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Abstract
In this paper, two problems on domino logic synthesis are ad-

dressed. A mapping method that maps the complementary logic
cones independently when AND/OR logic is to be implemented,
and together using dual-monotonic gates in the case of XOR/XNOR
logic, is proposed. The results show up to 28.9% improvement in
area and always show the same or better performance in delay
over existing approaches. Then, a 0-1 integer programming for-
mulation is provided for the output phase assignment problem for
domino logic. It considers the cost difference between two polar-
ities and enables a standard linear programming package to be
used to solve the problem. The results show up to 41.0% improve-
ment in area.

1 Introduction
Domino logic is one of the most effective circuit configura-

tions for implementing high speed logic designs. A major problem
in domino logic synthesis is related to its non-inverting property.
This feature necessitates logic duplication of the nodes of an input
network for which both polarities of a logic signal are required, as
illustrated in Figure 1.
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Figure 1: Logic duplication in domino logic synthesis

The manner in which the logic duplication problem is handled
is the main factor that influences the quality of the domino logic
synthesizer. In this paper, two issues related to logic duplication
in domino logic are addressed. The first is the issue of mapping
the duplicated logic using dual-monotonic gate mapping and the
second is the problem of reducing the duplication cost, for which
a 0-1 programming formulation of the output phase assignment
problem is presented.

2 Dual-monotonic gate mapping
2.1 Dual-monotonic logic

A dual-monotonic gate is a merged gate that generates both
negative and positive polarities of a logic signal [1]. A typical
dual-monotonic two-input XOR gate is shown as Figure 2. The
logic used to implementa � b and ā � b share the same transistor,
D. Due to the complementary relations betweena and ā, a sneak
path betweenO1 andO2 can be prevented. While dual-monotonic
implementations of XOR logic use a smaller number of transistors
than duplicated gates, this is not true for all logic functions. In-
deed, implementations of most common dual-monotonic gates do
not share as many transistors as the XOR gate.
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Figure 2: An example of a dual-monotonic gate

2.2 Previous work and motivation
A domino gate implementation of an input network often re-

quires the synthesis of both positive and negative signals at many
nodes due to the unateness requirements; this is known as dual-rail
logic. A logic function and its complement can be built as two
separate gates or as one merged gate (a dual-monotonic gate).

Recently, several papers on domino logic synthesis have ap-
peared [2–4]. All of them follow the synthesis methodology pro-
posed in [2] in which dual-rail logic cones are independently mapped.
This approach has the advantage of maintaining the mapping flex-
ibility of each polarity. However, the presence of an XOR func-
tion and its recovergence property will decompose the input net-
work into very small mapping trees, which causes a large area
and delay cost for tree-by-tree technology mapping. On the other
hand, dual-monotonic XOR is a widely-used configuration in man-
ually designed domino networks; its application to synthesis of
domino logic can effectively solve the above problem. Therefore,
we propose a mapping method that can make use of the advantages
of both cases by mapping dual-rail AND/OR logic independently
with standard domino gates, and mapping XOR/XNOR logic with
merged dual-monotonic gate.

2.3 Dual-monotonic mapping algorithm
The method consists of the following steps:

Step 1 Generate a DAG network of two-input AND/OR gates for
the given circuit.

Step 2 Recognize the XOR/XNOR logic inside the DAG by pat-
tern matching. If both positive and negative polarity of XOR/XNOR
logic are required, the XOR/XNOR logic networks are col-
lapsed into one XOR/XNOR node to be implemented as a
dual monotonic gate.

Step 3 Perform the technology mapping on the AND/OR/XOR/
XNOR subject network, mapping AND/OR nodes to the
standard domino gates and XOR/XNOR nodes to various
dual-monotonic gates.

The last step of the dual-monotonic mapping algorithm is tech-
nology mapping on an AND/OR/XOR/XNOR network. During
technology mapping, all possible matchings are enumerated at each
network node. While the traditional mapping patterns can be ap-
plied to AND/OR nodes, the matching patterns available to XOR/XNOR



nodes need to be considered. One single XOR/XNOR node can be
mapped to a XOR dual-monotonic gate. Moreover, the flexible
configurations of dual-monotonic gates enable the exploration of
more matching patterns at XOR/XNOR nodes. For example, the
matching pattern of Figure 3(a) in the network corresponds to a
three input XOR gate as Figure 3(b).
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Figure 3: Matching pattern 1: three input XOR gate

The matching pattern of Figure 4(a) corresponds to the dual-
monotonic gate as Figure 4(b). It is obtained by replacing the tran-
sistors D and G in Figure 2 by NMOS subnetworks.
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Figure 4: Matching pattern 2: arbitrary AND/OR/XOR logic

In this work, we incorporate the above issues in the parameter-
ized mapper in [4], but any other mapper may easily be adapted
for this purpose.

