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Abstract— Due to the long simulation times of the reference
input sets, microarchitects resort to alternative techniques to
speed up cycle-accurate simulations. However, the reduction
in the runtimes comes with an associated loss of accuracy in
replicating the characteristics of the reference sets. In addition,
the effect of these inaccuracies on the overall performance
can vary across different microarchitecture optimizations or
enhancements. In this work, we study and compare two such
techniques, reduced input sets and statistical sampling, in the
context of microarchitecture-aware floorplanning, a physical
design stage, where the objective is to find an IPC-optimal global
placement of the blocks of a microprocessor. The variation in
the IPC results due the insertion of additional flip-flops on
some across-chip wires of the processor that have multicycle
delays in nanometer technology nodes. The objective of IPC-
aware floorplanning is to minimize the amount of pipelining
required by the system buses that are critical in determining
the system performance. Our results indicate that, although the
two techniques exhibit contrasting behavior in quantifying the
criticality of bus latencies, the ensuing floorplanning optimization
process results in almost identical performance improvements
for both reduced input sets and sampling. The reason behind
this is that, for discrete optimization problems such as IPC-
aware floorplanning, a reasonably accurate relative ordering of
performance bottlenecks is sufficient, absolute accuracy is not
necessary.

I. INTRODUCTION

With the operating frequencies of high-performance micro-
processors doubling every process generation [1], the distance
traveled by a signal along a wire in a single clock period
has been gradually decreasing, and in nanometer technologies,
the delays of some of the global interconnects, even after
aggressive optimization, exceed the system clock cycle. In
such a scenario, a popular approach to ensure that the system
operates at the desired frequency has been to pipeline those
global wires whose delays exceed the clock period, i.e., the
delay of each of those global wires is distributed over several
clock cycles by inserting memory elements such as edge-
triggered flip-flops [2], [3]. It can be noted that this approach
is tantamount to inserting additional, dummy, stages in the
pipeline of the processor.

However, as observed in [4], such a deeper pipelining
strategy may not necessarily result in overall performance
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improvement. As the number of stages in a microprocessor
pipeline increases, the average number of instructions executed
per clock cycle, IPC, decreases. Specifically, some events
such as a branch misprediction consume more clock cycles
in a deeper pipeline, thereby decreasing the IPC. This is an
important concern, since the decrease in the IPC may more
than offset any gain achieved by the reduction in the clock
period. In addition, the IPC penalty caused by pipelining the
buses of a microprocessor depends on the locations at which
the extra flip-flops are added: additional flip-flops on some
buses of the microprocessor can impact the IPC more than
on others. In particular, the number of flip-flops that must be
inserted on a bus is proportional to the length of the bus,
which in turn depends on the locations of the connecting
functional units (end points) of the bus in the layout. These
lengths are determined during the physical design step of
the microprocessor circuit design cycle, which transforms a
functional net-list into a circuit layout, through procedures that
include floorplanning, placement, and routing.

Traditional physical design, where the typical objectives are
minimizing the area and total wire length of the chip, can lead
to IPC-suboptimal layouts in the wire pipelining regime. For
improved performance, physical design must attempt to keep
the IPC-critical buses as short as possible to minimize the
amount of pipelining required by those buses. Such an IPC-
aware strategy [5] is particularly useful at the early stages of
the physical design flow, such as floorplanning, which have a
major share in determining the system/global bus delays.

Microarchitecture optimizations and analyses typically in-
volve cycle-accurate simulations on benchmark programs for
performance evaluation. It has been widely accepted that
the SPEC benchmark suite [6], along with the reference
input sets, represents a realistic work-load that is executed on
microprocessors, and therefore has become a popular choice in
microarchitecture research. However, executing the reference
input sets to completion, in most cases, is prohibitive, due
to the inherent slow nature of the cycle-accurate simulations;
simulating one cycle of the target microarchitecture consumes
about 3000–5000 cycles of the host machine. To realistically
explore the solution search space, microarchitects employ
alternative techniques to speed up the simulations, such as
reducing the size of the input sets and statistical sampling. This
reduction in the simulation times, however, comes at the cost



of loss of accuracy associated with simulating only a fraction
of the reference input sets. Such inaccuracies can potentially
lead to incorrect conclusions and performance bottlenecks,
and, therefore, can undermine an optimization process.

