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Abstract— As across-chip wire delays exceed a clock cycle, interconnect
pipelining becomes essential. However, the arbitrary insertion of flip-flops
can change the differentials of latencies along paths in the circuit, and
this can cause the implemented circuit to have a different functionality
than was intended by the designer. Although it is possible to use design
techniques that maintain the functionality of the circuit, an additional
concern is a reduction in the throughput. This may be overcome by
careful choices at various stages of design that impact the across-chip
wire latencies. This paper surveys the published work on wire-pipelining,
describes its impact on circuit as well as system level throughput, and
outlines some of the problems to be resolved in formulating a wire-
pipelining centric strategy for physical design.

I. INTRODUCTION

The fraction of the interconnect delay in the shrinking system clock
period has been increasing across process generations, and became
dominant in the deep submicron (DSM) regime, where interconnects,
in particular, those whose used for across-chip communication, have
become a major bottleneck in determining the system performance.
Even the theoretically best optimizers cannot ensure that the delay of
a long global wire does not exceed a clock period [1]. This scenario,
which is further aggravated by increasing die sizes [2], has caused
researchers to look into alternative design methodologies that will
enable multicycle across-chip communication, so that across-chip
interconnect is removed from all the timing constraints, and the chip
speed is determined by the most critical intra-block/local combina-
tional path, in order to continue employing higher frequencies.

One solution is to provide a slower clock for the flip-flops latching
signals from global wires, whose delays exceed the system clock
cycle. However, the practicality of this approach is challenged by in-
creased clock routing complexity, and accomplishing synchronization
between the clock domains. Another approach is to adopt Latency
Insensitive (LIS) [3] methodology, where each of the modules (called
“pearls”) comply a prespecified latency insensitive protocol, and are
surrounded by wrappers (called “shells”) which communicate with
other modules through internally pipelined elements called relay sta-
tions comprising memory elements and some control logic. A related
approach, Globally Asynchronous Locally Synchronous (GALS) [4],
uses handshake protocols for inter-module communication. However,
both GALS and LIS methodologies have yet to find widespread use,
partly due to the lack of adequate CAD support, and partly because
they entail a massive change in design practice, which designers are
reluctant to embrace.

Another alternative is to employ wire-pipelining, where the delay
of an interconnect is distributed over several clock cycles by inserting
flip-flops. For instance, a corner-to-corner wire of length 4cm in
a 2cm×2cm chip has a projected delay of 1.4ns [1] in 70nm
technology, which puts an upper bound of about 700MHz on the
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operating frequency. To operate the chip at a frequency of, say, 3GHz
(corresponding to a clock period of 0.33ns), the delay of the wire
can be spread over four clock cycles by inserting four flip-flops on
the wire. Though it complicates the clock network routing, wire-
pipelining, besides allowing higher operating frequencies, enables
designers to remain in the purview of the traditional VLSI design
methodology. Although such aggressive insertion of flip-flops in a
circuit permits higher operating frequencies, there are several issues
associated with wire-pipelining:

• The arbitrary introduction of extra flip-flops into a circuit can
alter its cycle level behavior, requiring correction.

• Even if the above is corrected, an increase in the number of
clock cycles required for each computation can result in reduced
throughput.

In particular, the latter brings into question the utility of operating
at a higher frequency at all, since it is possible that the use of
a lower frequency, with a lower degree of wire-pipelining, may
actually increase the overall throughput. Therefore, while a traditional
methodology, augmented with wire-pipelining, can still be employed
in nanometer technologies, the focus, particularly of physical design,
must be throughput-centric. The next sections of this paper describe
various aspects of wire-pipelining, including the abovementioned
problems, and also outline the challenges faced in achieving a wire-
pipelining aware physical design.

