
Energy-Efficient Non-Minimal Path On-chip Interconnection
Network for Heterogeneous Systems

Jieming Yin⋆, Pingqiang Zhou†, Anup Holey⋆, Sachin S. Sapatnekar†, and Antonia Zhai⋆
⋆Department of Computer Science and Engineering

University of Minnesota, Twin Cities
Minneapolis, Minnesota 55455, USA

{jyin, aholey, zhai}@cs.umn.edu

†Department of Electrical and Computer Engineering
University of Minnesota, Twin Cities
Minneapolis, Minnesota 55455, USA
{pingqiang, sachin}@umn.edu

ABSTRACT
Network-on-Chips (NoCs) in heterogeneous systems contain-
ing both CPU and GPU cores must be designed to satisfy the
performance requirements of both latency-sensitive CPU traf-
fic and throughput-intensive GPU traffic. DVFS and adaptive
routing can potentially improve the NoC efficiency. We further
notice that GPU traffic can sometimes tolerate a slack defined
as the number of cycles a packet can be delayed without caus-
ing performance penalty. In this work, we take advantage of
the slack in GPU packets to route packets through non-minimal
path, so that routers can operate at a lower frequency without
suffering performance penalty.

Keywords
Heterogeneous Multi-core, Interconnects, NoC, Voltage Scal-
ing, Frequency Scaling, Non-minimal Path Routing.

1. INTRODUCTION
CPU cores nowadays are optimized for single-thread work-

loads, while GPU cores are optimized for high throughput work-
loads. Heterogeneous multi-core systems that contain both
CPU and GPU cores can potentially achieve the best of both
worlds in an energy efficient manner by utilizing different cores
as workload characteristics change [20]. In a heterogeneous
multi-core system, different components on the die must com-
municate through a network on-chip (NoC). Since the NoC is
the critical resource shared by all the applications running on
the processor, it must be carefully designed to satisfy the en-
ergy envelop and to meet the requirements for variety of traffic
patterns.

In a modern CPU, the processor stalls when requested data
are not returned. Therefore, traffic originated from or desig-
nated to a CPU core is latency-sensitive. Applications that are
computation-bound generate relatively little NoC traffic; while
data centric applications can generate significant traffic. The
former has a moderate throughput requirement; and the latter
has a considerable throughput requirement.

A GPU consists of a collection of data-parallel compute cores
referred to as streaming multiprocessors (SMs). A large number
of lightweight threads are allocated to each SM and are batch-
scheduled on the SIMD pipeline in a fixed size group called a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’12, July 30–August 1, 2012, Redondo Beach, CA, USA.
Copyright 2012 ACM 978-1-4503-1249-3/12/07 ...$10.00.

warp. In other words, warps are the basic execution units in a
GPU. All the threads within a warp execute the same instruc-
tion but operate with different data values. When a thread in
a particular warp encounters a load miss, the entire warp is
context-switched out, and another available warp is scheduled.
Notice that usually there are hundreds of threads executing on
a GPU in parallel, so it is highly possible that large numbers of
outstanding memory requests are being processed in the inter-
connection network. Thus GPU traffic requires high network
bandwidth. On the other hand, as long as there are enough
available warps to schedule in an SM core, the system perfor-
mance would not be harmed despite the long memory access
latency, since the latencies are hidden by scheduling other ready
warps. As a result, some GPU traffic is latency-insensitive, and
can be delayed in the NoC without performance impact.
Dynamic Voltage and Frequency Scaling (DVFS) is an ef-

fective technique for reducing network energy dissipation [12,
17, 21]. The key idea behind network DVFS is to dynamically
scale the supply voltage of the routers and links to provide just-
enough circuit speed to process the traffic workload. Reducing
NoC frequency can increase latency and/or reduce throughput,
thus can only be applied to workloads with moderate latency
and throughput requirements. However, in heterogeneous sys-
tems where traffic pattern is mixed, it is difficult to determine
the optimal DVFS level.
In this work, we notice that GPU traffic can sometimes toler-

ate a slack defined as the number of cycles a packet can be de-
layed without causing performance penalty. Taking advantage
of the slack in GPU packets, we propose an NoC design to route
packets through non-minimal paths. Such design balances on-
chip traffic workloads so that routers can operate at a lower
frequency without suffering significant performance penalty.
This paper makes the following contributions:

• We observe that the number of available warps in an SM
directly relates to the delay introduced in warp schedul-
ing. Taking advantage of this observation, we propose
a mechanism that can dynamically predict the network
packet slack. This slack predicting mechanism is applied
to GPU messages.

