
Abstract— A key component of the smart grid is the ability to 
enable dynamic residential pricing to incentivize the customer 
and the overall community to utilize energy more uniformly.  
However, the complications involved require that automated 
strategies be provided to the customer to achieve this goal.  This 
paper presents a solution to the problem of optimally scheduling 
a set of residential appliances under day-ahead variable peak 
pricing in order to minimize the customer’s energy bill (and also, 
simultaneously spread out energy usage).  We map the problem 
to a well known problem in computer science – the multiple 
knapsack problem – which enables cheap and efficient solutions 
to the scheduling problem.  Results show that this method is 
effective in meeting its goals. 

Index Terms—Cost Function, Dynamic Scheduling, Multiple 
Knapsack Problem (MKP), Optimization, Smart Grids. 
 

I. INTRODUCTION 
With ever-increasing and imbalanced electrical demands, there 
is a clear realization that further efficiencies can and must be 
achieved by embedding intelligence into the power grid. Since 
1982, the growth in peak demand has exceeded transmission 
growth by almost 25% every year [1]. This growing demand 
for electricity and the steep increase in the power consumption 
of a household arising as a result of various technological 
improvements, pose a stiff challenge to the future electricity 
distribution systems. The smart grid has emerged as a solution 
that provides benefits to all parties involved: to the utilities 
because it provides better demand management, to the 
customer because of its potential for economy, and to the 
environment because of the ability to reduce greenhouse gas 
emissions. 

The European Technology Platform Smart Grids (ETP 
Smart Grids) defines smart grids as “electricity networks that 
can intelligently integrate the behavior and actions of all users 
connected to it – generators, consumers and those that do both 
– in order to efficiently deliver sustainable, economic and 
secure electricity supplies” [2]. The smartness in the design of 
the infrastructure of a smart grid is attributed to allowing the 
users to play a significantly larger role in optimizing and 
reducing their power consumption thereby increasing the 
efficiency of the system. Estimates show that smart electricity 
grids should reduce CO2 emissions in the EU by 9% and the 
annual household energy consumption by 10% [2]. 

There are numerous technical issues involved in enabling 
smart grid infrastructure, and this paper will focus on the 
problem of managing and scheduling residential power 
demand under a dynamic pricing system. 

The idea of dynamic pricing is a key component of the 
residential smart grid, where the utility creates a time-varying 
rate structure over time. The user is given more responsibility 
wherein s/he determines and controls when s/he needs a 
particular appliance in his household.  Moreover, as locally-
generated power at the residential level proliferates (e.g., 
through home solar panels), the residential user is provided 
with an opportunity to supply excess electricity back to the 
grid, with monetary compensation. This local generation and 
use of power through renewable sources of energy helps 
reduce the overall carbon footprint and greenhouse gas 
emissions.  

Strategies for reducing the cost of residential power of 
include reducing the power consumption or shifting the 
temporal profile of power consumption to consumption at 
cheaper times, where possible [3]. Within the framework of 
this paper, we do not aim to reduce the power consumption of 
a household, but instead study how the power consumption of 
a household can be shifted to off-peak hours so that the user 
benefit financially, and the load on the system is better 
balanced through the day. This behavior is incentivized 
through pricing strategies: incentives are provided to the users 
who are willing to move in their appliances to off-peak hours 
though dynamic pricing.  Shifting consumption in this way is a 
powerful strategy: the Pacific Northwest National Laboratory 
states that existing U.S. power plants could meet the electricity 
needs of 73% of the nation’s light vehicles (i.e., cars and small 
trucks) if the vehicles were replaced by plug-ins that recharged 
at night. Such a shift would reduce oil consumption by 6.2 
million barrels per day [1]. 

There are several variants of dynamic pricing [16]: 
• Time of use pricing establishes a variable price structure 

for peak, shoulder, and off-peak hours.  These prices are 
typically established well in advance, e.g., a year ahead. 