II. TECHNIQUES FOR WIRE-PIPELINING

We will begin by surveying the literature on optimally determining
the locations of memory elements on a single multicycle interconnect
net. It is reasonable to assume that the delay of an optimally buffered
interconnect varies linearly with its length [5]. If we can determine
the maximum length of a wire whose delay is within a clock period,
called critical sequential length in [6], then the number of clock
cycles required by a signal traveling the length of a particular wire
can be estimated as the ratio of its length to the critical sequential
length. The authors of [7] use this idea to pipeline an interconnect for
a given clock cycle time. The approach uses the Elmore delay model
to analytically compute the minimal number of buffers required to
optimize the delay of a wire of a certain length, and from this,
estimate the critical sequential length.

Two other recent works [8], [9] approach wire-pipelining at the
global routing level. The technique of [8] finds a wire-pipelining
solution to optimize a given interconnect topology such as a Steiner
tree [5]. This approach extends the dynamic programming based
buffer insertion algorithm of [10] by augmenting the buffer library
with flip-flops. Given a Steiner tree, target clock period, required
times at each of the destinations, candidate buffer/flip-flops insertion
locations, a buffer and flip-flop library, the algorithm finds an optimal
assignment of flip-flops and buffers on the buffer locations, which
minimizes the number of flip-flops between the source and the latest



destination of the net. In [9], wire-pipelining is handled in conjunction
with global routing. The approach, based on the fast path algorithm
[11], is to simultaneously route and insert buffers and flip-flops to
optimize a two pin wire. The algorithm transforms the chip area
into a grid graph, where the edges and vertices corresponding to
the given blockages are deleted, and finds a minimal latency route
from the source to the sink of the net. The solution involves the
propagation of wave-front from a vertex to its neighbors, similar to
maze routing [5]. Both of the approaches use distributed Elmore wire
delay models, and keep track of multiple partial solutions at every
step and use techniques to prune inferior solutions to decrease the
search space.

III. WIRE-PIPELINING AWARE DESIGN

The methods described in Section II can serve as aids in the
evolution of a wire-pipelining aware design strategy for circuits in
the nanometer era. Specifically, the approaches estimate the number
of clock cycles and optimization elements (buffers and flip-flops) re-
quired by a particular wire/net, which will facilitate the formulation of
new design objectives at various levels of the existing methodology,
such as logic synthesis and physical design.

A. Wire-retiming
Initial research attempts focused on retiming to integrate wire-

pipelining. Retiming [12] is a transformation which involves reposi-
tioning of registers in a circuit primarily to reduce the clock period.
A number of efficient algorithms for retiming a circuit have been
proposed in the last decade. However, most of them assume that
wire delays are negligible as compared to those of the devices or
gates of the circuit. With the dominant nature of wire delays in the
DSM designs, this is an unrealistic assumption. This gained attention
in the research community in the last couple of years and resulted
in approaches such as [13]–[15], which extend retiming by including
the wire delays, given a placement, besides the gate delays, in the
formulation. The objective of [13], [14] is to minimize the clock
period of a circuit by retiming flip-flops into the critical wires of
the circuit. While [13] focuses on gate level net-lists, [14] handles
block level layouts such as System-On-Chip (SOC) circuits. In [15],
retiming is combined, at floorplanning level, with module selection.
The work assumes multiple implementations for each module, each
with a different latency and area, for a given frequency specification,
and this is captured by a area-delay curve, where the area reduces
as latency increases. The objective is to choose an implementation
for each module that minimizes the area of the floorplan subject to
a lower bound on each wire latency.

B. Frequency constrained wire-pipelined circuits
The advantage of the above retiming-based implementations is that

the functionality of the circuit is not altered. On the other hand, since
retiming merely moves around the existing latencies in a circuit and
preserves cycle latencies and input-output latencies in the circuit,
there is a lower bound on the achievable clock cycle time that depends
on the latencies that are available in the circuit. In other words, it is
quite possible that the use of retiming-based methods may prevent
the specified clock period from being met.