• We propose an energy-efficient network tuning policy that
consists of a DVFS mechanism as well as a non-minimal
path routing algorithm to reduce the energy consump-
tion of the on-chip interconnection network while mini-
mizing the performance degradation caused by network
frequency scaling.

2. EXPLOITING SLACK IN GPU
Based on traffic characteristics, different strategies should be

applied to different network messages. For CPU applications,
a reduction in NoC throughput has relatively little impact on
overall performance, but increasing NoC latency can cause sig-
nificant performance degradation. While for GPU applications,

delaying memory requests in the network has little effect on per-
formance, provided a minimum network throughput is guaran-
teed. However, we cannot increase the NoC latency of a GPU
packet limitlessly. Hence, it is necessary to find an upper bound
for delaying a network packet for GPU applications.

Since all outstanding memory requests are sent via the on-
chip interconnection network in the form of packets, we first
define the slack of a packet as the number of cycles a packet
can be delayed without affecting the overall execution time.

Figure 1: Execution of a GPU warp and packet slack

Figure 1 demonstrates the execution of a GPU warp (Warp
0) and its packet slack. In an SM, a warp is available if all
operands are ready. Assume we have n available warps in an
SM that can be scheduled at a given time; Warp 0 is sched-
uled and executed first. After a few cycles of execution, a read
miss occurs, which is denoted as Event 1 in the figure. Then a
hardware context switch is performed and Warp 1 gets sched-
uled and executed. Similarly, when Warp 1 encounters a read
miss, the next ready warp is scheduled accordingly. Event 2
represents the cycle when the memory request of Warp 0 is
sent back, which means Warp 0 is ready to schedule. However,
depending on the scheduling algorithm, Warp 0 may not be
scheduled instantly since there are other ready warps waiting
in the scheduling queue in front of Warp 0. After a read miss
of the last available warp, Warp 0 is rescheduled at Event 3.
Packet slack for Warp 0 is the time between Event 2 and 3.
It is evident that if we delay the network transmission of the
packet for a number of cycles smaller than the slack, the overall
execution time will remain unaffected.

Intuitively, packet slack is related to the number of available
warps ready to schedule in an SM. The more available warps
an SM has during a period of time, the longer the slack it
can exploit for each packet. However, the number of available
warps within each SM varies from application to application.
To further understand the relation between packet slack and the
number of available warps, we manually delay the scheduling
of each warp for a fixed number of cycles after it is ready. For
example, in a 10-cycle-delay experiment, if a warp is ready to
be scheduled at cycle t0, we arbitrarily prevent it from schedul-
ing until cycle t1=t0+10 even if there is no warp available to
schedule in between. In the worst case, execution is stalled and
system performance is degraded due to the arbitrary delay.

Figure 2 shows the performance degradation due to the ar-
bitrary delay of warp scheduling. We notice that for some of
the GPU applications such as BlackScholes, large schedule
delay can be tolerated. By contrast, for applications such as
Lib, even a few cycles of delay will result in significant per-
formance degradation. Our hypothesis is that delay tolerable
applications have more warps allocated in each SM. To ver-
ify our hypothesis, we collect the average number of available
warps for each application during the whole execution as shown
in Figure 3. Here we set a 95% system speed up as the accept-
able performance degradation level. The tolerable delay cycles
is the maximum number of cycles a particular warp scheduling
can be delayed without exceeding the 95% speed up threshold.
From the figure, we observe that there is a linear relationship
between the average number of available warps and tolerable
delay cycles for all the GPU applications.

Based on the observation, we predict the approximate slack
of a packet as the number of available warps in the SM in
a given cycle. An additional register (Avail warp reg) which
keeps track of the number of available warps for each SM is

added in our design. When a packet is sent from/to a particular
SM core, the Avail warp reg is referred and the packet slack is
set according to the value register. When possible, packets with
slack can be sent through non-minimal paths to less congested
routers, balancing the traffic and alleviating congestion in busy
routers.

Figure 2: System performance degradation due to delay of warp
scheduling

Figure 3: Linear relationship between number of available
warps and tolerable delay cycles

3. DYNAMIC NETWORK TUNING POLICY
We enhance DVFS and propose Non-Minimal Path Adap-

tive Routing that work interactively to balance network traffic.
In particular, the former periodically tunes the router supply
voltage as well as the operation frequency based on the NoC
workload. The latter takes into consideration the router utiliza-
tion in conjunction with packet slack allowance, and selectively
routes packets through non-minimal paths, which can facilitate
more aggressive DVFS. By working in tandem, these two mech-
anisms are able to balance the traffic across the entire NoC and
in turn, minimize global network energy consumption.

