivity calculation the cost of increasing a

transistor includes the physical area. To estimate the physi-
cal area increase due to a transistor size increase the x and y
coordinates of transistors with their widths and lengths are
stored in a �le called layout model. By utilizing the layout
model which contains not only the locations of transistors
but also the slacks in layout area, both transistor sizing
and bu�er insertion can be performed with the least pos-
sible layout area. The details of bu�er insertion algorithm
are described next.

4. BUFFER INSERTION

The previous section described how the bu�er insertion al-
gorithm resides within the overall sizing and bu�er insertion
strategy. This section describes how the best bu�er position
(if one exists) is selected. The bu�er insertion algorithm is
broken up into two parts.
In the �rst part bu�er insertion positions are generated.

Estimates for the bu�er insertion cost developed in sec-
tions 2.2.1. and 2.2.2. are used to quickly prune out bu�er
insertion positions that have little hope of yielding good re-
sults. This part of the algorithm described in Section 4.1.
can be tuned to generate only a few possibilities thus speed-
ing up run time or generate a more exhaustive list thus
improving the �nal result at the expense of run time.
In the second part each promising bu�er location gener-

ated above is examined more carefully to accurately deter-
mine the overall cost of inserting a bu�er at that location.



bu�er curve dips below the sizing curve at Ti, the curves
almost never intersect for T < Ti. Therefore when a bu�er
is inserted at Ti, it is never removed.
Our bu�er insertion method is split into two parts. The

�rst part is the bu�er location generator which proposes a
bu�er insertion location. The second part is an oracle-like
mechanism that returns the lowest possible cost value for
that bu�er location at the current delay. The solution with
the lowest power cost is chosen. In theory, for the optimum
result of all possible bu�er insertion locations must be con-
sidered at each TILOS iteration. Also in theory, to properly
compute the lowest possible cost value for a given bu�er lo-
cation TILOS must be run again on the entire circuit. Be-
cause of the prohibitively large compute times associated
with each of these processes, we introduce algorithms that
solve these problems approximately and still yield good re-
sults.
To quickly determine a set of promising bu�er insertion

locations, a branch-and-bound like algorithm which exam-
ines nodes on the current critical path is introduced. The
algorithm can be tuned to enumerate only the most promis-
ing locations or a greater number of candidate solutions
allowing the user to trade o� optimality with run time.
Given a bu�er location, to quickly determine an accurate

estimate for the lowest cost for the current delay a Template
Window Acceleration Method is introduced. The window
models the behavior of the circuit in the vicinity of the
bu�er. Instead of computing the new sizes for the entire
circuit, sizing is performed on this window. The cost for
the entire circuit is then extrapolated from these sizes. In
theory, for optimal results, the size of the window must
encompass the entire circuit. In practice good results are
obtained using a window a few gates upstream and a few
gates downstream of the bu�ered node.
In section 2 the fanout problem in sizing is described.

The overall algorithm of concurrent transistor sizing and
bu�er insertion is described in section 3 followed by the
Template Window Acceleration Method in section 4. The
experimental results are discussed in section 5 and �nally
the conclusion is in section 6.

2. FANOUT PROBLEM IN TRANSISTOR
SIZING

Because of the fanout problems [3,4], a gate on the critical
path with large load capacitance may get excessively sized
as the result of transistor sizing. Since power dissipation is
roughly proportional to the capacitance of the circuit, large
transistors consume more power and may increase total chip
area. Bu�er insertion is used to reduce the amount by which
such transistors may need to be sized in one of two ways.
First the drive capability of a gate may be increased by
adding a bu�er at its output. This is called type A bu�er
insertion. Alternatively the drive requirement of the gate
can be reduced by o� loading from the output node, the
fanout gates that are not on the critical path. This is called
type B bu�er insertion. Both type A and type B bu�er
insertion are described in more detail in the section.

2.1. De�nitions and Terminologies

A transistor T has a width and a length. Only
the transistor width is changed during transistor sizing.
The transistor area is width � length. A path P =
ff0;G0; f1;G1; :::;Gm�1; fmg in the circuit network is an
alternating sequence of nodes and gates. If outputs of the
circuit are latched and a path P violates setup constraint,
the path P is de�ned as a violating path. The path which

G B

R B C j

C k

violating

non-violating

G B

C j

C k

R’B c

r

G A

R A C i

f i G A

R’A C i

f i

c r

(a)

(b)

Figure 2. Bu�er Insertion (a) Type A (b) Type B

never violates setup constraints under the given timing con-
straint is also de�ned as a non-violating path.

De�nition 1 The critical path is the most violating path.

De�nition 2 The transistor sensitivity is the improve-
ment in the delay of the critical path per unit increase of
area (�T=�A).

2.2. Basic Concepts

Concurrent sizing and bu�er insertion considers the trade-
o�s between sizing and bu�ering. During each sizing iter-
ation of the TILOS algorithm, a transistor in the critical
path is selected to be upsized depending on the transistor
sensitivity. As shown in Figure 1 the slope of the sizing
curve becomes high when the circuit delay approaches the
minimum achievable delay Tmin. This large slope trajectory
means low transistor sensitivityand hence requires large size
increase �W to achieve a given delay improvement.
For the fanout problem there are two cases for which

bu�er insertion is advantageous. The bu�er insertion case
of Figure 2(a) is referred to as Type A bu�er insertion. A
bu�er is added before the fanout to increase the drive ca-
pability of the fanout gate GA. Alternatively a bu�er can
be added to the non violating path in Figure 2(b) to reduce
the load on gate GB thus speeding up the violating path.
This is referred to as Type B bu�er insertion.

