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ABSTRACT

This paper describes a polynomial time algorithm for min-area re-
timing for edge-triggered circuits to handleboth setup and hold
constraints. Given a circuitG and a target clock periodc, our al-
gorithm either outputs a retimed version ofG satisfying setup and
hold constraints or reports that such a solution is not possible, in
O(jV 3jlogjV jlog(jV jC)) steps, wherejV j corresponds to num-
ber of gates in the circuit andC is equal to the number of regis-
ters in the circuit. This is the first polynomial time algorithm ever
reported for min-area retiming with constraints on both long and
short-paths. An alternative problem formulation that takes practi-
cal issues in to consideration and lowers the problem complexity
is also developed. Both the problem formulations have many par-
allels with the original formulation oflong-path onlyretiming by
Leiserson and Saxe and all the speed improvements that have been
obtained on that technique are likely to be valid for improving the
performance of the technique described in this paper.

1. INTRODUCTION

The procedure of moving flip-flops around a VLSI circuit, while
maintaining its functionality, to optimize a performance objective
for the circuit is known as retiming [1]. Retiming was introduced
as an optimization technique for edge-triggered circuits [1] but has
since been extended to handle level-clocked circuits, [2] (see [3]
for detailed list of references). Further extensions of retiming now
include logic synthesis, power optimization and testability [4, 5].
The execution time required to perform retiming has been drasti-
cally reduced in [6].

The thrust of early research firmly established the far reaching
effectiveness of retiming as an optimization strategy for sequen-
tial VLSI circuits, [1, 4, 5]. These techniques, however, included
only the setup time constraints for flip-flops in the circuit and ig-
nored the hold time constraints. Hold-time violations were tradi-
tionally corrected by padding delay buffers in violating short-paths
using techniques such as [7]. However, with short-paths becom-
ing increasingly prominent in deep submicron circuits the num-
ber of such buffers may become inordinately large and there is a
need to incorporate hold-time constraints directly in to a retim-
ing formulation. Recently, a new retiming strategy was presented
[3] which could solve min-period retiming for VLSI circuits with
both setup and hold constraints in polynomial time using a strategy
known as integer monotonic programming. However, there exists
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no straightforward extension of this technique to incorporate min-
area retiming and the nature of the constraints in [3] do not lend
themselves to a fast network flow formulation for a linear objective
function.

In this paper we present a novel technique to perform min-
period and min-area retiming of edge-triggered circuits with setup
and hold constraints. The problem formulation used to perform
min-area retiming is similar to the original retiming framework in
[1] but with constraints to satisfy both long-path and short-path
timing requirements. An alternative problem formulation is then
developed that lowers the problem complexity and may make it
practical for large circuits. As in the result in [3], we assume that
all flip-flops in the circuit have identical values for the setup and
hold times.

Given any edge-triggered sequential circuitG, a target clock
periodc, a setup timeS, and a hold timeH, our algorithm com-
putes a retimed circuitGr in which all long-path and all short-path
constraints are satisfied. If the problem is infeasible for the given
input, it reports so and terminates. The worst case execution time
of our technique is bounded byO(jV 3jlogjV jlog(jV jC)).

The chief advantages of our technique over the technique in [3]
are:
1) An efficient solution to the min-area retiming problem is facili-
tated.
2) The problem formulation is similar to [1] and hence speedup
techniques for min-period constraints in [6, 8, 9] are admissible.

The rest of the paper is organized as follows. We demonstrate
the need to include hold constraints as a part of the retiming prob-
lem in section 2. A graph model for the problem is developed
in section 3. In section 4 we formulate a new set of constraints
to guarantee satisfaction of hold time requirements. Also in sec-
tion 4 we describe an alternative practical approach to solve the
min-area retiming problem that considerably lowers the problem
complexity. Finally, conclusions and directions for future study
are indicated in section 5.

2. MOTIVATIONAL EXAMPLE

In this section we reproduce an example from [3] to demonstrate
that the solution to the retiming problem under setup and hold time
constraints differs from that obtained by conventional retiming al-
gorithms that consider only the setup time constraints.