3.1 Baseline Router Architecture
To avoid the latency increase of CPU traffic when passing

through routers operating at lower frequency, we adopt the
flexible-pipeline router design proposed in [23]. Voltage and
frequency scaling (VFS) reduces router energy consumption at
the cost of increase in packet transmission time, and degrada-
tion in throughput. In flexible-pipeline routers, to maintain a
constant latency through routers upon VFS, pipeline stages are
reconfigured. However, flexible-pipeline routers cannot avoid
the throughput degradation associated with VFS. Thus, traf-
fic designated to cores with high throughput requirement are
dynamically rerouted to avoid contention. This is achieved
through DVFS and Non-Minimal Path Adaptive Routing as
described in the remainder of this section.
Based on a classic four-stage-pipelined virtual-channel (VC)

router with p input/output ports, as used in Garnet [2], pro-
viding different supply voltages, flexible-pipeline routers can
be operated at three different modes: four-stage-, two-stage-,
and single-stage-pipeline modes. We follow the notation of slow
down parameter S introduced in [23]. A slow down parameter

indicates the router operating frequency. For example, S=1
means the router is working at the default frequency without
slowing down; S=2 implies that the particular router is operat-
ing at half of the default frequency, while S=4 implies that the
router is operating at a quarter of the full speed. Correspond-
ingly, a full-speed router works in four-stage-pipeline mode;
half-speed router works in two-stage mode; and quarter-speed
router works in single-stage mode.

3.2 DVFS Mechanism
The router operation frequency is scaled periodically based

on its utilization in comparison to two thresholds, ThresholdHigh

and ThresholdLow. Over a reconfiguration period T, router
utilization (µ) is defined as the percentage of active cycles. At
the end of each period, if µ exceeds ThresholdHigh, the sup-
ply voltage and router frequency are scaled up; if µ is below
ThresholdLow, they are scaled down. After a few reconfig-
uration periods, the network becomes stable without drastic
phase changes. And on-chip traffic is as well balanced. While
other metrics can also be used to determine the router opera-
tion level [17], router utilization is demonstrated effective for
our purposes. A thorough evaluation of DVFS metrics is be-
yond the scope of this work.

Scaling voltage and frequency incurs performance overhead:
all existing packets in a router must be cleaned up before VFS;
and it takes time to reconfigure circuitry upon VFS, modeled as
a 100-cycle delay in our evaluation. The reconfiguration period
must be sufficiently long to amortize this overhead. On the
other hand, an unreasonably long T limits the opportunities
for capturing and responding to real-time traffic patterns. In
our experiment, T is set to 20,000 cycles to ensure that the
overhead is under 1%.

Between ThresholdHigh and ThresholdLow is the stable state
where supply voltage and router frequency remain unchanged.
If the range is too wide, NoC is unable to fully exploit the po-
tential of DVFS; if it is too narrow, router voltage/frequency
toggle frequently, resulting in increasing overhead. In our eval-
uation, these two thresholds are empirically determined:
ThresholdHigh=0.6 and ThresholdLow=0.4.

3.3 Non-Minimal Path Adaptive Routing
This section describes an adaptive routing algorithm allowing

packets that can tolerate slack to route through non-minimal
paths to reduce NoC energy consumption. Although routing
packets through longer paths leads to a longer per-packet de-
lay, targeting only latency-tolerable packets can minimize the
performance impact. Meanwhile, non-minimal path routing
exploits under-utilized routers and avoids congested ones to
balance workload across the NoC, which in turn enables fur-
ther DVFS. As a result, the NoC is able to meet the desired
performance level with less overall energy consumption.

A divergence from the minimal path is referred to as a De-
tour. A detour adds two extra hops to the length of the minimal
path. In the absence of contention, each detour adds 10 cycles
to the latency of a packet: 8 cycles for traversing through two
four-stage-pipeline routers, and 2 cycles for traversing through
the two additional links. Thus, packets must be able to toler-
ate at least a 10-cycle delay to be considered for one detour.
Slack level (SL) describes the number of detours a packet is el-
igible for. For example, packets that can tolerate a longer than
20-cycle delay has a SL of two. Each packet injected into the
network is associated with a slack level. The SL estimation of
GPU packets is described in Section 2, whereas CPU packets
SL is set to zero because CPU messages are latency-sensitive.
In the routers, the SL of a packet is decremented once it is
detoured.