Due to the inaccuracies, it is necessary to understand the
nature of the simulation speedup techniques, and, importantly,
how these techniques affect the results of an intended mi-
croarchitecture optimization, i.e., whether different approaches
lead to different conclusions and optimizations. This paper
addresses this issue for the IPC-aware floorplanning problem.
Specifically, we compare two simulation techniques, namely,
reduced input sets and sampling, and study their impact on
the overall performance speedup obtained.

A recent work [7] evaluates the accuracies of a number of
simulation techniques, including reduced input sets and sam-
pling. The comparison is based on three different characteri-
zations, one each at the hardware (processor bottleneck), soft-
ware (execution profile), and architecture levels. In addition,
the work attempts to quantify the effect of the inaccuracies
on the execution times of the benchmarks, for a couple of
microarchitecture enhancements [8], [9]. The results of the
comparison indicate that, in general, sampling techniques are
more reliable than reduced input sets in tracking the actual
performance speedups obtained, due to the enhancements, on
the reference sets.

However, while these results hold for the enhancements
considered, it is possible that the impact of the inaccuracies
can vary across different optimizations. Specifically, for the
hardware enhancements handled in [7], the decision making
is directly based on the results obtained from the simulations,
and therefore a high reliability is required. IPC-aware floor-
planning, on the other hand, is a discrete optimization problem
where the variables are bus latencies. The purpose of the
simulations is to describe the IPC of a program as a function
of the bus latencies, and the floorplanner uses this description
to come up with a block-level placement that represents an
IPC-optimal bus latency configuration.

For such optimization problems, a reasonably accurate
characterization that does not significantly alter the relative
ordering of the performance-criticality of the parameters is
sufficient; “absolute” accuracy may not be necessary. We focus
on this issue in this paper and the objective is to determine
if there is any correlation between perceived inaccuracy of
the reduced input sets and the corresponding optimization
results for the IPC-aware floorplanning problem. Although our
study specifically concentrates on floorplanning, the results are
likely to be applicable for any microarchitecture optimization
in the physical design context, or, in fact, any related discrete
(microarchitecture) optimization problem. For this study, we
employ the statistical design of experiments [10] based strat-
egy that is first proposed in [11] for IPC-aware floorplanning.

The remainder of the paper is organized as follows. Sec-
tion II presents an overview of the IPC-aware floorplan-
ning flow, along with the baseline architecture and block
configuration used in this work, while section III lists the
benchmarks used, describes the simulation speedup techniques

compared for IPC-aware floorplanning, and presents the results
of the comparison. We conclude the paper in section V, after
describing some related work in section IV.

II. IPC-AWARE FLOORPLANNING

Floorplanning is a physical design stage that determines
the positions of the global blocks of a circuit on the layout.
Traditionally, the objective of this global placement step has
been to minimize a weighted combination of the total area
of the layout, the total length of the connections between the
blocks, and other topological features of the circuit. However,
since wire pipelining has become a necessity to support higher
clock frequencies in nanometer technologies, physical design
and microarchitecture optimizations can no longer be per-
formed independently. For better performance, floorplanning,
thus, must also consider microarchitectural ramifications on
the placement of the blocks.

The amount of pipelining required by each bus of a mi-
croprocessor is proportional to its length, which is typically
true for buffered interconnects [12], and therefore, for every
block-level placement, there is a corresponding bus-latency
configuration. For each of these configurations, the IPC for
a given program can be determined using a cycle-accurate
simulation. The objective of floorplanning is to obtain a
bus-latency configuration that maximizes the IPC for each
benchmark program.

Using cycle-accurate simulations to evaluate the IPC of each
and every latency configuration is not practical, given the large,
exponential, number of possible configurations. Specifically,
if each of n buses on a layout can have k possible latencies,
then the cycle-accurate simulator may have to perform up to
nk simulations to fully explore the search space. Therefore,
the clear bottleneck in the IPC-aware floorplanning flow is
the estimation of IPC.

To reduce the number of simulations to a practical level, we
use a statistical design of experiments [10] based simulation
methodology for IPC-aware floorplanning. In this approach,
the total number of simulations required to sample the search
space is proportional to n, compared to the O(nk) possible
combinations of bus latencies. The IPC-impact of each bus
is quantified in the form of a weight, and these weights are
supplied to the floorplanner. The floorplanner, then, attempts
to minimize the weighted sum of bus latencies.