The sequential circuit shown in Fig. 1(a) has five combinational
logic blocks connected in a ring and two edge-triggered registers.
The pair of integers in each block gives the maximum and min-
imum propagation delay of the data through that block. For ex-
ample, whenever data propagate through block A, they always re-
quire at least1 time unit and never more than10 time units. For
simplicity, each register and wire is assumed to have zero delay,
and in addition each register is assumed to have zero setup time,
and a hold time of4. Moreover, clock skew is assumed to be
zero. Thus, the shortest clock period achievable by this circuit
is 10+30+20 = 60, corresponding to the longest combinational
path,ABC. There are no hold violations in this circuit since the
minimum propagation delays alongABC andDE are7 and5,
respectively, both exceeding the register hold time.
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Figure 1. (a) Original circuit. (b) Retimed circuit with hold viola-
tion. (c) Retimed circuit with no timing violations.

The retimed circuit in Fig. 1(b) is obtained by shifting the reg-
ister k across block C and is functionally equivalent to the one
in Fig. 1(a). This circuit can be computed by applying the retim-
ing algorithm in [1] with a target clock period of46. Since the
longest combinational path in this circuit isCDE with a delay of
20 + 6 + 20 = 46, there are no setup violations in the retimed
circuit. The minimum delay along the pathAB is 1 + 2 = 3 < 4;
therefore, a fast signal propagating alongAB can contaminate the
inputs of registerk and result in erroneous circuit operation.

The retimed circuit in Fig. 1(c) satisfies all setup and hold con-
straints and achieves a clock period of50. This is the shortest clock
period that can be achieved by retiming the original circuit. Our
algorithm will find such an optimal solution in polynomial time.

3. PRELIMINARIES

In this section we will present a graph model to illustrate some
background information on retiming. We model an edge-triggered
circuit as a directed multi-graphG = (V;E; d; �; w; �). For the
purpose of compatibility this model is identical to the one in [3].
Each vertexu in the vertex-set V corresponds to a combinational
logic block. The nonnegative weightsd(u) and �(u) associated
with each vertexu denote the maximum and minimum data prop-
agation delay throughu, respectively. Each edgeu

e
! v in the

edge-setE corresponds to a wire fromu to v in the circuit. All
wires are assumed to have zero delay. For each edgeu

e
! v, the

nonnegative integer edge-weightw(e) denotes the register count

of the corresponding wire fromu
e
! v. All registers in the circuit

are assumed to have equal positive setup timesS and equal posi-
tive hold timesH. Without loss of generality, register delays can
be assumed to be zero.

In addition to the register countw(e), each edgeu
e
! v is asso-

ciated with a weight�(e) that represents the delay in the propaga-
tion of the clock signal from the clock source to the wire denoted
by e. Clock skew is assumed to bemonotonic, that is, the “effec-
tive delay” of a path increases with the number of combinational

gates on it. Given a pathr
ei! u

p
; v

ej
! y, wherep is com-

binational,w(ei) � 1, andw(ej) � 1, the minimum effective
delayof p is given by the expression�(p)+�(ei)��(ej), where
�(p) =

P
x2p

�(x). Clock skew monotonicity is ensured if for

each edge pairr
ei! u, u

ej
! y in E, we have,

�(u) + �(ei)� �(ej) � 0: (1)

A retiming of an edge-triggered circuitG = (V;E; d; �;w; �) is
an integer-valued vertex-labelingr : V ! Z. This labeling de-
notes a transformation of the original circuitG into a functionally
equivalent circuitGr = (V; E; d; �; wr; �), where for each edge
u

e
! v in G, wr is defined by the equation,

wr(e) = w(e) + r(v)� r(u): (2)

In order forGr to bewell-formedfor all edgese 2 E, we must
have,

wr(e) � 0: (3)