• Real-time pricing allows the prices to change on an 
hourly basis, based on market demand. 

• Variable peak pricing is a hybrid of the two, and 
establishes variable pricing in the day, defined a day 
ahead. 

Various pilot projects have tested the notion of dynamic 
pricing based on real-time pricing and variable peak pricing, 
and it has been concluded that customers show exhibit price 
responses within this environment that provides mutual benefit 
to all [17].  

We focus, in particular, on the model of day-ahead variable 
peak pricing. Under this model, the benefit to the smart grid 
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depends on how effectively it is able to shift the appliances to 
the off-peak hours. In the context of near-future power 
consumption patterns, smart scheduling approaches are 
becoming particularly significant.  For example, the advent of 
plug-in hybrid electric vehicles (PHEVs) is anticipated to 
place a significant and large load on the grid; however, in 
many cases, customers will need the vehicle to be charged 
during some period between a customer-specified start and 
end time (e.g., between 9pm and 9am).  Smart scheduling 
algorithms can reduce the impact on the global grid by 
distributing this charging period and/or charging the vehicle 
during noncontiguous time slots. 

Several algorithms and techniques have been proposed in 
the context of scheduling under dynamic residential pricing. 
Pedrasa et al. [4] use a modified form of coevolutionary 
particle swarm optimization (CPSO) with stochastic repulsion 
amongst particles, referred to as CPSO-R, for their scheduler. 
The scheduler determines when various devices in the 
household need to co-ordinate with each other to increase the 
benefits (during the peak-load hours) and when they can 
operate independently (at times when coordinating with each 
other does not add significant value). However, stochastic 
optimization techniques can be computationally expensive.  If 
performed locally within the home, they may require 
significant computational resources; if performed offline, the 
combined computation associated with a large number of 
homes may be very significant.   

Mohsenian-Rad et al. [5] present a game-theoretic approach 
to solving this problem.  As outlined earlier, smart scheduling 
has the potential to benefit all players.  Through their analysis, 
referred to as energy consumption scheduling (ECS), devices 
work with current pricing policies to choose a schedule, while 
the prices are set by the cumulative demand at any time of the 
day. The consumers within the community aim to reach an 
equilibrium condition, the Nash Equilibrium, which provides 
the globally optimal solution to the scheduling problem, while 
providing considerable cost savings to the community as a 
whole.  However, this work does not consider dynamic 
effects, such as rates of response for the pricing structure and 
for consumption.  If the pricing structure changes too rapidly, 
the settling time for achieving the Nash equilibrium may be an 
issue; if it changes too slowly, it may not predict the demand 
on a specific day. 

In other work, Hatami et al. [6] introduce a quasi-dynamic 
pricing function and build a scheduler that can work with 
interruptible tasks, i.e., tasks that need not be run in 
contiguous intervals of time. Sianaki et al. [7] introduce a 
single knapsack problem based approach to achieve energy 
efficient consumption in smart grids by mapping the 
scheduling problem to a standard dynamic programming 
model, the knapsack problem. The authors take into account 
the preference of the consumers within a community before 
determining the schedule. The appliances are prioritized by the 
respective consumers and this priority function of an appliance 
plays an important role when scheduling during peak-load 
hours.  However, under this framework, appliances are chosen 

based on a priority ranking, and completion times for tasks 
cannot be trivially captured or guaranteed. 

In this paper, we develop a formulation that can be used to 
schedule appliances using the multiple knapsack problem 
(MKP) approach. Our schedule has several important features: 
• We consider the effect of must-run services (such as 

lights, refrigerators, etc.) that must always be on and 
cannot be scheduled, as well as tasks that can be flexibly 
scheduled in time. 

• We incorporate the effects of local power generation 
sources in the objective function  

• We consider the case where task deadlines must be 
imposed and permit tasks to occupy noncontiguous time 
slots.  