The following sections illustrate this approach, and we
tie the description to the processor microarchitecture that
is employed in this work. The microarchitecture, which is
based on the DLX architecture [13], and the corresponding
functional blocks are shown in Table I and Figure 1, respec-
tively. The instruction fetch and decode blocks are shown as
fet and dec, respectively, while il1 and dl1 are the level-1
instruction and data caches, respectively. The instruction and
data translation look-aside buffers (TLB) are indicated as itlb
and dtlb, respectively, while l2 represents the unified level-
2 cache. The block ruu is the register update unit, which
contains the reservation stations and instruction issue logic,
while the block lsq represents the load store queue. The system



Parameter Value
Fetch width 8 instrs/cycle
Issue width 8 instrs/cycle

Commit width 8 instrs/cycle
RUU entries 128
LSQ entries 64
IFQ entries 16

comb, 4K table
Branch pred 2-lev 2K table, 11-bit

2K BHT
BTB 512 sets, 4-way
IL1 64K, 64B, 2-way

LRU, latency: 1
DL1 32K, 32B, 2-way

LRU, latency: 1
L2 2M, 128B, 4-way

latency: 12
ITLB, DTLB 128 entries

Miss latency: 200

TABLE I

BLOCK CONFIGURATION OF THE PROCESSOR.

Bus Parameter ID
fet il1

il1 bpred extra fet 1
fet bpred
fet itlb fet itlb 2
itlb l2 itlb l2 3

ruu reg ruu reg 4
ruu lsq ruu lsq 5

ruu iadd1 iadd add1 6
ruu iadd2 ruu iadd2 7
ruu iadd3 ruu iadd3 8
ruu imult ruu imult 9
ruu fadd ruu fadd 10
ruu fmult ruu fmult 11

lsq dl1 lsq dl1 12
dtlb l2 dtlb l2 13
lsq dtlb lsq dtlb 14
il1 l2 il1 l2 15
dl1 l2 dl1 l2 16

dec reg dec reg 17
fet dec fet dec 18
dec ruu
dec lsq max lsq ruu 19

TABLE II

BUSES AND FACTORS.

register file is represented by reg, whereas bpred consists
of the branch predictor and the target buffer (BTB), which
predict the direction and target address for a branch instruction,
respectively. The blocks iadd1, iadd2, iadd3, imult, fadd
and fmult are the functional units that execute arithmetic and
logic instructions. The figure also shows the 22 system buses
that can impact the performance (IPC) of the processor, when
pipelined.
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Fig. 1. Microarchitecture and buses.

A. Wire pipelining models

The additional latencies on each of the 22 buses of the
microarchitecture are modeled as dummy stages in the pro-
cessor pipeline. For instance, extra flip-flops inserted on, say,
the bus between ruu and fadd units shown in Figure 1 can be
modeled as an increase in the latency of a floating-point add
instruction. To achieve this, the 22 buses are grouped into 19

factors that can be made configurable in the chosen simulator.
The buses, along with the factors they are grouped into, are
shown in Table II. For example, the bus between the ruu
and fadd units of Figure 1 is indicated as ruu fadd in the
table. As can be seen in Table II, most of the factors directly
model the buses with the same name. The first exception is the
factor extra fet, which represents the sum of the latencies of
three buses, as shown in Table II. This factor corresponds to
the number of extra stages to be inserted in the fetch stage of
the processor pipeline. The second exception is max lsq ruu,
which models the maximum of the latencies of the buses
dec ruu and dec lsq.

B. Simulation methodology

Statistical design of experiments is an approach that char-
acterizes the response of a system in terms of changes in
the factors which influence the system. The basic idea is to
conduct a set of experiments, in which all factors are varied
systematically over a specified range of acceptable values,
such that the experiments provide an appropriate sampling
of the entire search space. The subsequent analysis of the
resulting experimental data will identify the critical factors,
the presence of interactions between the factors, etc. In this
work, the system is a microarchitecture, such as that shown in
Figure 1, the response is the IPC, and the factors that influence
the IPC of the microarchitecture are shown in Table II. Since
it is impractical to fully explore the exponential search space,
even when the number of factors is small (N = 19), we
employ a fractional factorial design to reduce the number of



simulations. However, such designs are only valid when some
or all of the interactions between the factors are negligible.