3 Output phase assignment using 0-1 ILP

3.1 Previous work and motivation
The output phase assignment problem was first addressed and

solved in [5]. The problem was defined as follows: Given a com-
binational logic network and all primary inputs in the true and
complemented form, choose an optimal phase (i.e., polarity) as-
signment for the primary outputs so as to require minimal logic
duplication for obtaining inverter free logic.

In [5], given an input network, the network is divided into the
region that must be duplicated and region whose duplication cost
can be minimized by output phase assignment, referred to as the
optimizable logic region. The fanout nets in the optimizable logic
region are called candidate nets. The problem of finding optimal
output phase assignment to minimize the duplication of optimized
logic region was formulated as 2SAT unate covering problem and
solved by using binary decision diagrams.

Our solution to the output phase assignment problem improves
[5] in the following aspects.

In our mapper, the output assignment problem is formulated
into a 0-1 integer programming problem and a standard linear pro-
gramming package can be used to solve the problem.

The objective of our phase assignment problem is to minimize
the implementation cost of the mapped network instead of mini-
mizing logic duplication in the unmapped network, as in [5]. From
our observation, the output phase assignment accomplishes the ob-
jective of reducing implementation cost through several factors.
Reducing logic duplication is one such factor, and the cost differ-
ence between the implementations of positive and negative polar-

ity logic is another important consideration of output phase assign-
ment. SupposeW andH are the constraints on the width(maximal
number of parallel chains) and height(maximal number of series
chains) of the NMOS pull-down network of domino gate, respec-
tively. Due to the absence of a complementary PMOS network
in domino gate, domino gates usually have largeW with limited
H, which causes the cost difference between implementations of
positive and negative polarity.

For example, given the constraints thatH = 2 andW = 4, the
logic network of Fig 5(a) will be mapped to three domino gates
while its complement in Fig 5(b) requires only one domino gate.
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Figure 5: The cost difference of positive and negative polarity

3.2 Algorithm outline
The algorithm can be outlined as follows:

1. Decompose the network into a disjoint set of trees and obtain
the area cost estimation of each tree by counting number of
nodes in the tree or performing tree-by-tree mapping on the
network. The area cost of a tree is assigned to the root node
of the tree,u, as the weightC(u).

2. Find the optimizable logic region using the method of [5];
build a DAG from the multiple fanout nodes of the optimiz-
able logic region.

3. Write out the 0-1 integer linear programming formulation
and solve it.

3.3 0-1 ILP for minimal duplication cost
Given an input network, a DAGG(V;E) can be built as follows.

Each vertexv 2 V corresponds to a multiple fanout or a primary
output node in the optimizable logic region of input network. If
vertexu is a literal node of a tree rooted at vertexv in the original
input network, there is a corresponding edgeeu;v 2 E in DAG.

In the DAG, several constants are assigned to an edge or a node
from the original input network. These include:

� O(u;v), which represents the inversion polarity between
vertexu and vertexv. If there is an even number of inverters
from vertexu to vertexv in the input network,O(u;v) is 0;
otherwise,O(u;v) is 1.

�C(u), which represents the area cost of the tree whose root
is at vertexu in the input network.

� k(u), a constant whose value is twice the number of fanout
of vertexu.

The f0, 1g integer variables that will be included in the 0-1
programming formulation include:

� r(u) = 1 if there is an inverter moving from the inputs of
nodeu towards the outputs of nodeu; else 0.



� x(u;v) = 1 if there is an inverter on the edgeeu;v after the
outputphase assignment; else 0.

� y(u;v) is a dummy variable that transforms a condition
statement into a linear constraint.

� q(u) = 1 if the fan-in tree of nodei needs to be duplicated;
else 0.

The weight of an edgeeu;v after output phase assignment, de-
noted byw(u;v) is given by

w(u;v) =O(u;v)+ r(u)� r(v) (1)

SinceO(u;v), r(u), r(v) 2 f0;1g, w(u;v) takes a value in the set
f�1;0;1;2g. If w(u;v) = 0 or 2, it represents the absence of an
inverter between nodeu and nodev. If w(u;v) = �1 or 1, then
there is one inverter between nodeu and nodev. Therefore, this
may be captured by the condition

x(u;v) =

�
0 w(u;v) 2 f0;2g
1 w(u;v) 2 f�1;1g (2)

The above condition may be rewritten as a linear equation.

w(u;v)+x(u;v) = 2�y(u;v) (3)

wherey(u;v) 2f0;1g is a dummy variable introduced to transform
a condition statement into a linear constraint.