The rest of the paper is organized as follows: Section II 
formally presents the problem statement, the definition of the 
terminology used in the paper, and shows the mapping from 
the scheduling problem to an instance of the MKP problem. 
The formulation of the deterministic model of our problem is 
explained in section III. The experimental results of are 
discussed in section IV, and the paper is then concluded in 
section V.  

II. PRELIMINARIES 
In this section, we first formally state the parameters of the 
residential scheduling problem, followed by a definition of the 
terminology used within the paper. We then consider the 
multiple knapsack problem (MKP) and discuss the mapping 
between our scheduling problem and an instance of the MKP. 

A. Problem Statement 
This section describes the problem statement, stating the 
requirements on the design of the scheduler.  

The consumers within a smart grid community are charged 
depending upon the net power consumed from the smart grid 
based on a variable peak pricing model. The energy prices for 
a specific period of time is set in advance (e.g., a day ahead). 
Consumers with smart appliances may define allowable 
periods when their appliances are to be used.  Models for the 
specifications include: 
• Must-run schedules for appliances that must be 

operational at all times, such as lights, refrigerators, and 
winter heating in cold climates. 

• Fixed schedules that apply to appliances that must run at 
specific fixed times 

• Flexible schedules that apply to appliances that must run 
for a specified amount of time, anytime within a flexible 
interval. 

The goal of the approach is to optimally schedule the 
operating times of all appliances so that they meet the 
constraints imposed by the list above, while minimizing the 
electricity bill for the household.  The household may contain 
a mix of smart appliances that can be scheduled and 
appliances without inbuilt intelligence, which are manually 
operated.  For the purposes of this work, we consider only the 
scheduling of smart appliances.  The schedules for manually 



operated appliances, if available, can be provided as limited 
time fixed must-run applications. 

Thus the goal of the scheduler is to schedule the appliances 
within the household to minimize the electricity bill, while 
contending with constraints such as the preferences of the 
user, the price model, and the requirement that all the 
appliances must be scheduled within the given time frame. 

B. Key terms and Notation 
Cost function: The cost function Cost(t) represents the cost of 
consumption of a certain amount of energy at a time instant t. 
It is assumed that variable peak pricing is followed where the 
cost function varies with the time in the day. Generally the 
cost of power consumption is high during the peak-hours 
(evenings and mornings) and is considerably low during 
periods of low power usage (afternoons and late nights); 
exceptions to these scenarios correspond to examples such as 
heat waves, where energy consumptions in the afternoon may 
be large.  Day-ahead pricing, combined with weather 
forecasts, provides utilities with the tools to vary these prices 
in a quasi-dynamic way.   
 Practically speaking, the cost function is implemented as a 
discrete piecewise-constant cost function, Costij, as illustrated 
in Figure 1.  The per-unit price is altered to discrete values at 
discrete time steps, e.g., at the top of every hour. In our 
exposition, we assume that the time slots are of equal length, 
but it is rather simple to extend this approach to the case 
where the time slot lengths are not the same. 
FIGURE 1: AN EXAMPLE COST FUNCTION, CORRESPONDING TO 

THE COST DATA THAT WILL BE SHOWN IN TABLE II. 
Locally-generated power: This term may include any 
renewable sources of energy such as wind energy or solar 
energy, that is generated on-site. These sources of energy are 
not deterministic but may be reflected by their expected 
values.  Again, weather forecasts may be used to predict these 

values on a day-ahead basis.  

C. The Multiple Knapsack Problem 
In this paper, we map the scheduling problem to a multiple 

knapsack problem. We begin by providing a brief overview of 
knapsack problems. 

The (single) knapsack problem is a combinatorial problem 
where a number of objects, each associated with a value and a 
weight, must be packed into a knapsack of a specific capacity, 
such that the value of the objects within the knapsack is 

maximized.  Single knapsack problems are a standard problem 
template in computer science, and numerous practical 
problems have been mapped on to this problem. The fractional 
version of the knapsack problem can be solved using dynamic 
programming techniques in polynomial time.  The integer 
problem is NP-complete, but a number of efficient 
polynomial-time approximation algorithms are available to 
provide near-optimal solutions [8].  