In general, it is not easy to identify potential significant
interactions before hand in a complex system such as a
microprocessor. However, in most cases, the interactions in
a microarchitecture tend to be negligible. For instance, it is
unlikely that, say, the L2 cache interacts with the instruction
decoder, given the varied functionalities of the two units. We
have identified a few potential significant interactions, which
resulted from the nature of wire-pipelining models integrated
into the simulator, as shown below:

• We have incorporated functional unit scheduling in the
simulator. Specifically, the number of latencies inserted
on the buses between the register update unit and the
three integer adders can be different, and while issuing an
integer add instruction, of all the available units, the one
with the least latency is chosen. This indicates possible
significant (two and three factor) interactions.

• In the decode stage, the number of extra pipeline stages
to be inserted is modeled as a maximum function of
three factors dec ruu, max lsq ruu and ruu reg (refer
to Table II). Such a nonlinear function can result in
significant interactions among these three factors.

All of the other interactions, other than the eight listed
above, are assumed to be negligible. In addition, to further
reduce the number of simulations, we restrict each factor to
have two values: the minimum and the maximum possible
values for the factor. The idea is that, by stimulating the system
with inputs at their extreme values, we provoke the greatest
response for each input. As is shown in [14], such a two-
level approach can be effectively used to design simulation
strategies for microarchitectural optimizations. Since the factor
levels represent bus latencies, the extreme (high and low)
values can be obtained by assuming worst-case and best-case
scenarios for the corresponding wire lengths.

These assumptions allow us to utilize a 2-level resolution III
fractional factorial design [10]. For N factors, the number of
experiments required is equal to the nearest highest power of 2,
which turns out to be 32 for our work, since N = 19. We refer
the reader to [10], [11] for more details of the methodology.

C. Cost function of floorplanning

The output of the resolution III design is a set of factor
and interaction weights, each weight quantifies the IPC-impact
of the corresponding factor or interaction. These weights are
used to construct the cost function of the floorplanner, and the
objective is to determine the positions of the blocks such that
a weighted sum of factor and interaction latencies, which are
related to the bus latencies, besides the traditional objectives
such as area and aspect ratio, is minimized.

III. COMPARING SIMULATION TECHNIQUES

Several techniques have been proposed in the past to reduce
simulation times to practical levels, while attempting to repro-
duce the behavior of the reference input sets. These techniques
can be broadly categorized into three groups: (i) Reducing the

input sets, (ii) Truncated execution, and (iii) Sampling. The
work of [7] compares the accuracies of six such techniques,
and the results of the work indicate that sampling techniques
have much higher accuracies in tracking microarchitecture
(reference) performance than the other two categories. How-
ever, as explained in section I, the findings are specific to
the two enhancements considered, and it is not clear whether
the inaccuracies can be generalized for all microarchitectural
optimizations. In discrete optimization problems such as IPC-
aware floorplanning, a moderate perturbation in the weight of
a factor (or an interaction) may not be sufficient to shift the
optimal value of that factor by an integer above or below.

Specifically, changing the latency of a bus in a particular
placement involves a significant change in the locations of
the connecting blocks in the layout, to increase/decrease the
bus length by appropriate amount, and this can potentially
lead to a massive realignment of the positions of other blocks,
resulting in a drastically different placement with a significant
change in the value of the cost function, which includes the
weighted sum of factor/interaction latencies. It is unlikely
that small or moderate perturbations in factor weights can
result in such a scenario, which changes the cost function
by a significant amount, during optimization. Therefore, any
simulation technique with a reasonable accuracy (or moderate
inaccuracy) may be sufficient in problems such as IPC-aware
floorplanning.

In this section, we compare a few approaches that can be
used to speed up the simulation methodology described in
section II-B for the IPC-aware floorplanning problem. Due to
the high number of simulations (32 per benchmark) required
for each technique, we limit our comparison to two techniques,
namely, sampling and reduced input sets, as shown below:

• Reduced Input sets: The idea behind the reduced input
sets is to alter the reference input sets so that the simu-
lation times are reduced when using these reduced input
sets, while endeavoring to retaining the characteristics of
the unaltered reference input sets. The test and train
input sets from SPEC, and the MinneSPEC [15] reduced
input sets are a few examples. For this work, we choose
MinneSPEC reduced input sets for evaluation.