A retiming that satisfies (3) is calledlegal. It can be shown that for
any pathu

p
; v, we have,

wr(p) = w(p) + r(v)� r(u); (4)

wherew(p) =
P

e2p
w(e). From (4) it follows that when the

pathp is a cycle, retiming does not change its register count. The
relation in (4) can be used to identify paths that can become critical
after retiming. In order to preserve legality of retiming for all paths
from nodeu to nodev the maximum reduction in the register count
of any pathu

p
; v is given by the expression,

W (u; v) = minfw(p) : u
p
; vg: (5)

Thus, the only pathsu
p
; v that can become combinational (and

possibly critical) inGr are those for whichw(p) =W (u; v) inG.
For each of theO(V 2) vertex pairsu, v in V , the quantity,

D(u; v) = maxfd(p) : u
p
; v; w(p) =W (u; v)g (6)

gives the longest propagation delay fromu to v whenever the re-
timed circuit includes a combinational path between the two ver-
tices. Therefore, the clock period of any retimed circuitGr is
always some element in theO(V 2) size set ofD(u; v)’s.

For the retimed circuitGr to have a critical path under the target
clock period, every combinational path inGr whose propagation
delay exceeds the target clock periodc must be interrupted by a
register. Thus, for each vertex pairu, v in V with D(u; v) > c,
the retimed register countWr(u; v) of each pathu ; v that can
become combinational must satisfy,

Wr(u; v) =W (u; v) + r(v)� r(u) � 1: (7)

TheO(V 2) difference constraints specified by (3) and (7) can be
computed inO(V E+V 2lgV ) steps by an all-pairs shortest-paths
algorithm and can be solved inO(V 3) steps by a Bellman-Ford
algorithm for single-source shortest-paths.



4. TIMING CONSTRAINTS

As techniques to handle setup constraints have been discussed
elsewhere, (e.g., [1]), we will not discuss them here. Hold con-
straints have only been discussed in [3] and we will derive a new
set of requirements for retimed circuits to satisfy hold constraints.

A retimed circuit is free of hold constraintsif and only if there
exists no register-to-register combinational path whose minimum
effective propagation delay is shorter than the register hold time
H.

We will now set out to develop two mathematical formulations,
both of which will model min-area retiming with long as well as
short-path constraints. The first technique we develop (formulation
I) will provide a theoretically sound basis for solving min-area re-
timing with setup and hold constraints undergeneralskew values.
We will then present a practical argument (formulation II) that has
a potential to reduce the problem complexity considerably under
practical situations as it leads to a significant reduction in the num-
ber of constraints.

4.1. Formulation I
For the remainder of the paper we assume, without loss of gener-
ality, that any edge in the given circuit-graphGr has at most one
register on it. Edges with more than one register on them can be
decomposed in to multiple edges, with identical clock-skew, that
connect dummy nodes with zero delay.

We begin by defining a new attribute,critical short-path, for
every pair of edgesei; ej .

Definition 1 For a pair of edgesei; ej and a pathu
ei! x

p
! y

ej
!

v the term�(p)+�(ei)��(ej)�H�(w(p)+w(ei)+w(ej)�1)
is the short-path metric of pathei ! p ! ej . Note that nodesx,

y are included in the pathp. And the pathu
ei! x

pmin! y
ej
! v

with the smallest short-path metric�(pmin) + �(ei) � �(ej) �
H � (w(pmin) + w(ei) + w(ej) � 1) is the critical short-path
containing the edgesei andej .

Theorem 1 A circuit is free of hold time violations if and only
if for every pair of edgesei; ej the critical short-pathp contain-
ing these edges has a non-negative short-path metric, i.e., satisfies
�(p) + �(ei)� �(ej)�H � (w(p) +w(ei) +w(ej)� 1) � 0.

Proof: ()) Consider a path terminated at both ends by edge
triggered registers. Let one register be on edgeei and the other on
ej such that the path is directed fromei

p
! ej . Furthermore, let

there be no other registers on the path fromei
p
! ej . Clearly by

the assumption of ()), �(p) + �(ei)� �(ej)�H � (2� 1) �
0. Hence, the pathp satisfies hold time constraints. Due to the
generality of the pathp, all register to register combinational paths
satisfy hold constraints.