Figure 4 illustrates the benefit of non-minimal path routing.
In this example, routers in the top row are under-utilized and
are operating at a low frequency; while those in the bottom row
operate at a high frequency. This is because a large number

Figure 4: Non-minimal path routing

Figure 5: Cases with/without dynamic energy savings from
non-minimal path routing

of packets are sent from N1 to N2, while traffic among other
nodes is insignificant. In Figure 4(a), packets are sent from N1
to N2 via the minimal path. They traverse through four highly
utilized routers. In Figure 4(b), some packets are sent via the
non-minimal path and traverse through a longer route with two
highly utilized routers and four under-utilized routers.
Let’s consider the impact of DVFS, assuming the NoC can

operate at three separate voltage/frequency levels: high (volt-
age = 1.2V; frequency = 1.5GHz), medium (voltage = 1.0V;
frequency = 0.75GHz) and low (voltage = 0.8V; frequency =
0.375GHz). In Figure 4(a), four routers operate at high volt-
age/frequency level and four operate at the low level; while
in Figure 4(b), two routers operate at high voltage/frequency
level, and the remaining six operate at medium level. Network
energy is categorized into dynamic, static, and clock energy,
where static and clock energy correspond to a significant po-
tion of the total energy [10, 23]. Static energy is proportional
to supply voltage (Vdd), and clock energy is proportional to the
product of V 2

dd and number of clock transitions. Compared to
routers operating at the high voltage/frequency level, clock and
static energy consumption is reduced by 45% when operating
at medium level, and by 65% when operating at low level. As
a result, in the aforementioned example, allowing non-minimal
path routing enables saving in static and clock energy.
Packets routed through non-minimal path can increase dy-

namic energy consumptions by traversing through additional
hops, however they can also reduce dynamic energy consump-
tions by avoiding routers operating at high frequency. Thus,
an important factor that determines whether a detour saves
dynamic energy is the distance between the node where detour
takes place and the packet’s destination. As shown in Figure 5
Case 2, consider a packet sent from N3 to N4. Routing these
packets through a non-minimal path does not provide any ben-
efit in terms of dynamic energy savings. Whereas in case 1, dy-
namic energy savings is possible since packets traverse through
four low frequency nodes and two high frequency nodes through
a non-minimal path rather than four high frequency nodes. In
our experiment, the minimum displacement towards either x or
y dimension between the detour node and packet destination
is 3 hops to ensure energy saving. Packets are considered for
detouring only when they satisfy such constraint. Furthermore,
non-minimal path routing routes packets away from congested
routers and can enable further DVFS. In these cases, saving
in static and clock energy is often sufficient to offset the slight
increase in dynamic energy.
We define the row-wise packet transversal as the x-direction

and column-wise transversal as the y-direction. When a packet

is injected into the network and processed by a router, the
router decodes the packet and obtain its slack information, and
adopt different routing options to the packet based on its slack:
minimal path routing is applied for packets with a slack of
0; and non-minimal path routing algorithm is performed on
packets that satisfy the distance constrains. The algorithm
eventually selects a neighbor with the lowest router utilization
and forwards the packet. If the neighbor router happens to be
a candidate from minimal paths, the packet slack level remains
unchanged; otherwise, slack level is deducted by one. Details
of the routing algorithm are described in Algorithm 1. Notice
that the algorithm itself is not deadlock-free, so methodologies
from [7] is used to avoid deadlock. In other words, the base level
of VC is designed to be deadlock-free [5]. If the lowest utilized
neighbor router is likely to create a deadlock, the packet will
be routed over the base level VC.

Algorithm 1 Non-minimal adaptive routing for GPU packets

Require: Current router coordinate, (Cx, Cy)
Destination router coordinate, (Dx, Dy)
In-coming direction of the packet, Dirin
Packet slack level, SL

Ensure: Out-going direction of the packet, Dirout
Avail Dir set← {};
Min Path set← {};
ex ← |Cx −Dx|;
ey ← |Cy −Dy|;
if (ex = 0 and ey = 0) then

