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ABSTRACT no straightforward extension of this technique to incorporate min-
This paper describes a polynomial time algoritm for min-area refy 27 SR S TR T O SRS A e
timing for edge-triggered circuits to handt®th setup and hold function |
constraints. Given a circu& and a target clock periogd our al- S . .
gorithm either outputs a retimed version@fsatisfying setup and Ir_1 this paper we present a novel tephmque to perfo_rm min-
hold constraints or reports that such a solution is not possible, iR€rod and min-area retiming of edge-triggered circuits with setup

O(|[V3|log|V |log(|V'|C)) steps, wherdV’| corresponds to num- and hold constraints. The problem formulation used to perform
ber of gates in the circuit and 'is equal to the number of regis- min-area retiming is similar to the original retiming framework in
ters in the circuit. This is the first polynomial time algorithm ever L] Put with constraints to satisfy both long-path and short-path

reported for min-area retiming with constraints on both long anc]iming requirements. An alternative problem formulation is then

short-paths. An alternative problem formulation that takes practi‘-jevel.OIOGd that Iow_ers _the prqblem complgxity and may make it
ractical for large circuits. As in the result in [3], we assume that

cal issues in to consideration and lowers the problem complexity . ; L . .
is also developed. Both the problem formulations have many pa all fllp_-flops in the circuit have identical values for the setup and
allels with the original formulation ofong-path onlyretiming by Old_ times. . S

Leiserson and Saxe and all the speed improvements that have bee/PIVen any edge-triggered sequential cirogif a target clock

obtained on that technique are likely to be valid for improving theP€"ode¢, a setup time5, and a hold timef, our algorithm com-
performance of the technique described in this paper. putes a_retlmed cm_:u(_ﬂr in which all Iong-_pa_th anq all short-pat_h
constraints are satisfied. If the problem is infeasible for the given

input, it reports so and terminates. The worst case execution time
1. INTRODUCTION of our technique is bounded 6(|V 3 |log|V |log(|V'|C)).

The procedure of moving flip-flops around a VLSI circuit, while ar;he chief advantages of our technique over the technique in [3]

maintaining its functionality, to optimize a performance objective
for the circuit is known as retiming [1]. Retiming was introduced
as an optimization technique for edge-triggered circuits [1] but ha
since been extended to handle level-clocked circuits, [2] (see [
for detailed list of references). Further extensions of retiming now

include logic synthesis, power optimization and testability [4, 5].th

The execution time required to perform retiming has been drast|ém in section 2. A graph model for the problem is developed

cally reduced in [6]. ' . . in section 3. In section 4 we formulate a new set of constraints
Th'? thrust of earl_y Teseamh flrml_y gstqbllshed the far reachlng) guarantee satisfaction of hold time requirements. Also in sec-
effectiveness of retiming as an optimization strategy for seque&—n

1) An efficient solution to the min-area retiming problem is facili-

) The problem formulation is similar to [1] and hence speedup
chnigues for min-period constraints in [6, 8, 9] are admissible.
The rest of the paper is organized as follows. We demonstrate
e need to include hold constraints as a part of the retiming prob-

. 2 X . ion 4 wi ribe an alternative practical approach Ive th
tial VLSI circuits, [1, 4, 5]. These techniques, however, include ° e describe an altemative practical approach to solve the

only the setup time constraints for flip-flops in the circuit and ig-C in-area retiming problem that considerably lowers the problem

. . . . - ~complexity. Finall nclusions and directions for futur
nored the hold time constraints. Hold-time violations were tradi-, omplexity ally, conclusions and directions for future study

tionally corrected by padding delay buffers in violating short-pathsare indicated in section 5.