Combining the equations (1) and (3), we have

2�y(u;v)�x(u;v) =O(u;v)+ r(u)� r(v) (4)

If there is an inverter at any position in the fanout cone of a
nodeu, the node will have to be duplicated to ensure the unateness
property for domino logic. This condition can be given by the
linear formula

q(u)�k(u)� ∑
i2dir�succ(u)

(x(u; i)+q(i))� 0 (5)

It can be illustrated as Figure 6. Here,i 2 dir�succ(u) implies
that there is an edge from nodeu to nodei in the DAGG(V;E) de-
fined in Section 3.3. The constantk(i) was defined earlier and can
easily be verified to always be larger than∑i2dir�suc(u)(u)(x(u; i)+
q(i)). This formula implies that if any of its successors needs to be
duplicated, or if there is one inverter at the output edges of nodeu,
nodeu will have to be duplicated asq(u) is forced to be 1; other-
wise the objective function will forceq(u) to 0.
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Figure 6: 0-1 programming constraints

Therefore, the output phase assignment problem can be formu-
lated as the 0-1 integer linear programming problem:

minimize ∑u2V C(u)�q(u)

subject to

2�y(u;v)�x(u;v) =O(u;v)+ r(u)� r(v) 8eu;v 2 E

q(u)�k(u)�∑i2dir�succ(u)(x(u; i)+q(i))� 0 8u2V

q(u); r(u) 2 f0;1g 8u2V

y(u;v);x(u;v) 2 f0;1g 8eu;v 2 E

3.4 0-1 ILP for minimal implementation cost
This section modifies the 0-1 formulation of Section 3.3. to

incorporate the cost difference between positive and negative po-
larity implementations to obtain the minimal implementation cost.

In addition to the notation defined in 3.3, the symbols that will
be used include:

Z(u) is a constant that represents the cost difference between
optimal implementation of each of the two polarities. If the im-
plementation cost of positive[negative] polarity of the nodeu is
p(u)[n(u)], then the value ofZ(u) = p(u)�n(u).

We introducet(u) as a variable that help to maximizer(u). Its
value can be expressed as follows.

t(u) =

�
0 q(u) = 1

r(u) q(u) = 0 (6)

Similarly, we also define a variables(u)to minimizer(u) as

s(u) =

�
0 q(u) = 1

1� r(u) q(u) = 0 (7)

There are three possibilities for each node after output phase
assignment. A node will either be duplicated, implemented in pos-
itive polarity, or in negative polarity. In the case of no duplication
at nodeu, if Z(u) > 0, it costs less to implement the node with
negative polarity; ifZ(u) < 0, it is better to implement the node
u with positive polarity. Hence, using the previous definitions of
q(u) andr(u), the problem can be expressed as

if q(u) = 0 and Z(u)> 0;maximizer(u);

if q(u) = 0 and Z(u)< 0;minimizer(u):

The first statement can be expressed by linear equations

minimize �Z(u)� t(u)

subject to t(u)� 1�q(u)

t(u)� r(u)

q(u); r(u);t(u) 2 f0;1g; if Z(u)> 0;

Whenq(u) = 1, t(u) is forced to 0. Hence, there is no limit
on r(u) and the duplication cost is given byC(u)�q(u). When
q(u) = 0, r(u) is forced to be as large as possible since the negative
value of�Z(u). When polarity preferences of two nodes conflict
with each other,Z(i) is the weight that decides which node should
win. Similarly, the second statement can be captured by

minimize Z(u)�s(u)

subject to s(u)� 1�q(u)

s(u)� 1� r(u)

q(u); r(u);s(u) 2 f0;1g; if Z(u)< 0



Combining with the linear equations of section 3.3, the 0-1 ILP
formulation of the output phase assignment problem for cost min-
imization can be rewritten as

minimize∑
u2V

C(u)�q(u)� ∑
Z(u)>0

Z(u)� t(u)+ ∑
Z(u)<0

Z(u)�s(u)

subject to

2�y(u;v)�x(u;v) =O(u;v)+ r(u)� r(v) 8eu;v 2 E

q(u)�k(u)� ∑
i2dir�succ(u)

(x(u; i)+q(i))� 0 8u2V

t(u)� 1�q(u); t(u)� r(u) 8Z(u)> 0

s(u)� 1�q(u); s(u)� 1� r(u) 8Z(u)< 0

q(u); r(u);t(u);s(u) 2 f0;1g 8u2V

y(u;v);x(u;v) 2 f0;1g 8eu;v 2 E

4 Experimental results
The above algorithms are implemented using C++ and incorpo-

rated into the framework of the parameterized mapper of [4]. The
experiments were executed on the LGSynth91 multi-level combi-
national circuit sets. All of the input circuits are optimized with
script:ruggedof SIS and targeted to the area minimization. In the
result tables, the results are presented in terms of area and delay,
where the area is estimated as the transistor count while the delay
is estimated by a coarse measure that counts the number of gate
levels.