• Sampling: In statistical sampling, only selected portions
of the instruction sequence of a benchmark are measured.
The program segments between the selected portions are
fast-forwarded using functional simulation. These sam-
ples must be chosen carefully such that they accurately
reflect the behavior of the population, i.e, the whole
program. The sampling technique proposed in [16], called
SMARTS, simulates periodically selected subsets of the
instruction sequence. The sampling frequency and the
length of each sample are used to control the simulation
time. The statistics measured for the simulated samples
are generalized for the whole program. In addition,
SMARTS uses statistical sampling theory to estimate the
IPC error of the sampled simulation results, as compared
to the complete simulation. On the other hand, the
approach of SimPoint [17] selects a few representative



simulation points beforehand and then uses statistical
based clustering to select a set that is representative of the
whole program. At the end of the simulation, the results
from each simulation point are weighed to compute the
final statistics. The number of simulation points, and the
length of each determines the simulation time.

We choose SMARTS as a representative of sampling
techniques for our comparisons. As noted in [7], there
is little difference in the accuracies of SMARTS and
SimPoint. One reason we decided on SMARTS is that the
simulator provided by the authors also includes a frame-
work for power estimation, based on Wattch [18], and this
facilitates our future plan of extending the methodology
of this paper to optimize other critical objectives, such as
power consumption.

In addition to the above mentioned techniques, we consider a
third case, a hybrid approach that is obtained by combining the
two techniques. Specifically, in this case, we apply SMARTS
on the MinneSPEC reduced input sets, to further reduce the
simulation times. Hence, we actually compare three techniques
in this paper.

A. Benchmarks

For simulations, we use sim–smarts [16], which is based
on the sim–outorder [13] simulator, developed by the authors
of SMARTS. Wire pipelining models are inserted in the
simulator, as per the description provided in section II-A, and
each of the factors is made configurable. In addition, we use
the default values that are listed in [16] for the sampling
parameters (a sampling interval of 1000 and a sample size
of 1000). We choose a set of eight SPEC 2000 benchmarks
for evaluations in this work. The benchmarks, along with
the corresponding reference and MinneSPEC input instruction
counts are shown in Table III. The total simulation time limited
the number of benchmarks that we could use. The bench-
marks are chosen because of their distinct instruction mixes.
For instance, 177.mesa has a high percentage of conditional
branches, while 181.mcf has a very large number of memory
operations, particularly “store” instructions. All benchmarks
are compiled at optimization level O3 using the SimpleScalar
version of the gcc compiler.

B. Results

For each of the three cases described in the previous section,
we perform 32 simulations per benchmark as prescribed by
the resolution III design of section II-B. Our implementation
uses PARQUET [19], a simulated annealing (SA) based floor-
planner available in the public domain. The advantage of this
SA-based approach is that it allows easy integration of our
weights into the cost function.

The areas of the individual blocks, showed in Figure 1, are
based on [20]. The low value for a bus latency is chosen to be
0, depicting the best case placement of the connecting blocks.
For the high value, we pick the corner-to-corner latency in the
chip, for a frequency of 6.0GHz in 90nm technology, based
on projections from [21].

Benchmark Type Instr. count (Billions)
MinneSPEC reference

164.gzip Integer 1.065 63
175.vpr Integer 0.217 110

177.mesa Floating-point 1.297 305
179.art Floating-point 7.700 54

181.mcf Integer 0.175 49
183.equake Floating-point 0.716 175
197.parser Integer 0.914 301
256.bzip2 Integer 3.800 94

TABLE III

BENCHMARKS FROM THE SPEC SUITE, ALONG WITH THE REFERENCE

AND REDUCED INSTRUCTION COUNTS.

We present results for a number of clock frequencies,
ranging from 3.0GHz to 6.0GHz. The weights can be used
for each of these frequencies, since the bus latency ranges are
valid for all of the frequencies less than or equal to 6.0GHz. In
addition, we assume that the operating frequency of the chip
is constrained only by the bus delays, and the maximum of
the delays of the buses is the minimum possible clock period
when wire-pipelining is not employed. The corresponding
maximum frequency, obtained by minimizing the maximum
of wire lengths of the global wires in the floorplanner, is
determined to be about 1.6GHz, and this forms the baseline
unpipelined design.