using techniques such as [7]. However, with short-paths becom-
ing increasingly prominent in deep submicron circuits the num- 2. MOTIVATIONAL EXAMPLE
ber of such buffers may become inordinately large and there is la this section we reproduce an example from [3] to demonstrate
need to incorporate hold-time constraints directly in to a retimthat the solution to the retiming problem under setup and hold time
ing formulation. Recently, a new retiming strategy was presentedonstraints differs from that obtained by conventional retiming al-
[3] which could solve min-period retiming for VLSI circuits with gorithms that consider only the setup time constraints.
both setup and hold constraints in polynomial time using a strategy The sequential circuit shown in Fig. 1(a) has five combinational
known as integer monotonic programming. However, there existiggic blocks connected in a ring and two edge-triggered registers.
- ) _ The pair of integers in each block gives the maximum and min-
“This research was supported in parts by the Army Research Officg,,m propagation delay of the data through that block. For ex-
unde_r grant number DA/DAAG55-98-1-0315 and a grant from Intel Cor'ample, whenever data propagate through block A, they always re-
poration. quire at least time unit and never more thal® time units. For
simplicity, each register and wire is assumed to have zero delay,
and in addition each register is assumed to have zero setup time,
and a hold time off. Moreover, clock skew is assumed to be
zero. Thus, the shortest clock period achievable by this circuit
is 10 + 30 + 20 = 60, corresponding to the longest combinational
path, ABC'. There are no hold violations in this circuit since the
minimum propagation delays alongBC and DE are7 and5,
respectively, both exceeding the register hold time.




are assumed to have equal positive setup tisiesd equal posi-
tive hold timesH. Without loss of generality, register delays can
be assumed to be zero.

In addition to the register couni(e), each edge = v is asso-
ciated with a weightr (e) that represents the delay in the propaga-
E tion of the clock signal from the clock source to the wire denoted
by e. Clock skew is assumed to ls@onotonic that is, the “effec-
tive delay” of a path increases with the number of combinational

gates on it. Given a path =5 u & v X4 y, wherep is com-
binational, w(e;) > 1, andw(e;) > 1, the minimum effective
delayof p is given by the expressiof\(p) + o (e;) — o (e;), where
A(p) = Zmep d(x). Clock skew monotonicity is ensured if for

@ @ each edge pair <5 u, u =% y in E, we have,

6(u) +o(ei) —o(e;) > 0. @
A retiming of an edge-triggered circuit = (V, E,d, §, w, o) is
an integer-valued vertex-labeling: V' — Z. This labeling de-
notes a transformation of the original circditinto a functionally

equivalent circuitG, = (V, E,d, d, w,, o), where for each edge
u = vin G, w, is defined by the equation,

D of the corresponding wire from = v. All registers in the circuit
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wr(e) = w(e) + r(v) — r(u). @)
In order forG, to bewell-formedfor all edgese € E, we must
have,
wy(e) > 0. (3)
A retiming that satisfies (3) is callddgal. It can be shown that for
773 any pathu - v, we have,
A
~ E wy(p) = w(p) +r(v) = r(u), @
10/ 1)< 2071 h = From (4) it follows that when th
c) wherew(p) = Zeepw(e)' rom (4) it follows that when the

pathp is a cycle, retiming does not change its register count. The
relation in (4) can be used to identify paths that can become critical
after retiming. In order to preserve legality of retiming for all paths
from nodeu to nodev the maximum reduction in the register count

The retimed circuit in Fig. 1(b) is obtained by shifting the reg-©f any pathu <% v is given by the expression,
ister k across block C and is functionally equivalent to the one
in Fig. 1(a). This circuit can be computed by applying the retim- W (u,v) = min{w(p) : u -~ v} (5)
ing algorithm in [1] with a target clock period af6. Since the
longest combinational path in this circuit@DE with a delay of  Thus, the only paths & v that can become combinational (and
20 + 6 + 20 = 46, there are no setup violations in the retimed possibly critical) inG.. are those for whichv(p) = W (u,v) in G.
circuit. The minimum delay along the pathBis1+2 =3 <4;  For each of theD(V?) vertex pairsu, v in V, the quantity,
therefore, a fast signal propagating alof@ can contaminate the
inputs of registek and result in erroneous circuit operation. D(u,v) = max{d(p) : u 5 v,w(p) = W(u,v)} (6)