Route the packet to local node and exit;
else

Avail Dir set← minimal routes();
Min Path set← minimal routes();
//minimal routes() returns directions nearer to the
packet’s destination
if (SL > 0) then

if (ex ≥ 3) then
Avail Dir set = Avail Dir set ∪ {North, South};

end if
if (ey ≥ 3) then

Avail Dir set = Avail Dir set ∪ {East, West};
end if

end if
Avail Dir set = {Avail Dir set - Dirin};

end if
Select a direction Dir with minimal utilization
from Avail Dir set to forward the packet;
if (Dirout /∈Min Path set) then

SL = SL-1;
end if

4. EVALUATION INFRASTRUCTURE
We build a heterogeneous multicore simulator that integrates

both CPUs and GPUs. CPU and the memory hierarchy is mod-
eled after the Simics-based [14] GEMS [15] simulator. And the
GPU cores are modeled after GPGPU-Sim [3]. The intercon-
nection network and its power model is based on Garnet [2]
and Orion 2.0 [10], respectively.

In this work, we simulate a 36-tile heterogeneous system with
65nm technology nodes. The architecture parameters can be
found in Table 1. Tiles are configured to be comparable in size,
and each tile contains approximately 100 million transistors.

The optimal topology of heterogeneous multi-core systems
remains an open question in the computer architecture com-
munity. In this work we choose tile-based architecture since it
provides scalability for managing design complexity and can ef-
fectively utilize the on-chip resources. Figure 6 shows a 36-tile
system connected with routers to a 6x6 mesh network. A tile
consisting of a CPU core as well as an L1 cache is denoted by

Table 1: Baseline Simulation Configuration
Processor
Core

Four-way out-of-order, 6 integer FUs, 4
floating FUs, 128-entry ROB

Private L1
Cache

Split private I/D caches, each 64KB, 2-
way set associative, 64B block size, 1-
cycle access latency

Shared L2
Cache

16M banked, shared distributed, 4-way
set associative, 64B block size, 8-cycle ac-
cess latency

SM Core 32 width SIMD pipeline, 1024 threads,
8CTA, 16KB shared memory, Round
Robin warp scheduling

Memory 4GB DRAM, 200 cycle access latency, 4
memory controllers

Router 5 Input/output ports, 4-stage Pipeline,
6 VCs/port, wormhole routing, 64-bit
flits, 4-flit buffer depth, 1 flit per control
packet, 9 flits per data packet

Figure 6: Baseline heterogeneous multi-core system

C. A tile that consists of a bank of shared L2 cache is denoted
by L2, and a tile in which a GPU SM resides is denoted by
G. Off-chip memories are connected via memory controllers la-
beled with M. Components within each tile are connected with
a flexible pipeline router R, and on-chip traffic is transmitted
via routers and links. The rationale for the topology lies in that
if we consider four tiles as a cluster (circled with dashed line),
except for clusters with memory controllers providing off-chip
access, each cluster contains one CPU computation core, one
L2 cache and two co-processors, namely SM cores. This struc-
ture can be easily extended to a larger system with more tiles,
and enables parallelism in finer granularity. Instead of provid-
ing CPU and GPU cores with separate networks, sharing the
same network guarantees reasonable on-chip resource sharing.
An alternative would be all of the components within a cluster
sharing a single router, resulting in fewer routers. However,
network bandwidth becomes a bottleneck in this design. Al-
though wider links can be provided to guarantee the bi-section
bandwidth, energy overhead increases quadratically with the
link width.
Restricted by the network size and topology, multiple detours

in a single non-minimal path do not provide additional benefits
in the evaluated network. Thus, we only consider non-minimal
path with a single detour. However, our algorithm can be ex-
tended to multiple detours in a larger system with a different
topology.

4.1 Workloads
We use CPU applications from the SPEC OMP 2001 [1]

and Nu-MineBench [19] benchmark suites and GPU applica-
tions from [3] for our evaluation. We consider 6 CPU bench-
marks and 5 GPU benchmarks, where CPU benchmarks in-
clude: Afi, Ammp, Art, Equake, Kmeans, and Scalparc;
and GPU benchmarks include: BlackScholes, Lps, Lib, Nn
and Bfs. The CPU benchmarks are grouped into memory-
bound (Art, Ammp, and ScalParC) and computation-bound
(Equake, Kmeans, andAfi) based on their L1 cache miss rate.

(a) Network energy (b) GPU Application Performance (c) CPU Application Performance

Figure 7: Comparison of energy efficiency and performance impact for all application mix categories. Baseline corresponds to
network using canonical four-stage-pipeline routers without DFVS, minimal path adaptive routing. DVFS corresponds to network
using flexible-pipeline routers with DVFS technique deployed, minimal path adaptive routing. DVFS+Detour corresponds to
network using flexible-pipeline routers with DVFS technique deployed, non-minimal path adaptive routing. Speedup is defined as
cycles per instruction. All results are normalized to Baseline.