4.1 Dual-monotonic gate mapping
All of results in Table 1 were obtained from domino gates with

the limits ofW = 4;H = 4, whereW andH is as defined in Sec-
tion 3.1. A comparison of our dual-monotonic gate mapping re-
sults with [4] are shown in Table 1. The second column shows
the results obtained from the basic parameterized mapping algo-
rithm of [4]. Column 3 contains the results obtained from the dual-
monotonic mapping algorithm of section 2 while Column 4 shows
the corresponding area reduction. Column 5 reports the number of
XOR/XNOR gates detected in the circuits. The execution time of
both algorithms are almost same and are less than 10 seconds for
all circuits.

From the results, we can see that in the circuits with significant
XOR substructures, the dual-monotonic gate mapping is quite ef-
fective. The presence of dual-monotonic gates can help to reduce
the gate level of the input circuits in some case.

Table 1: Dual-monotonic gate mapping
Circuits Basic Dual-mono Reduct #XOR

area/delay area/delay %

b9 254/5 254/5 0 % 0
c8 279/6 279/6 0 % 0

count 287/9 287/9 0% 0
i6 761/3 761/3 0 % 0

C880 1163/20 1051/20 9.6 % 16
C1355 1824/9 1360/7 25.4 % 72
C1908 1978/18 1588/14 19.7 % 50
C2670 1944/12 1729/12 13.7 % 40
C3540 4527/23 4241/20 6.3 % 38
C6288 13702/71 10629/57 28.9 % 419
C7552 7919/18 6613/16 16.6 % 213

rot 1774/10 1772/10 0.1 % 1
dalu 2347/13 2338/13 0.4% 3
k2 2884/16 2884/16 0 % 0
des 9945/10 9843/10 1.0 % 51

4.2 Output phase assignment
Table 2 shows the efficacy of our 0-1 programming output phase

assignment algorithms. To demonstrate the influence of cost dif-
ference between two polarities to total implementation cost, the
domino gates were restricted toW = 8 andH = 2.

Column 2 contains the number of primary output in the cir-
cuits. Column 3 lists the results when the output phase assignment
are not used. Column 4 shows the results when 0-1 formulation of
3.3 is applied. Column 5 shows the results obtained by incremen-
tal 0-1 programming formulation in 3.4 while Column 6 shows the
corresponding area reduction. We use the linear program solver
l p solve2:3 [6] to solve the 0-1 integer linear programming for-
mulas. All of the benchmarks can solved in under one minute with
no or minor simplification of 0-1 ILP except for the 0-1 program-
ming problem for Circuit k2, which is too large to yield the result
in reasonable time.

It was observed that in some circuits such as dalu, the cost re-
duction by output phase assignment mainly comes from the du-
plication cost reduction; in some circuits such as i6 and b9, the
implementation cost difference between two polarities becomes
the most significant consideration of output phase assignment. In
some case, the two objectives of output phase assignment can be
contradictory to each other. In Circuit x1, the optimization for
duplication cost minimization causes a cost increase due to the in-
creased cost of implementing the reversed polarity and increases
the total implementation cost.

Table 2: Output phase assignment using a 0-1 ILP
Circuits #po no-ass opt-ass1 opt-ass2 reduction

area area area %

b9 21 391 389 311 20.5%
c8 18 407 364 330 18.9%
i6 67 1298 1281 766 41.0%

C1355 32 2064 2064 2064 0.0%
C2670 140 2647 2624 2414 8.8%
C6288 32 14257 14257 14252 0.0%
C7552 108 9069 9069 8904 1.8%

rot 107 2332 2296 2196 5.8%
dalu 16 3020 2752 2745 9.1%
k2 45 3974 - - -
des 245 13130 13130 11710 10.8%

apex7 37 833 791 736 11.6%
frg1 3 362 362 362 0%
x1 35 861 927 850 1.3%
x3 99 2381 2360 2100 11.8%

5 Conclusion
In this paper, we have explored a new domino logic mapping

method and proposed a solution to the output phase assignment
problem. It was shown that both methods can reduce the area of
the mapped circuits significantly with very limited computation
overhead. By replacing the area cost of logic trees with power
cost, we expect our 0-1 ILP of output phase assignment can serve
the power minimization objective proposed in [7] similarly.
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