We compare four different floorplanning scenarios in this
section. The first floorplanner does not use weights, and
attempts to minimize traditional objectives, such as total area
and wire length. The other floorplanners use factor/interaction
weights generated using three simulation speedup techniques
as prescribed by the resolution III design described in sec-
tion II-B. The four scenarios are labeled as shown below:

• minWL: Traditional floorplanning, does not require sim-
ulations.

• Minne: MinneSPEC reduced input sets are simulated to
completion.

• SMARTS-R: SMARTS is applied on the reference input
sets.

• SMARTS-M: SMARTS is applied on the MinneSPEC
input sets.

The comparison metric is the execution time, Texec, which,
as shown in (1), is the product of the number of instructions
(Ninstr) in the benchmark, the reciprocal of the IPC ( 1

IPC ),
and the corresponding clock cycle time evaluated as the
reciprocal of the clock frequency ( 1

f ).

Texec =
Ninstr

IPC · f (1)

In addition, we use a common platform to compare the four
cases: the evaluations are performed on the reference input
sets, with SMARTS speeding the simulations. In doing so, we
are biasing the evaluations towards the SMARTS-R technique.
We note that, our objective is to examine how the reduced
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Fig. 2. Runtime comparison of a single simulation for the three techniques. The y-axis plots the runtimes in logarithmic scale.

input sets compare with the sampling techniques, not exactly
to measure the accuracy of these techniques in tracking the ref-
erence performance. The reason behind choosing “sampling–
on–reference” as the common framework is that sampling
techniques replicate the reference behavior with very high
accuracies, as indicated in [7], and the speedups evaluated on
this platform are likely to represent those observed when the
reference input sets are run to completion.

Figure 2 plots the runtimes of a single simulation for the
three techniques in logarithmic scale. It can be seen from
the figure that SMARTS-R has the longest simulation times
among the three techniques. However, the SMARTS-M case
has simulation times that are more than two orders less than
the other two approaches, specifically SMARTS-R, while the
simulation times in Minne are somewhere between those of
the other two techniques. As an example, for the benchmark
181.mcf, the simulation times associated with SMARTS-M,
Minne, and SMARTS-R are 30, 1100, and 10300 seconds,
respectively.

Figure 3 presents the results obtained from floorplanning
for the four scenarios described earlier in this section, for
each of the eight benchmarks, and for four frequencies, 3-
6GHz. For each benchmark, all execution times plotted in the
graphs are normalized to that of the corresponding baseline
case, where the frequency is 1.6GHz. It can be observed that
the normalized execution times are less than one for all cases
shown in Figure 3, suggesting that interconnect pipelining,
indeed, results in performance improvement over the baseline
processor for each of the benchmarks. For example, at 3GHz,
we see that SMARTS-M produces a design that results in
only 54% of the execution time that would be required for
the baseline processor for 175.vpr. In addition, all of the
three simulation speedup techniques outperform the traditional
floorplanning, shown as minWL, and the improvements tend to
get better at higher frequencies, which is not surprising since
the amount of pipelining required, in general, gets higher as
the frequency increases. For instance, on an average, the case
SMARTS-R, where SMARTS is applied on reference input

sets, results in an improvement of about 11% at 3GHz over
the traditional floorplanner, shown as minWL in the figure,
while it is about 40% at 6GHz.

In addition, for most benchmarks, there is not much dif-
ference in the execution times obtained for the three cases,
Minne, SMARTS-R and SMARTS-M, and the differences in
execution times are with in 1%. This indicates that the reduced
input sets compare well with the sampling technique for the
IPC-aware floorplanning problem. In fact, by employing sam-
pling (SMARTS) on the reduced input sets (MinneSPEC), we
can drastically reduce the simulation times without much loss
in the performance. For instance, for the benchmark 175.vpr,
on an average, each simulation run for SMARTS-R takes about
5 hours. However, almost the same performance improvements
(as seen in SMARTS-R) can be obtained when MinneSPEC
reduced inputs are used to generate the factor/interaction
weights, and in this case (Minne), the time required for each
simulation is about 30 minutes, a nearly 10× speedup over
SMARTS-R. The simulation times can further be decreased
with a negligible reduction in the performance by sampling the
reduced input sets, i.e, SMARTS-M, where each simulation
runs for about 30 seconds, approximately 600× faster than
SMARTS-R.