GPU benchmarks are grouped into latency-tolerant (BlackSc-
holes and Lps) and latency-intolerant (Lib, Nn, and Bfs)
based on the amount of slack they are able to tolerate. Het-
erogeneous GPU-CPU workload is created by executing mul-
tiple copies of the CPU benchmakrs on multiple CPU cores
and one GPU kernel across all SM cores. In each simulation,
we sample a period of execution that corresponds to one bil-
lion CPU instructions. We enumerate all possible combina-
tions of the CPU and GPU workloads and evaluate 30 work-
load mixes. The results are presented in four categories: (I)
memory-bound CPU and latency-tolerant GPU benchmarks;
(II) computation-bound CPU and latency-tolerant GPU bench-
marks; (III) memory-bound CPU and latency-intolerant GPU
benchmarks; and (IV) computation-bound CPU and latency-
intolerant GPU benchmarks.

5. EXPERIMENTAL RESULTS
In this section, we evaluate a heterogeneous multicore system

as described in Section 4, with flexible-pipeline routers [23] as
described in Section 3.1. We extend the system with DVFS sup-
port (Section 3.2) and non-minimal path routing (Section 3.3),
and evaluate their impact on NoC energy consumption as well
as overall system performance.

Figure 7(a) shows that the impact of DVFS and non-minimal
path routing on NoC energy consumption depends on the work-
load mix. The impact is most significant for workload mix in
Categories I and II: compared to the Baseline, DVFS can re-
duce network energy consumption by up to 14%; incorporating
non-minimal path routing further reduces energy consumption
by 7%. It is worth pointing out that workload mixes in Cate-
gories I and II demonstrate additional energy saving from non-
minimal path routing, while workload mixes for Categories III
and IV do not. This is because GPU workloads in Categories
III and IV cannot tolarate slack, and thus are unable to ben-
efit from non-minimal path routing; whereas GPU workloads
in Categories I and II can tolerate slack and are able to bene-
fit. Although non-minimal path routing penalizes GPU pack-
ets’ transmission latency, its performance impact is minimal, as
shown in Figure 7(b). However, DVFS does degrade GPU per-
formance for workload mixes in Categories III and IV. This is
because GPU workloads in these mixes cannot tolarate latency,
and reducing NoC operating frequency increases congestion and
latencies. It is possible to change energy/performance trade-off
using different DVFS triggering thresholds.

DVFS degrades CPU application performance, as shown in
Figure 7(c), mainly due to the increase in network congestion.
Although flexible-pipeline routers avoid packet transmission de-
lay in the absence of network congestion, they cannot eliminate
congestion. Non-minimal path routing have minimal impact
on CPU performance, with the exception of Category I work-
load mixes. This performance penalty is introduced by con-
gestion caused by detoured packets. Prioritizing CPU packet
can potentially eliminate this impact. However, since this per-

formance impact is relatively small, packet prioritization is not
evaluated in this paper.
Among all four categories, the second category, namely, the

mix of computation-bound CPU and latency-tolerant GPU ap-
plications, suffers from the least performance penalty whereas
energy savings is the most significant. This is because of the
inherent low utilization in some of the routers for light memory-
bound CPU applications. Even if GPU packets are detoured
via these routers, there is less likelihood that router utilization
exceeds the threshold that requires a boost in frequency. In
this sense, low utilized routers remain low in utilization while
busy routers are released, leading to more energy reduction.
To sum up, DVFS becomes the potential performance bottle-
neck in heterogeneous systems with significant throughput re-
quirement, while non-minimal path routing can be selectively
adopted to achieve better energy efficiency.

Table 2: Percentage of detoured packets
BlackScholes LPS BFS NN LIB

15.193% 5.287% 0.853% 0.002% 0.000%

Table 2 shows the percentage of the packets that are de-
toured in different applications averaged across all categories.
Both BlackScholes and LPS, applications we classified into
the latency-tolerant category, show higher percentage of de-
toured packets. This result is consistent with our methodology
of exploiting GPU slack suggested in Section 2. The number of
packets that are routed with non-minimal paths is proportional
to the number of packets that have slack. Allowing more pack-
ets to be sent through non-minimal paths guarantees a higher
possibility of balancing the network traffic, which potentially
enables network frequency scaling.