(()We will prove this by contradiction. If possible, assume that
no hold time constraints are violated in the circuit and yet forei

p
!

ej ,�(p)+�(ei)��(ej)�H�(w(p)+w(ei)+w(ej)�1) < 0.
Assume that the path under consideration has the following form

u1
ei! v1

p1
; u2

ei1! v2
p2
; u3

ei2! v3:::un�1
ein�2
! vn�1

pn�1
;

un
ein�1
! vn

pn
; un+1

ej
! vn+1.

There can be four different scenarios that we have to consider.
Case I: Edgesei; ei1 ; :::; ein�1 ; ej have a single register on them
andp1; p2; :::; pn are purely combinational paths. Note that the
case where edges have multiple registers are guaranteed to violate
hold times [3], and hence violate the assumption in (().
Case II: Edgeei has no register on it, and the rest of the conditions
are identical to Case I.
Case III: Edgeej has no register on it, and the rest of the condi-
tions are identical to Case I.
Case IV: Edgesei; ej have no registers on them, and the rest of

the conditions are identical to Case I.
We will prove Case I, and the remaining cases can be proved simi-
larly. In Case I, note that there aren+1 registers in the path under
consideration (including the registers on edgesei andej). Due to
the assumption that all hold time constraints are satisfied we have,

�(p1) + �(ei)� �(ei1) � H; (Path ei ! ei1)

�(pk) + �(eik)� �(eik+1) � H; (Path eik ! eik+1)

1 � k � n� 2;

�(pn) + �(ein�1)� �(ej) � H; (Path ein�1 ! ej): (8)

By adding all the above inequalities we obtain,

nX
k=1

�(pk) + �(ei)� �(ej) � (n)H;

) �(p) + �(ei)� �(ej) �

(w(p) + w(ei) + w(ej)� 1)�H; (9)

where we use the fact thatw(p)+w(ei)+w(ej) = n+1. The last
inequality contradicts our initial assumption, and hence we arrive
at the required proof.

Cases II-IV can be proved similarly by observing the fact that
leading and trailing combinational paths will contribute a nonneg-
ative amount to the expression�(p)+�(ei)��(ej) due to clock
skew monotonicity. Stripping away these leading and trailing com-
binational paths leaves us with Case I.

It follows that after retiming, a circuit will be free of hold time
violations if and only if we can guarantee that for all edge pairsei

andej the critical short-pathu
ei! x

p
! y

ej
! v satisfies,

r(v)� r(u) �
�(p) + �(ei)� �(ej)

H
�

H � (w(p) + w(ei) + w(ej)� 1)

H
: (10)

Due to the fact thatr(v), r(u) are integral, the above constraint is
equivalent to,

r(v)� r(u) �

�
�(p) + �(ei)� �(ej)

H

�
�

w(p)� w(ei)� w(ej) + 1: (11)

Note that the above constraints are simple difference constraints
very much in the manner of the retiming constraints in [1]. This
means that the fast minimum cost network flow algorithms utilized
for solving traditional min-arealong-path onlyretiming can still
be used when hold constraints are included. So as long as we can
identify a critical short-path for every pair of edgesei andej we
can perform min-area and min-period retiming in a manner akin to
that in [1]. Thus the number of constraints we add to the original
retiming framework isO(E2).

Next we will establish aretiming invarianceproperty for the
short-path metric for edge-to-edge cycles for edges with a register
on them.

Property 1 Let e be any edge with a register on it. Any cycle
consisting of edgee has a retiming invariant short-path metric.