An alternative approach, which avoids this limitation, can have the
following design flow. After the blocks of the circuit are designed
subject to a clock frequency, a block-level placement of the circuit is
performed. Wire-pipelining is then carried out on the global wires of
the circuit, and this may insert flip-flops on a wire if the delay of the
wire exceeds a clock cycle. However, such a method is tantamount to
arbitrarily inserting extra flip-flops in a circuit, which can change the

functionality of the circuit. After the wires of a circuit are pipelined,
the following two problems must be resolved:

• The latencies of the cycles of the circuit may increase.
• There may be nonuniform increases in the latencies of different

paths to a block from the inputs of the circuit.
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Fig. 1. A circuit with inputs a and b; y and z are the input ports of B0.
(a) The circuit before pipelining its wires. (b) The circuit after pipelining its
wires.

Figure 1 depicts a circuit comprising two combinational logic
blocks B0 and B1, which also form the cycle C, before and after
pipelining the wires of the circuit. The two scenarios are labeled
ckti and cktp, as shown in Figures 1(a) and 1(b), respectively. The
insertion of an extra flip-flop on C increases its latency to 2 in cktp

from 1 in ckti. Hence, the output of each block of C propagates back
to itself after 1 clock cycle in ckti, whereas it takes an extra clock
cycle in cktp, thus altering the original functionality of the cycle.
Moreover, with the insertion of an extra flip-flop between a and y,
the inputs a and b reach y and z, respectively, after an equal number
of clock cycles in cktp, which is not the case in ckti. Hence, ckti

and cktp are not functionally equivalent.
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Fig. 2. A solution to the problem shown in Figure 1.

Wire-pipelining can therefore result in a totally different mi-
croarchitecture. This is not the desired result and therefore, must
be corrected. A few methods for correction [16], [17] have been
proposed recently. The technique of [16] lies in ensuring that every
block receives its inputs at the correct clock cycle. For increased cycle
latencies, an approach similar to the c-slow concept of [12] is used.
The idea is to slowdown the input issue rate of the circuit by some
factor ρ, i.e., inputs are allowed to change only every ρth clock cycle.
For instance, the cycle C of cktp will be functionally equivalent to
C of ckti, if the inputs a and b are permitted to change only every
other clock cycle in cktp. As a result, cktp computes its outputs
only every 2 clock cycles, causing a reduction in the throughput. For
a general cycle, slowdown ρ required by the cycle in wire-pipelined
circuit is the ratio of the initial and wire-pipelined latencies of the
cycle. Moreover, if the ratio is not an integer, it is rounded to the
nearest highest integer, since ρ represents the number of clock cycles
between successive input changes.

In general, a circuit may have more than one cycle and each of
these may require a different slowdown. The critical cycle, which
requires the maximum slowdown, sets the lower bound for the
slowdown required for the entire circuit, since the latencies of other
cycles can be increased to match this slowdown. Obtaining minimal
ρ is an instance of Maximum Cycle Ratio (MCR) Problem [18], as
shown in [16]. As the circuit computes its outputs only every ρ clock
cycles, the frequency speedup obtained by pipelining the wires of a
circuit does not entirely translate into the performance speedup, and
is reduced by a factor of ρ.
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In addition, the latency difference between any two paths to a
block from the inputs of a circuit must also be maintained in its
wire-pipelined version. However, the slowdown has implications on
the path latencies of a wire-pipelined circuit. For example, the latency
difference of the paths a → y and b → z in ckti must be amplified
by a factor of ρ = 2 in cktp, since it receives its inputs only every
2 clock cycles . Therefore, since the latency difference between the
paths b → z and a → y is 1 in ckti, 2 extra flip-flops must be
inserted on the path b → z in cktp, as shown in Figure 2.

In [17], an alternative approach, in the lines of latency insensitive
design style, for functional correction is proposed. The technique
is based on the software pipelining model of [19], which involves
obtaining a schedule for each block. Similar to [16], the method han-
dles increased cycle latencies by slowing down the circuit. However,
unlike [16], fractional values are allowed for ρ, thus yielding a better
throughput. To accomplish this, each block is provided with a shift
register based clock gating mechanism. For example, a slowdown of
ρ = 3

2
indicates that each block of the circuit must receive the clock

signal only twice every 3 clock cycles, and this can be achieved by
gating the clock signal for a clock cycle. Similar to [16], slowdown
affects the input-path latency differences. In addition, a fractional
slowdown can result in fractional slacks for some paths, and this is
solved by inserting fractional synchronizers in the circuit.