6. RELATED WORK
DVFS has been widely investigated to allow the network to

operate at various frequencies. Previous work in [11,12,21] has
specifically focused on link latency/power. Mishra et al. [17]
enabled DVFS on NoC routers to reduce the network power
consumption. Flexible-pipeline [23] and variable-pipeline [8,16]
routers are also proposed to save network energy while mitigat-
ing the latency penalties brought by network frequency reduc-
tion. Our work differs from previous work in that, we apply
the DVFS technique in addition to flexible-pipeline routers,
allowing aggressive voltage/frequency scaling without causing
significant performance degradation.
The concept of CPU packet slack was presented in [6], and

they proposed an arbitration mechanism for system perfor-
mance optimization by predicting packet slack. Our work dif-
fers from [6] in that we predict the slack for GPU packets and
use the predicted slack information for energy optimization in
heterogeneous multi-core systems.
Adaptive and multi-path routing have been well studied. [22]

introduced a global adaptive load-balanced routing algorithm,

in which the adaptive decisions are based on the length of
injection queues. [9] and [13] proposed dynamic routing algo-
rithms that judiciously switch between deterministic and adap-
tive routing schemes. Both software [4] and hardware [18]
multi-path routing approaches have been proposed, enabling
full exploitation of on-chip interconnection resources.

7. CONCLUSION
The energy consumption associated with data communica-

tion in an NoC can correspond to a significant portion of sys-
tem energy in future heterogeneous multi-core processors. In
particular, with large input/output buffers, static router energy
consumption can be significant when operating at a high volt-
age and frequency. Diverting heavy traffic from busy routers
and amortizing it over the entire NoC enables these routers to
operate at a lower frequency with DVFS support, and in turn
reduce overall energy consumption. In this paper, we have
explored this opportunity with traffic generated by cores that
tolerate memory latencies through context switching between
threads, such as GPU cores. Our results show that in a tile-
based heterogeneous multi-core system containing both CPU
and GPU cores, it is possible to reduce NoC energy consump-
tion by up to 14% with DVFS and adaptive routing. Routing
traffic that is not sensitive to network latency to a longer and
slower route can avoid busy routers at the cost of higher net-
work latency. Supporting non-minimal path routing enables
more routers to operate at a lower voltage and frequency, and
thus further lower NoC energy consumption. In particular, for
GPU applications with larger packet slack, we achieve up to
7% additional energy saving. Compared to DVFS, detouring
packets in NoCs has a minimal impact on system performance
as measured by the speedup of the cores.

Acknowledgment
This work is supported in part by grants from National Science
Foundation under CNS-0834599, CSR-0834599, CPS-0931931,
and CCF-0903427, a contract from Semiconductor Research
Cooperation under SRC-2008-TJ-1819. We would like to thank
all anonymous reviewers for their constructive comments that
help improve the quality of this paper.

8. REFERENCES
[1] SPEC OMP2001. Available at http://www.spec.org/omp/.

[2] Agarwal, N., Peh, L.-S., and Jha, N. Garnet: A Detailed

Interconnection Network Model inside a Full-system Simulation

Framework. Tech. Rep. CE-P08-001, Princeton University, 2008.

[3] Bakhoda, A., Yuan, G., Fung, W., Wong, H., and Aamodt, T.

Analyzing CUDA Workloads Using a Detailed GPU Simulator. In

2009 IEEE International Symposium on Performance Analysis

of Systems and Software(ISPASS) (2009), pp. 163–174.

[4] Chen, G., Li, F., and Kandemir, M. Compiler-directed Channel

Allocation for Saving Power in On-chip Networks. In Conference

record of the 33rd ACM SIGPLAN-SIGACT symposium on

Principles of programming languages(POPL) (2006), pp. 194–205.

[5] Chiu, G.-M. The Odd-Even Turn Model for Adaptive Routing.

IEEE Transactions on Parallel and Distributed Systems 11, 7

(2000), 729–738.

[6] Das, R., Mutlu, O., Moscibroda, T., and Das, C. R. Aergia:

Exploiting Packet Latency Slack in On-chip Networks. In

Proceedings of the 37th annual international symposium on

Computer architecture(ISCA) (2010), pp. 106–116.

[7] Duato, J. A New Theory of Deadlock-free Adaptive Routing in

Wormhole Networks. IEEE Transactions on Parallel and

Distributed Systems 4, 12 (1993), 1320–1331.