Proof: Consider an edgee with a single register on it. Lete be
part of some cycleC = u

e
! x

p
; u

e
! x. The short-path metric

from e-to-e alongC is �(p) + �(e) � �(e) � H � (W (p) +
2w(e) � 1). Now since the pathp includesx andu therefore
�(p) = �(C). Also, sincew(e) = 1 by assumption,W (p) +



2w(e) � 1 = W (p) + w(e) = W (C). Hence, the short-path
metric frome-to-e along cycleC is �(C) � H �W (C). Since
both�(C) andW (C) are retiming invariant, the present short-
path metric is also retiming invariant. Clearly for the hold time
constraints to be satisfiable all edge-to-edge cycles should have a
non-negative short-path metric and hence�(C)�H�W (C)� 0
for all cyclesC in Gr.

Next we will show that the problem of finding a critical short-
path for any pair of edges can be modeled as a shortest path prob-
lem in a graph but with the possibility of negative weight edges in
the graph.
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Figure 2. Illustration showing how to obtain the auxiliary graph
Ga from the circuit-graphGr.

From the original circuit graphGr, we generate an auxiliary
graphGa = (Va; Ea;W

0(Ea)) such that every nodev 2 V (Gr)

has a corresponding node inva 2 Va(Ga). Also every edgeu
ei!

v 2 E(Gr) has a corresponding edgeua
ea
i
! va 2 Ea(Ga). In

addition this edgeeai has a weightw(eai ) 2 W 0(Ea) which has
a value�(v) if ei is register-free and a value�(v) � H if ei has
a register on it. We illustrate the construction ofGa in Fig. 2.

Every acyclic,u to v, pathu
ei! x

p
! y

ej
! v therefore has a

corresponding path inGa with total weight�(p)+�(v)�(w(p)+
w(ei)+w(ej))�H. Note that theshort-path metriccorresponding
to the acyclicei to ej pathp differs from the previously computed
path-weight for the correspondingua to va auxiliary path inGa by
an additive factor�(ei)� �(ej)� �(v) +H. Note also that this
additive factor is the same for allei to ej paths. Therefore aneai
to eaj path with minimum weight inGa identifies anei to ej path
with minimum short-path metricand hence identifies thecritical
short-pathfrom ei to ej in G.

Property 2 If the hold time constraints are satisfiable then the
auxiliary graphGa has no negative weight cycles.

Proof: Now consider a cycleCa in Ga; clearly there must be
a corresponding cycleC in Gr. Also, this cycleC in Gr must
contain at least one register as combinational cycles are illegal in
Gr. Let ei be an edge in this cycleC containing a register. The
cycleC is therefore of the formu

ei! x
p
; u. Now the short-

path metric for this cycle computed fromei to ei is = �(C) �
W (C) � H asw(ei) = 1, from Property 1. On the other hand
the path-weight forCa in Ga is also given by�(C) �W (C)�
H. Hence, a negative weight cycle inGa will imply a register-
to-register cycle with a negativeshort-path metricin Gr. Since
a register-to-register cycle with negative short-path metric implies
unsatisfiability of the hold time constraints from Property 1, so
does a negative weight cycle inGa. Any such cycle can be easily
detected by a Bellman-Ford algorithm withO(V E) complexity.

Therefore we can use an all pair shortest path algorithm on the
auxiliary graph to compute short-path metrics for all pairs of edges
in the circuit graph.

Next, we will setup the min-area retiming problem with setup
and hold constraints. Fanout nodes are handled by using mirror
vertices as detailed in [1]. We call the new algorithm MARSH
(Min-Area Retiming with Setup and Hold constraints).

Algorithm MARSH
0)Objective:
Minimize

P
u2V

(Indegree(u) - Outdegree(u))r(u)

1)Legality constraints: For every edgeu
ei! v,

wr(ei) = r(v)� r(u) + w(ei) � 0: (12)

2)Longpath Constraints: For every edge pairx
ei! u

p
!

v
ej
! y such thatD(u; v)+�(ei)��(ej) � c�S we have,

W (u; v) + r(v)� r(u) � 1: (13)

3)Shortpath Constraints: For the critical short-pathp of ev-

ery edge pairu
ei! x

p
! y

ej
! v we have,

r(v)� r(u) �

�
�(p) + �(ei)� �(ej)

H

�

�w(p)� w(ei)�w(ej) + 1: (14)

r(u) 2 Z; u 2 V

Due to the fact that all the above constraints are difference con-
straints with at most two retiming variables corresponding to two
vertices, many of the constraints will be redundant and by standard
elimination techniques the number of constraints can be brought
down toO(V 2) fromO(E2).