C. Impact on system level performance metrics

Wire-pipelining has a different kind of performance impact on
microprocessors, such as superscalar processors. The execution time,
Texec, of a program on a processor is the product of three terms:

Texec = num instr · CPI · Tclk (1)

where CPI is the average number of clock cycles per instruction
and Tclk is the clock cycle time. In general, CPI may vary across
different programs executed on the processor, based on the instruction
mix executed, the accuracy of the branch predictor, if used, etc.
Furthermore, even for the same program, CPI can change with the
input set executed. Several superscalar processor simulators such as
SimpleScalar [20] have been widely used in academia and industry
to estimate the CPI for a given architecture and a given set of
programs, most commonly benchmark programs such as SPEC [21].
Such simulators permit optimizations at software (compiler) as well
as hardware (microarchitecture) levels, and execute a program cycle
by cycle.

The way that wire-pipelining is interpreted in the microprocessor
context is different from how it is considered for a general logic cir-
cuit. For a given program and an input set, the number of instructions,
num instr, is invariable1. Pipelining the buses of a microprocessor
can be absorbed internally by the processor through, for instance,
pipeline stalls. This may increase some operation latencies, branch
misprediction and cache miss penalties, etc., thus increasing the CPI,
while allowing higher operating frequencies. For instance, an extra
latency on a wire between a reservation station [20] and an integer
ALU effectively increases, by one, the latency of all of the integer
ALU operations in the program. In such a scenario, the correction
primarily involves adjusting the operation and stall latencies. In
microprocessors, the throughput metric is the CPI, unlike MCR
for a general circuit, and this can be determined by incorporating
wire-pipelining models in the chosen simulator and cycle-accurate
simulations on the selected set of programs and input sets.

1Compiler level optimizations may affect num instr, however.

D. Impact on physical design

It must be clear from the discussion of Sections III-B and III-C
that wire-pipelining can degrade the throughput of a circuit, indicating
the necessity for a throughput optimal design strategy [22]. Since the
latency of a wire is determined by the positions of the corresponding
blocks and the routing of the wire, the throughput, CPI or MCR, can
be reduced by using better objective functions in physical design,
which will attempt to reduce the lengths of throughput critical wires.
This marks a clear deviation from the traditional design flow, where
the design goals are, in general, reducing a weighted sum of area
and total wire-length. The change can start at the floorplanning level,
where the objective may be to find a CPI/MCR optimal block level
placement, in addition to minimizing the total wire-length. This can
be propagated to the next levels, such as pin assignment and global
routing, as shown in Figure 3, which also lists some of the operations
that are affected at the corresponding stage. For instance, the goal of
the global routing step may be to minimize the congestion along
the routes of the throughput-critical wires. In some cases, where
pin assignment or routing is realized net-by-net, the nets may be
processed in the decreasing order of throughput criticality.

Floorplanning

Pin Assignment

Global Routing

Total wire-length

Net-ordering

Rip-up/Re-route, Congestion

Fig. 3. Higher stages of physical design, and some of the optimization steps
impacted by wire-pipelining.

Most of the published work so far has focused on floorplanning.
In [23], the objective of the Simulated Annealing (SA) based floor-
planner used is to minimize MCR. Since SA involves a huge number
of moves, given the complexity of computing MCR, it is impractical
to evaluate this parameter at every SA step. This issue is approached
by assuming that each of the blocks contributes a latency of 1, in
which case, cycles formed by a fewer number of blocks are critical
than those formed by a relatively higher number of blocks. To model
this, for each wire, a weight inversely proportional to the size of the
shortest cycle it belongs to, is assigned. The cost function of SA is
the weighted sum of wire latencies.

Other recent works [24], [25], also at floorplanning level, focus
on microprocessors to reduce CPI. Similar to [23], [24] and [25]
heuristically evaluate throughput of a given layout, CPI in this case.
While the SA based floorplanner of [24] uses a Look Up Table (LUT)
to estimate the CPI at each step, [25] captures the throughput with an
assignment of weights to the buses, determined from cycle-accurate
simulations, and the weight of each bus is proportional to the number
of data transfers along the bus.