[8] Hirata, Y., Matsutani, H., Koibuchi, M., and Amano, H. A

Variable-pipeline On-chip Router Optimized to Traffic Pattern. In

Proceedings of the Third International Workshop on Network on

Chip Architectures(NoCArc) (2010), pp. 57–62.
[9] Hu, J., and Marculescu, R. DyAD - Smart Routing for

Networks-on-Chip. In Proceedings of the 41st Design Automation

Conference(DAC) (2004), pp. 260–263.

[10] Kahng, A., Samadi, K., Li, B., and Peh, L.-S. ORION 2.0: A Fast

and Accurate NoC Power and Area Model for Early-Stage Design

Space Exploration. In Proceedings of the Conference on Design,

Automation and Test in Europe(DATE) (2009), pp. 423–428.

[11] Kim, E. J., Yum, K. H., Link, G. M., Vijaykrishnan, N., Kandemir,

M., Irwin, M. J., Yousif, M., and Das, C. R. Energy Optimization

Techniques in Cluster Interconnects. In Proceedings of the 2003

international symposium on Low power electronics and

design(ISLPED) (2003), pp. 459–464.

[12] Lee, S. E., and Bagherzadeh, N. A Variable Frequency Link for a

Power-aware Network-on-Chip (NoC). Integration, the VLSI

Journal 42, 4 (2009), 479–485.

[13] Li, M., Zeng, Q.-A., and Jone, W.-B. DyXY - A Proximity

Congestion-aware Deadlock-free Dynamic Routing Method for

Network-on-Chip. In Proceedings of the 43rd Design Automation

Conference(DAC) (2006), pp. 849–852.

[14] Magnusson, P., Christensson, M., Eskilson, J., Forsgren, D.,

Hallberg, G., Hogberg, J., Larsson, F., Moestedt, A., and

Werner, B. Simics: A Full System Simulation Platform. Computer

35, 2 (2002), 50–58.

[15] Martin, M. M. K., Sorin, D. J., Beckmann, B. M., Marty, M. R.,

Xu, M., Alameldeen, A. R., Moore, K. E., Hill, M. D., and Wood,

D. A. Multifacet’s General Execution-driven Multiprocessor

Simulator (GEMS) Toolset. SIGARCH Computer Architecture

News 33, 4 (2005), 92–99.

[16] Matsutani, H., Hirata, Y., Koibuchi, M., Usami, K., Nakamura,

H., and Amano, H. A Multi-Vdd Dynamic Variable-Pipeline

On-Chip Router for CMPs. In Proceedings of the 17th Asia and

South Pacific Design Automation Conference(ASP-DAC) (2012),

pp. 407–412.

[17] Mishra, A. K., Das, R., Eachempati, S., Iyer, R., Vijaykrishnan,

N., and Das, C. R. A Case for Dynamic Frequency Tuning in

On-chip Networks. In Proceedings of the 42nd annual

IEEE/ACM International Symposium on

Microarchitecture(MICRO) (2009), pp. 292–303.

[18] Murali, S., Atienza, D., Benini, L., and De Micheli, G. A Method

for Routing Packets Across Multiple Paths in NoCs with In-Order

Delivery and Fault-Tolerance Gaurantees. VLSI DESIGN 2007

(2007), 1–11.

[19] Narayanan, R., Ozisikyilmaz, B., Zambreno, J., Pisharath, J.,

Memik, G., and Choudhary, A. MineBench: A Benchmark Suite

for Data Mining Workloads. In 2006 IEEE International

Symposium on Workload Characterization (2006), pp. 182–188.

[20] Nickolls, J., and Dally, W. The GPU Computing Era. Micro,

IEEE 30, 2 (2010), 56–69.

[21] Shang, L., Peh, L.-S., and Jha, N. K. Dynamic Voltage Scaling

with Links for Power Optimization of Interconnection Networks. In

Proceedings of the 9th International Symposium on

High-Performance Computer Architecture(HPCA) (2003),

pp. 91–102.

[22] Singh, A., Dally, W., Towles, B., and Gupta, A. Globally

Adaptive Load-Balanced Routing on Tori. Computer Architecture

Letters 3, 1 (2004).

[23] Zhou, P., Yin, J., Zhai, A., and Sapatnekar, S. S. NoC Frequency

Scaling with Flexible-pipeline Routers. In Proceedings of the 2011

international symposium on Low power electronics and

design(ISLPED) (2011), pp. 403–408.