We can use the minimum cost circulation techniques pre-
sented in [10] and MARSH can therefore be executed in
O(jV jjV 2jlogjV jlog(jV jC)) whereC � Number of registers in
the graph. Additionally, we can drastically reduce the number of
min-period constraints by using the speedup methods in [6, 8, 9].

4.2. Formulation II
Recall that the basic requirement to ensure satisfaction of short-
path constraints is that all register-to-register combinational paths
should have a minimum effective propagation delay that exceeds
H. Also, clock skew monotonicity ensures that ifPs is a sub-path
of a pathP then the effective minimum delay ofPs � the effective
minimum delay ofP . The last observation leads to the following:

Theorem 2 A retimed circuit is free of hold time violations if and

only if any path,p = u
ei! x

q
; y

ej
! v satisfies: if�(p) +

�(ei)� �(ej) � H thenwr(p) � 1.

Proof: ()) Assume, if possible that hold time requirements are

satisfied and yet a pathp = u
ei! x

q
; y

ej
! v has�(p) +

�(ei) � �(ej) � H andwr(p) � 2. Clearly, due to clock skew
monotonicity any register-to-register sub-path ofpwill have a hold
time violation.
(() Clearly if any register-to-register pathp = u

ei! x
q
; y

ej
! v

has a hold time violation then�(p) + �(ei)� �(ej) � H while
wr(p) � 2 and hence( is proved.

The potential problem with the above formulation is that for
general values of hold timeH and clock skew�(ei) the number
of constraints may grow exponentially. However, as it turns out,
for the present retiming model to be applicable, the clock skew
value for any edgee must satisfy�(e) � �, i.e., we have a near
zero-skew clock network. Therefore� can be safely assumed to be



restricted to a small number of (say2-3) gate delays; in addition
the value ofH is also limited to about2 gate delays. This implies
that the hold time constraints only need to be enumerated for all
paths over a small number of logic levels. The formulation of our
work and [3] are invalid for largerdeliberatevalues of clock skew
[11] since additional constraints ensuring logic wave separation
[12] need to be included and are beyond the scope of this paper.

The above observations guarantee that the number of constraints
added for ensuring satisfaction of hold time requirements in prac-
tical circuits is significantly less thanO(V 2). This complexity re-
duction can probably be combined with the complexity reduction
in [6] to possibly develop a faster technique for retiming with both
short-path and long-path constraints. We will now summarize the
new formulation that we call MARSH-II as follows:

Algorithm MARSH-II
0)Objective:
Minimize

P
u2V

(Indegree(u) - Outdegree(u))r(u)

1)Legality constraints: For every edgeu
ei! v,

wr(ei) = r(v)� r(u) + w(ei) � 0: (15)

2)Longpath Constraints: For every edge pairx
ei! u

p
!

v
ej
! y such thatD(u; v)+�(ei)��(ej) � c�S we have,

W (u; v) + r(v)� r(u) � 1: (16)

3)Shortpath Constraints: For all pathsp = u
ei! x

q
! y

ej
!

v satisfying�(p) + �(ei)� �(ej) � H we have,

r(v)� r(u) + w(p) � 1: (17)

r(u) 2 Z; u 2 V

5. CONCLUSIONS

We have presented the first polynomial-time algorithm ever re-
ported for min-area retiming with setup and hold constraints. Our
algorithm runs inO(jV 3jlogjV jlog(jV jC)) steps, as described in
section 4. We have also provided a practical argument to show that
the problem complexity can be be reduced considerably by follow-
ing an alternative formulation. In future we plan to study ways to
speed up the present retiming formulation using ideas similar to
[6]. Another interesting area of research could be trying to extend
the formulation to include level-clocked circuits.
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