We note that, due to the similarities in the results obtained,
there are no accuracy-runtime tradeoffs that can be explored.
From Figures 2 and 3, it is clear that, SMARTS-M, while
achieving the same performance speedups as the other two
techniques, represents the best approach with least simulation
times, in the order of a few hundreds of seconds. Given the
small runtimes of SMARTS-M, it may also be possible to
employ a more accurate or a higher resolution design than
that it is described in section II-B.

Table IV shows pairwise comparisons of the three tech-
niques in terms of the magnitudes of the weights obtained
from the resolution III design of section II-B for the three
techniques, SMARTS-R, SMARTS-M, and Minne. For each
pairwise combination of these three, the value shown for
each benchmark is the average Euclidean distance between
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Fig. 3. Results for eight benchmarks for four different frequencies. The execution times are normalized to the baseline case, where wire-pipelining is
employed and the frequency cannot exceed 1.6GHz.



the corresponding main and interaction weight vectors. If
X = 〈x1, · · · , xn〉 and Y = 〈y1, · · · , yn〉 are two weight
weights, then the average Euclidean distance between X and
Y is determined as shown below:

Exy =

√
(x1 − y1)2 + · · · + (xn − yn)2

n
(2)

Each weight vector is normalized to 100, i.e., maximum
weight in each vector is 100. In such a case, the maximum
bound on the average Euclidean distance is 100, with the
minimum being 0. The idea of this distance metric is to
observe how the factor/interaction weights generated in the
three cases compare with each other. Each value in Table
IV indicates how much the weight of a factor/interaction
obtained using an approach differs, on an average, from the
corresponding weight obtained using the compared technique.
For instance, for the benchmark 175.vpr, a value of 8.18
shown in column labeled SMARTS-R Vs Minne indicates
that, on an average, the weight of a factor/interaction in the
case Minne differs by about 8 from that of the corresponding
factor/interaction obtained using SMARTS on the reference
input sets (SMARTS-R).

• Minne Vs SMARTS-M: The distance is negligible for
most of the benchmarks, as shown in the table, which
suggests that sampling with SMARTS on the reduced
input sets tracks the behavior of the whole input sets with
high accuracy. This is an interesting observation, since,
it shows that, for applications which employ reduced
input sets, the simulations can further be speeded up by
applying sampling.

• SMARTS-R Vs Minne: The distances are relatively
higher than those seen in Minne Vs SMARTS-M com-
parison, presumably because of change in the input sets,
in tune with the conclusions of [7]. However, other than
177.mesa and 181.mcf, the distances are still moderate,
and it is unlikely that such moderate changes in the
factor and interaction weights shift the optimal operating
points by significant amounts, given the discrete nature
of the cost function that is minimized in floorplanning.
For 177.mesa and 181.mcf, the reason behind the large
differences is the contrasting instruction mixes of the
corresponding MinneSPEC and reference input sets. For
instance, MinneSPEC input set for 177.mesa has neg-
ligible floating point instruction count, while the refer-
ence input set has about 9% floating point instructions.
Similarly, the reference input set of 181.mcf has about
35% load instructions, whereas it is about 23% in the
MinneSPEC input set. This is also the reason behind
the relatively higher differences in the execution times
obtained for 177.mesa for the three techniques shown in
Figure 3. However, the big differences in the weights for
181.mcf do not affect the pattern of the results, as shown
in Figure 3. A possible reason behind this is that the
relative ranking of the factors is maintained even if the
weights differ by a significant magnitude.

• SMARTS-R Vs SMARTS-M: The distances follow the
same trend as seen in the SMARTS-R Vs Minne com-
parison above, since both Minne and SMARTS-M use
reduced input sets. The distances are slightly lower than
those observed in SMARTS-R Vs SMARTS, however.
This may be because both SMARTS-R and SMARTS-M
employ SMARTS, the inaccuracies, however small they
are, associated with the SMARTS technique creep into
both of them, having identical effects.