The retimed circuit in Fig. 1(c) satisfies all setup and hold con-
straints and achieves a clock periods0f This is the shortest clock  gives the longest propagation delay franto v whenever the re-
period that can be achieved by retiming the original circuit. Outtimed circuit includes a combinational path between the two ver-
algorithm will find such an optimal solution in polynomial time.  tices. Therefore, the clock period of any retimed ciraGit is

always some element in ti@(1?) size set ofD(u, v)’s.
3. PRELIMINARIES For the retimed circuiZ,- to have a critical path under the target

In this section we will present a graph model to illustrate soméleCk period, every combinational path @, whose propagation

background information on retiming. We model an edge-triggeregela{ echeﬁds %he targhet C'?Ck pe.”@m”‘s/t b_ethlnlt;srrupted by a
circuit as a directed multi-grap¥ = (V, E,d, 6, w, o). For the :ﬁglfe?irr.ned l:es is%reficc)un\é?r(ex p)ag‘vezlanch V;’Lm M(u, ?%a?czci’n
purpose of compatibility this model is identical to the one in [3].become comb?national mu;tz’;t}isfy P v

Each vertex: in the vertex-set V corresponds to a combinational '

logic block. The nonnegative weight§«) and §(«) associated
with each vertex: denote the maximum and minimum data prop-

agation delay through, respectively. Each edge = v inthe  The O(1/2) difference constraints specified by (3) and (7) can be
edge-setE corresponds to a wire from to v in the circuit. All computed |rO(VE+ VzlgV) steps by an all-pairs shortest-paths
wires are assumed to have zero delay. For each ed§ev, the  algorithm and can be solved (V) steps by a Bellman-Ford
nonnegative integer edge-weighte) denotes the register count algorithm for single-source shortest-paths.

Figure 1. (a) Original circuit. (b) Retimed circuit with hold viola-
tion. (c) Retimed circuit with no timing violations.

W (u,v) = W(u,v) +r(v) —r(u) > 1. (7



4. TIMING CONSTRAINTS the conditions are identical to Case I.

As techniques to handle setup constraints have been discusa‘é’r? W:” p():rove lcasf I,tr?ntdtrt]he rema|r11|ng (_:atses_catrrw] be ptrhove((:ij simi-
elsewhere, (e.g., [1]), we will not discuss them here. Hold con:'- IN Lase |, note tha ere anet- 1 registers in the path under

straints have only been discussed in [3] and we will derive a ne onsideration (including the registers on edgeande;). Due to

set of requirements for retimed circuits to satisfy hold constraintst. e assumption that all hold time constraints are satisfied we have,

A retimed circuit is free of hold constrainisand only ifthere
exists no register-to-register combinational path whose minimum Alpr) +oles) —olein) 2 H,(Pathei — ei)
effective propagation delay is shorter than the register hold time A(px) + o (es,) — o(eiyy,) > H, (Path e, — eiy,,)

" e wi devel h | formul Lshsno?

We will now set out to develop two mathematical formulations, ] ] ] }
both of which will model min-ar%a retiming with long as well as Alpn) +olei, 1) = ole;) 2 H, (Pathei, ., = ¢;). (8)
short-path constraints. The first technique we develop (formulatio
1) will provide a theoretically sound basis for solving min-area re-
timing with setup and hold constraints undgmeralskew values. n
We will then present a practical argument (formulation Il) that has Z A(pr) + o(ei) — o(ej) > (n)H,
a potential to reduce the problem complexity considerably under Py -
practical situations as it leads to a significant reduction in the num-
ber of constraints.

By adding all the above inequalities we obtain,

= A(p) +o(ei) —olej) 2
w + w(e;) +wle;) —1) x H, 9
4.1. Formulation | (w(p) (e:) (c)) ) ®)
For the remainder of the paper we assume, without loss of generhere we use the fact thai(p) +w(e;) +w(e;) = n+1. The last
ality, that any edge in the given circuit-graph. has at most one inequality contradicts our initial assumption, and hence we arrive
register on it. Edges with more than one register on them can ks the required proof.
decomposed in to multiple edges, with identical clock-skew, that Cases II-1V can be proved similarly by observing the fact that

connect dummy nodes with zero delay. leading and trailing combinational paths will contribute a nonneg-
We begin by defining a new attributeritical short-path for  ative amount to the expressiax(p) + o (e;) — o (e;) due to clock
every pair of edges;, e;. skew monotonicity. Stripping away these leading and trailing com-