The multiple knapsack problem (MKP) [8–12] is a 
generalization of the single knapsack problem.  In essence, the 
MKP is a resource allocation problem wherein there is a set of 
m resources (i.e., m knapsacks) and a set of n objects. As in 
the single knapsack problem, each object i in this set of n 
objects has two important attributes associated with it: the 
value of the object and its weight. Every resource (knapsack) j 
has a capacity constraint Cj, which represents the maximum 
weight that the resource can support. The objective of the 
MKP is to find a subset of the objects that can be packed 
within the bins such that the net value of all objects within all 
knapsacks is maximized.  Although the integer MKP problem 
is NP-complete, in practice optimal or near-optimal solutions 
are available in polynomial time or for very reasonable 
runtimes [9,14]. 

D. Mapping the Scheduling Problem to the MKP 
The mapping between our scheduling problem and the MKP is 
now outlined: 
• The m knapsacks correspond to m time intervals where 

the energy price is fixed. 
• The n appliances correspond to n objects that must be 

packed. 
• The weight of each object is the energy Ei consumed by 

appliances Ai in each time slot.  Note that Ei is 
independent of t. 

• The value of the object in a specific time slot is the cost of 
power consumption of the appliance in that time slot, 
defined by the Costij function described in Section IIB.  

• The bin capacity, or the capacity of the knapsack j, 
capacityj, is the maximum energy that can be drawn from 
the grid in any time slot j.  For the customer, this can help 
ensure that the electricity bill can be controlled, and for 
the utility, enforcing this limit ensures that the grid is not 
overstressed; in the absence of this, the customer may 
well always choose the least expensive time slot!  For our 
purposes, we consider this limit on a per-household basis.  
A variation of the problem formulation applies this on a 
per-community basis, but this requires simultaneous 
scheduling of all devices in all households in a 
community, which is onerous and probably not 
worthwhile.  Such constraints can be enforced at other 
points of the smart grid. 

III. MODELING THE OBJECTIVE FUNCTON AND CONSTRAINTS 
The description of the problem formulation is divided into two 
subphases: initially we describe a formulation that schedules 
only the smart appliances, as specified by the consumer. Next, 
we extend to formulation to account for must-run services and 



locally-generated power.  

A. Initial Scheduling 
Let us consider n appliances within a smart grid that has to be 
scheduled in m time slots. Recall that the cost function, 
Cost(t), is a piecewise constant function that reflects the cost 
of power consumption at a time slot t, and that capacity(t) is 
the maximum power capacity in time slot t. Let Treq,i be the 
time that is required by an appliance Ai to complete its task: 
this is specified in units of of the number of time intervals. 
This value of Treq,i will be the same across all time slots for an 
appliance i since the power consumed by the appliance is a 
constant. 

We now present the optimization formulation as a discrete 
linear program that has the form of the MKP.  We introduce 
the Boolean integer variable, Xi(t), defined as 

Xij =
1 if the appliance is on in time slot j
0 if the appliance is off in time slot j
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Here, Xij is an indicator variable that states whether the Costj 
term in slot j should contribute to the cost function or not.  If 
so, this term, which represents the unit cost in that slot, is 
multiplied by the energy usage during that period. 
 