IV. CHALLENGES AHEAD

There has been a good progress towards wire-pipelining awareness
at the floorplanning level [23]–[25], and each of these can be
extended to other physical design stages such as pin assignment and
routing. However, the problem lies in the accuracy of the throughput
estimations of these methods. For instance, in [24], an LUT of size
50-100 as mentioned in the paper, may not be accurate enough to
estimate the CPI of thousands of candidate layouts traversed during
SA. On the other hand, the use of access ratios to optimize a layout,
as in [25], does not necessarily model the quantitative impact of bus
latencies on CPI. For example, the impact of a branch misprediction
may change across different penalty values for the same program.
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Regarding [23], the assumption that short cycles are dominant may
not be true in general, and therefore may not work for all circuits.
A prototype of a design flow, similar to that of [23]–[25], is shown
in Figure 4. The physical design stages use the throughput, MCR or
CPI, determined by the estimator to optimize the layout. If the results
are not satisfactory, a few microarchitectural changes may be made
and the whole process can be repeated. In such a design flow, the
following lists some of the problems to be solved:

Frequency

Throughput Estimator Physical Design

Layout

µ-architecture

Fig. 4. Wire-pipelining aware physical design.

• Throughput estimation: This, clearly, is the bottleneck in
the design flow of Figure 4. For microprocessors, each cycle-
accurate simulation typically consumes a huge amount of time,
with some programs executing for days. Several time reduction
techniques have been proposed in the literature, such as fast
forwarding, reduced input sets, etc., to simulate only represen-
tative parts of a program. However, the cost of doing this is
reduced accuracy of the results. The runtime-accuracy tradeoffs
must be carefully evaluated, based on the number of simulations
required to build cost functions. In addition, there is need to
focus on methods to reduce the number of simulations, without
compromising the accuracy.

• Frequency-CPI tradeoff: The material presented so far caters
to the fixed frequency designs, where the only optimization
variable is CPI/MCR. It is also possible to explore the frequency-
throughput tradeoff as shown in [26], again at floorplanning
level. This method does not assume wire-pipelining, however.
For wire-pipelining case, in [25], where the bus access ratios
are invariable across clock frequencies, iterative of floorplanning
is suggested, with a different frequency at each iteration. In
general, wire-pipelining complicates the scenario when explor-
ing frequency-CPI tradeoff. This may not be of prime concern,
however, since in most cases, the frequency is a strict constraint
given to the designer, and the job of the designer is to achieve
the maximum possible performance subject to that constraint.

• Power consumption: Power, both switching and leakage, can be
affected by wire-pipelining in a number of ways. For instance,
power increases as the number of flip-flops inserted increases.
Furthermore, throughput and power consumption of a circuit can
vary in contrasting ways, suggesting a tradeoff. For example,
while pipeline stalls affect CPI, techniques such as clock gating
can reduce the effect on power consumption. On the other hand,
there could be some power intensive operations, which execute
on blocks with huge logic. In such a case, even when a few
number of such operations are executed, the power consumption
may be high, and this may not be the case with CPI.

• Buffer explosion: The number of buffers and flip-flops required
to optimize the wires of a circuit increases exponentially as the
technology advances, as shown in [6].

• Local interconnect: As the circuit complexity and clock fre-
quencies increase, at some point, the individual blocks become
big enough, and the local wire delays can exceed a clock cycle.
In such a scenario, it may be wise to reduce the granularity by
splitting each block into sub-blocks.

V. CONCLUSION

With the dominating nature of global interconnect, wire-pipelining
has become essential in high-frequency design. However, unless
it is carefully applied, it can alter the functionality of a circuit.
Corrective techniques may be used to avoid this, but the increased
cycle/operation latencies can reduce the throughput of the circuit.
Therefore, considerable research must be carried out in developing
throughput-sensitive physical design techniques that ensure, from
early stages of the design cycle, that the performance impact of wire-
pipelining is low.
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