~ binational paths leaves us with Case .
Definition 1 For a pair of edgeg;, e; and a pathu HKrby &%
vthe termA(p) +o(e;) —o(e;)— H x (w(p) +w(e;) +w(e;) —1) It follows that after retiming, a circuit will be free of hold time
is the short-path metric of paity — p — ¢;. Note that nodesg,  Violations if and only if we can guarantee that for all edge pairs
y are included in the patlp. And the pathy = 2 "= 4 %, ,  ande; the critical short-patl =5 z % y 4 4 satisfies,
with the smallest short-path metri& (p.min) + o(e;) — o(ej) —
H % (w(pmin) + w(ei) + w(e;) — 1) is the critical short-path r(v) — r(u) < Ap) +o(ei) —ale;)
containing the edges; ande;. - H

H i i)—1
Theorem 1 A circuit is free of hold time violations if and only x (w(p) + wl(; )+ we;) ).
if for every pair of edges;, e; the critical short-pathp contain-

ing these edges has a non-negative short-path metric, i.e., satisfigg;e 1o the fact that(v), 7(v) are integral, the above constraint is
A(p) +o(ei) —o(ej) = H x (w(p) + w(ei) +w(e;) =1) 2 0. equivalent to,

Proof: (=-) Consider a path terminated at both ends by edge

(10

triggered registers. Let one register be on eggand the other on r(v) — r(u) < {A(p) +o(ei) - ‘7(6J)J _
e; such that the path is directed from = e;. Furthermore, let H
there be no other registers on the path frem® ¢;. Clearly by w(p) —w(e:) —w(e;) + 1. (11)

the assumption o), A(p) + o(ei) —o(e;) —H x (2—1) > ] ] ) )

0. Hence, the patlp satisfies hold time constraints. Due to the Note that the above constraints are simple difference constraints

generality of the patp, all register to register combinational paths Very much in the manner of the retiming constraints in [1]. This

satisfy hold constraints. means that the fast minimum cost network flow algorithms utilized
(«<)We will prove this by contradiction. If possible, assume thatfor solving traditional min-are¢ong-path onlyretiming can still

no hold time constraints are violated in the circuit and yetfof> be used when hold constraints are included. So as long as we can

e, A(p)+o(es)—o(e;) —H x (w(p)+w(es) +wle;) —1) < 0. identify a critical short-path for every pair of edgesande; we

- ; : an perform min-area and min-period retiming in a manner akin to
Assume that the path under consideration has the following for! atin [1]. Thus the number of constraints we add to the original

ur S B ur B B us 3 vseuns 5T a1 AT retiming framework i)(E?).
Un Finst on B3 ungr 3 vpgr. Next we will establish aetiming invarianceproperty for the
There can be four different scenarios that we have to consider. 229[Ltéeﬁth metric for edge-to-edge cycles for edges with a register

Case |:Edgese;, e, ..., €, _,,€; have a single register on them
andpi, p2, ..., p. are purely combinational paths. Note that theproperty 1 Let ¢ be any edge with a register on it. Any cycle

case where edges have multiple registers are guaranteed to violgihsisting of edge has a retiming invariant short-path metric.
hold times [3], and hence violate the assumption<s) ( ) . . . .
Case II: Edgee; has no register on it, and the rest of the conditiong™roof: Consider an edge with a single register on it. Let be

are identical to Case I. part of some cycl€® = u 5 z ~> u 5 z. The short-path metric
Case lll: Edgee; has no register on it, and the rest of the condi-from e-to-e alongC is A(p) + o(e) — o(e) — H x (W (p) +
tions are identical to Case . 2w(e) — 1). Now since the pattp includesz and u therefore

Case IV: Edgese;, e; have no registers on them, and the rest ofA(p) = A(C). Also, sincew(e) = 1 by assumption¥ (p) +