IV. RELATED WORK

There has not been much published work that specifically
compares simulation speedup techniques, other than [7] de-
scribed in section I. To the best of our knowledge, our paper
is the first contribution that handles the comparison in the
floorplanning (or, in general, the physical design) context.
However, there has been a good amount of research, in the
last couple of years, towards introducing microarchitecture-
awareness in the floorplanning domain.

IPC-aware floorplanning: Besides our statistical design of
experiments based strategy of [11], there have been some other
recent attempts [20], [22] towards IPC-aware design at the
floorplanning level of physical design. In [20], a IPC look-up
table (LUT), indexed by the set of bus latencies, is constructed
using cycle-accurate simulations. For a given layout (and the
corresponding bus latencies), the IPC is evaluated from the
LUT using some distance metrics. In contrast, the approach
in [22] assigns weights to each of the system buses that are
proportional to the amount of traffic seen on the buses, operat-
ing under the notion that the more often a bus is accessed, the
more critical it is. The objective of the floorplanner then is to
minimize a weighted sum of bus latencies, where the weights
depend on the amount of traffic.

The work of [23] uses a “one-at-a-time” approach to build
IPC sensitivity models for a few selected critical paths, and
these models guide the floorplanner to optimize the system
IPC. Another recent approach [24] explores the frequency-IPC
tradeoff in floorplanning. A set of implementations varying in
area and latency is specified for some or all of the blocks
of the processor. The objective of the floorplanner is to find a
configuration of blocks with a placement to reduce the product
of clock period and the CPI. The lengths of the global wires,
combined with given arrival times at the terminals, determine
the clock period.

Simulation methodology: The work of [14] uses a Plack-
ett and Burman, PB [25], design to rank the criticality of
the microarchitectural configuration parameters. However, PB
designs are useful only when the interactions among the
parameters are negligible, and therefore are generally not used
in analyses where interactions are significant. Additionally,
this work attempts at identifying similarities in the benchmarks
and groups them using a distance metric similar to that of (2).

Statistical simulation [26]–[28] is another way of reducing
the simulation times, thereby allowing an efficient exploration
of the design search space. For a benchmark program, using
a single detailed simulation, statistical tables are constructed



Benchmark SMARTS-R Vs Minne SMARTS-R Vs SMARTS-M Minne Vs SMARTS-M
164.gzip 10.46 10.66 0.74
175.vpr 8.18 7.50 2.18

177.mesa 27.14 23.93 8.38
179.art 11.13 9.88 1.86

181.mcf 20.79 20.62 0.93
183.equake 10.09 10.30 0.78
197.parser 7.30 6.61 1.50
256.bzip2 2.36 2.43 0.64

TABLE IV

PAIRWISE DISTANCE COMPARISON OF THE THREE TECHNIQUES. FOR EACH PAIR OF TECHNIQUES, THE VALUES SHOWN REPRESENT THE AVERAGE

DIFFERENCES BETWEEN THE FACTOR/INTERACTION WEIGHTS, COMPUTED USING (2). THE MAXIMUM WEIGHT IN EACH TECHNIQUE IS NORMALIZED TO

100, I.E., THE MAXIMUM POSSIBLE DISTANCE IS 100.

for various program characteristics such as cache miss rates
and register dependencies. This synthesis trace generated,
essentially a statistical image of the benchmark, can be used
to speed up the subsequent simulations of the benchmark.

V. CONCLUSION

Microarchitects resort to alternative techniques to speed up
the simulation process due to the long simulation times of the
reference input sets. However, these techniques suffer from a
loss of accuracy since only a fraction of the reference instruc-
tion sequence is actually simulated. This paper compared two
such techniques, MinneSPEC reduced input sets and SMARTS
for the IPC-aware floorplanning problem, where the objective
is to find an IPC-optimal block-level placement. The purpose
of the simulation methodology is to quantify the IPC-criticality
of each of the buses of a microprocessor with a weight.

We use a distance metric to compare the set of weights gen-
erated using the two techniques in the simulation methodology.
This comparison suggests that the two techniques generate
significantly different sets of weights. However, this variation
in the weights did not affect that subsequent optimization,
and the performance improvements seen in both cases are
almost identical. Therefore, there is no correlation between the
contrasting weights generated and the actual delivered perfor-
mance. The best technique for this optimization is obtained
by applying SMARTS on the MinneSPEC reduced input sets,
and this case drastically quickens the simulation process by
several orders, besides generating high quality designs.
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