There are several constraints that must be obeyed. 
Specifically: 
Completion constraints are designed to ensure that each task is 
completed during the time period in question (e.g., one day).  
For each appliance i, these can be formulated as: 

Xij = Treq,i
j=1

m

!            (3) 

which states that an appliance i must be provided with enough 
time slots to complete its function.  Clearly, this constraint 
support noncontiguous time slots for various appliances as 
long as the total Treq,i constraint is met. 
Capacity constraints may be used to control the total energy 
usage of a home and help incentivize energy usage that is 
more distributed in time and uniform.  For each time slot j, 
these are stated as 

EiXij ! capacityj
i=1

n

"         (4) 

B. Incorporating Must-run Services and Locally-Generated 
Power 
The formulation is now extended to include the power 
consumed by the must-run services and locally-generated 
power. Let us consider Emj to be the power that is consumed 
by the must-run services at a time slot j. As a result, the energy 
consumption in slot j must be incremented by Emj  for all slots 
j.  The effects of this change are: 
• The total cost of energy goes up by Emj Costj which 

should affect the objective function; however, since this 

adds a constant quantity to the objective function, the 
function to be minimized is unchanged from (2). 

• The capacity constraint is altered since an amount Emj of 
the capacity is utilized in time slot j by must-run services. 
This implies that the capacity constraint changes to: 

EiXij ! capacityj
i=1

n

" #Emj
      (5) 

Clearly, for a meaningful solution, it is necessary to ensure 
that  
capacityj !Emj " 0  

i.e., that the must-run services use energy that is under the 
capacity at any time slot j. 

The role of locally-generated power is dual to the role of must-
run services.  If Pgj represents the power that is generated by 
the local power source at time slot j, then this amount 
subtracts from the total cost of energy, and using the same 
argument as above, the objective function is left unchanged.  
 An interesting case is the situation where the value of the 
locally-generated power, Pmj, exceeds the demand (equation 
(2)) in slot j.  In this case, the power is sold back to the utility, 
and the goal of minimizing the objective function still 
achieves the goal of maximizing the dollar gains to the 
homeowner of selling electricity back to the grid. 

In addition to the above, locally-generted power alters the 
capacity constraint, which now becomes 

EiXij ! capacityj
i=1

n

" #Emj +Pgj        (6) 

The overall optimization problem can be stated using the 
objective in (2), and constraints corresponding to (1), (3), and 
(6). 

 
FIGURE 2: RESULTS FOR THE SIMPLE EXAMPLE 

IV. AN EXAMPLE 
We test our formulation initially for a small case study with 

a small number of appliances and time grids and then enlarge 
the case study to schedule a larger set of appliances within an 
entire day. The specifics of the small example are as follows:  
Appliances: Two appliances, A1, A2 
Time discretization: 4 time slots, T1. T2, T3, T4 
Energy usage: E1 = 10 units, E2 = 20 units 
Task time requirements: Treq,1 = 3, Treq,2 = 2 
Capacity of each time slot: capacity1 = capacity2 = 30 units
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X2j (t)! 20! 20! 0! 0!
X1j (t)! 10! 10! 0! 10!
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Cost during each time slot: 
Cost1 = 10   
Cost2 = 20   
Cost3 = 30   
Cost4 = 20   

For simplicity, we set 
Must-run usage = Locally-generated power = 0 in all slots 
As seen earlier, these parameters simply affect the right-hand 
side of the capacity constraints, and can be considered as 
alterations to the capacity. 
The optimization problem can then be formulated as: 

minE1 X11 !Cost1 + X12 !Cost2 + X13 !Cost3 + X14 !Cost4( )+
       E2 X21 !Cost1 + X22 !Cost2 + X23 !Cost3 + X24 !Cost4( )

 

subject to: 
E1X11 +E2X12 +E3X13 +E4X14 ! capacity1 "Em1 +Eg1

E1X21 +E2X22 +E3X23 +E3X24 ! capacity2 "Em2 +Eg2

X11 + X12 + X13 + X14 = Treq,1
X21 + X22 + X23 + X24 = Treq,2
X21,X22,X23,X24 # {0,1}

 

The optimal solution for this problem is shown in Figure 2: 
appliance A1 operates in slots 1, 2, and 4, while appliance A2 
operates in slots 1 and 2. Clearly, it meets the requirements 
Treq,1 and Treq,2 as well as the capacity constraints. It can be 
seen that the schedule evades any consumption in the most 
expensive slot, slot 3, and fully uses the least expensive slot, 
slot 1, and that the tasks are scheduled in interruptible 
fashions. 