2.2.1. Type A Bu�er Insertion

In Figure 2(a), the gate GA is driving a large capacitance
Ci. Assuming a simple RC delay model the initial delay
before bu�er insertion is computed as TA = RA �Ci. After
bu�er insertion the delay becomes T 0

A = RA �c+r �Ci where
r is the resistance and c is the capacitance of the inserted
bu�er (for explanatory simplicity treating the bu�er as if it
were a single inverter gate). The speedup of the circuit due
to bu�er insertion is then �TA = TA � T 0

A.
Our method requires an estimate of the cost (power) con-

sumed by the bu�ered circuit for the same delay as the
unbu�ered circuit. In the bu�ered circuit gate GA can be
downsized because it is now driving a much smaller load.
If the new downsized gate GA has resistance R0 the de-
lay of the bu�ered circuit becomes R0 � c + r � Ci. If SA
is the sensitivity of gate A then a rough estimate for the
area gain is �A = �TA=SA � AB where AB is the area of
the bu�er. The above method is used to quickly identify
promising type A bu�er locations. On each promising loca-
tion a more accurate method for estimating the cost is used
for �nal validation. This method is described later in this
paper.



CONCURRENT TRANSISTOR SIZING AND BUFFER INSERTION BY

CONSIDERING COST-DELAY TRADEOFFS

Juho Kim1 Cyrus Bamji 2 Yanbin Jiang3 Sachin Sapatnekar4

1Sogang University, jhkim@ccs.sogang.ac.kr
2Cadence Design Systems, cyrus@cadence.com
3Iowa State University, ybjiang@iastate.edu
4Iowa State University, sachin@iastate.edu

ABSTRACT

A method for concurrent transistor sizing and bu�er in-
sertion is proposed. The method considers the tradeo� be-
tween upsizing transistors and inserting bu�ers and chooses
the solution with the lowest possible power and area cost.
The method operates by analyzing the feasible region of the
cost-delay curves of the unbu�ered and bu�ered circuits.
As such the feasible region of circuits optimized by our
method is extended to encompass the envelop of cost-delay
curves which represent the union of the feasible regions of all
bu�ered and unbu�ered versions of the circuit. The method
is e�cient and tunable in that optimality can be traded for
compute time and the method can in theory produce near
optimal results.

1. INTRODUCTION

With the growing demand for portable electronic systems,
low power with high speed has become a major design con-
sideration along with area. Optimization for low power can
be applied at various stages of the design process from the
architectural level to the physical layout implementation of
the circuit. Gate/transistor sizing is one of the well-known
methodologies for timing optimization at the netlist level.
For a given circuit topology there is a cost-delay tradeo�

curve [1,2] shown by the sizing curve in Figure 1. Each
point on the �gure represents a particular power (size) and
delay con�guration of the circuit. The sized circuits above
the curve are suboptimal in that the same timing can be
achieved at a lower cost. The region below the curve is
infeasible and no purely sized circuit can have a delay and
cost in this region. The sizing curve in Figure 1 shows
that when the delay is small, further improvements in delay
reduction come at a high cost increase.
The TILOS algorithm [1] is used to size transistors in

a circuit to produce a sized circuit near the optimal cost-
delay curve. TILOS begins by downsizing transistors to
their minimum size. TILOS then begin a series of iterations
during which transistors are selectively upsized to make the
circuit meet timing. During this process the circuit sweeps
the cost-delay curve shown in Figure 1(sizing curve) from
right to left.

sizing

sizing with buffer

TiTj

C i = C i*

C j > C j*

delay

cost

Figure 1. Cost vs. Delay Curve; sizing and bu�er-
ing (Cj* = cost with bu�er insertion at delay Tj)

For a given delay requirement, through careful bu�er in-
sertion it is possible to obtain a circuit with less overall
cost(power) than is achievable through sizing alone. Also,
through bu�er insertion it is possible to improve circuit de-
lay beyond what is possible through sizing alone. Adding
a bu�er changes the topology of the circuit resulting in the
new cost-delay curve shown by the sizing with bu�er curve
in Figure 1. Each possible di�erent bu�ering of the circuit
gives rise to a di�erent curve. By adding bu�ers so as to be
on the curve with the lowest cost for a given delay Tj , an
optimal sizing-bu�ering solution can be reached.
Unlike existing methods which perform bu�er insertion

and sizing in distinct phases, our method concurrently per-
forms bu�er insertion along with sizing. Trade-o�s between
sizing and bu�ering are directly considered by our method.
During the TILOS algorithm the sizing curve is swept from
right to left. At some point the delay Ti in Figure 1 is
reached. At this point it is bene�cial to add a bu�er in such
a manner that optimization now proceeds on the lower siz-
ing with bu�er curve. Our method detects this condition in
the vicinity of delay Ti and adds a bu�er at an appropriate
location. After bu�er insertion at delay Ti, the circuit fol-
lows the sizing with bu�er curve which is lower than that for
sizing alone. As optimization progresses other bu�ers will
be added and the optimization sweeps an envelop of curves
representing the boundary of circuit speeds achievable by
sizing and bu�er insertion.
Strong conditions that guarantee that the bu�er with siz-

ing curve once below the sizing curve will remain below the
sizing curve can be derived but are beyond the scope of this
paper. The conditions under which bu�ers are inserted in
our method do not always satisfy these conditions entirely.
In practice however been empirically observed that once the