V. SIMULATION AND RESULTS 
The optimization problem formulated above was solved using 
the What’sBest solver [14]. What’sBest is an add-on to 
Microsoft Excel and allows building large linear, non-linear, 
integer, or stochastic optimization models within a 
spreadsheet.  

 
Time slot 

j 
Costj capacityj Emj Egj 

1 100 500 50 20 
2 200 500 0 10 
3 300 500 50 20 
4 200 500 0 0 
5 100 500 100 0 
6 400 500 50 0 
7 200 500 50 0 
8 300 500 0 0 
9 100 500 50 0 

10 200 500 0 30 
11 200 500 0 30 
12 300 500 0 30 
13 200 500 0 20 
14 200 500 50 20 
15 200 500 50 10 
16 300 500 0 10 

TABLE II: DESCRIPTION OF THE TIME SLOTS 
We apply our solution to a testcase with 18 appliances and 

16 time slots.  The parameters for the appliances are described 
in Table I, and the characteristics of the time slots are 
described in Table II.  The capacity constraint at each of the 
16 time slots is uniform and is set to 500 units. 

The results of the optimization are shown in Figure 3.  The 
figure at left is a stacked bar chart, where the x-axis lists the 
time slots from 1 to 16, and the y-axis lists the energy usage.  
The small bars below the x-axis correspond to locally-
generated power.  The energy usage of all appliances is added 
up to create the height of the stack: it is easily seen that the 
capacity constraint of 500 units is met at each time slot, and 
that electricity usage is uniform, except for a few time slots. 
This achieves the goal of forcing the customer to make energy 
usage more uniform across the day. 

 
 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 
Treq,i 3 2 1 2 3 2 1 2 3 1 2 3 3 1 2 3 1 2 
Ei 100 200 150 250 50 100 200 150 250 50 200 300 100 300 200 150 200 150 

TABLE I: APPLIANCE PARAMETERS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 3: RESULTS FROM AN 18-APPLIANCE, 16-TIME-SOLOT PROBLEM. THE STACKED BAR CHART AT LEFT SHOWS THE ENERGY 
USAGE OF THE APPLIANCES, AND THE FIGURE AT RIGHT SHOWS THE COST PER UNIT (BLUE) AND THE TOTAL USAGE PER TIME SLOT. 

 



We explore the low-usage time slots in the right part of 
Figure 3.  The x-axis represents time and shows the 16 time 
slots.  The two plots show the cost (blue) and the total energy 
usage (red) in each time slot.  We focus on the four time slots 
(#3, #6, #12, and #16) with nonmaximal usage: it can be see 
from the blue bars and from Table II that these correspond to 
the highest Costi values.  Since the goal of the optimization is 
to minimize customer cost, these slots are left ununsed or 
underused.  

VI. CONCLUSION 
We have presented an approach to enable residential energy 
scheduling under a dynamic pricing paradigm.  Our 
experiments show that the method is effective in encouraging 
uniformity in the energy profile in the home. 
 Further constraints can easily be built into this system: 
although these have not been shown here.  One example is 
when a customer wishes to constrain the time range in which a 
specific task is scheduled by specifying a preference.  This is 
quite simple to incorporate into the current system by reducing 
the number of Xij variables: if an appliance is not to be 
scheduled in a specified slot, the corresponding Boolean 
variable is set to zero (and is therefore not a variable).  This, in 
fact, makes the optimization simpler since it reduces the 
number of variables. Another example: we have enabled 
scheduling with interruptible tasks and sufficiently large time 
slots, but a customer may wish for some appliances to be 
scheduled in contiguous time slots (e.g., laundry tasks).  In 
this connection, for finer-grained scheduling, fractional time 
slots with contiguous scheduling may be desirable. We expect 
to include this in future work 
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