2w(e) — 1 = W(p) + w(e) = W(C). Hence, the short-path  Therefore we can use an all pair shortest path algorithm on the

metric frome-to-e along cycleC is A(C) — H x W(C). Since  auxiliary graph to compute short-path metrics for all pairs of edges

both A(C) andW (C) are retiming invariant, the present short- in the circuit graph.

path metric is also retiming invariant. Clearly for the hold time Next, we will setup the min-area retiming problem with setup

constraints to be satisfiable all edge-to-edge cycles should haveaad hold constraints. Fanout nodes are handled by using mirror

non-negative short-path metric and hede@”) —H x W (C) > 0  vertices as detailed in [1]. We call the new algorithm MARSH

for all cyclesC' in G,.. (Min-Area_Retiming with Stup and tld constraints).
Next we will show that the problem of finding a critical short- | Agorithm MARSH

path for any pair of edges can be modeled as a shortest path prob+ g)Opjective:

lem in a graph but with the possibility of negative weight edges in Minimize 3

(Indegree(u) - Outdegree(u))r(u)

th h. uev e
©grap 1)Legality constraints: For every edge— v,
wr(ei) =r(v) —r(u) + wle;) > 0. 12)

CoT T TTTT T TTTT T T T | 2)Longpath Constraints: For every edge pair = u %
| e e? : v 3 y such thatD (u,v) + o(ei) — o(e;) > c¢— S we have,

O—@® - Oy |
1 © 3V) W | W (u,v) + r(v) — r(u) > 1. (13)
!
| |
| e? ! 3)Shortpath Constraints: For the critical short-pgphof ev-

i I ) e:

l Q H 0 """ > @ @ [ ery edge paitu = z 5 y = v we have,
| 3(V) -H |
1 — | r(v) —r(u) < {A(p) +o(ei) —o(ej)J
| e, | H
ettt | —w(p) — w(e;) —w(e;) + 1. (14)
Figure 2. lllustration showing how to obtain the auxiliary graph ru) € Z, ueV

G, from the circuit-graphG...

Due to the fact that all the above constraints are difference con-

From the original circuit graplt7,, we generate an auxiliary straints with at most two retiming variables corresponding to two
graphG, = (Va, Eq, W'(E,)) such that every node € V(G,)  vertices, many of the constraints will be redundant and by standard
has a corresponding nodeip € V, (G, ). Also every edge, =5 €limination techniques the number of constraints can be brought

_ o down toO(V?) from O(E?).

v € E(G,) has a corresponding edge — va € Fa(Ga). In We can use the minimum cost circulation techniques pre-
addition this edge has a weighto(ef) € W'(E.) which has  sented in [10] and MARSH can therefore be executed in
a valued(v) if e; is register-free and a valugv) — H if e; has  O(|v||V2|log|V]log(]V|C)) whereC' ~ Number of registers in
a register on it. We illustrate the construction @f, in Fig. 2. the graph. Additionally, we can drastically reduce the number of
Every acyclic,u to v, pathu o B y % o therefore has a min-period constraints by using the speedup methods in [6, 8, 9].
corresponding path i@, with total weightA (p)+6(v) — (w(p)+ .
w(es)+w(e;))x H. Note that theshort-path metricorresponding  4-2-  Formulation li . -
to the acyclice; to e; pathp differs from the previously computed Recall that the basic requirement to ensure satisfaction of short-
path-weight for the corresponding to v, auxiliary pathinG, by ~ Path constraints is that all register-to-register combinational paths
an additive factow (e;) — o'(e;) — d(v) + H. Note also that this should have a minimum eﬁeqtlye propagation de_lay that exceeds
additive factor is the same for al} to e; paths. Therefore asff ~ H. Also, clock skew monotonicity ensures thafif is a sub-path
to e path with minimum weight irG., identifies are; toe; path ~ of & pathP then the effective minimum delay &% < the effective
with minimum short-path metricand hence identifies theitical ~ minimum delay ofP. The last observation leads to the following:

short-pattifrome; to e; in G. Theorem 2 A retimed circuit is free of hold time violations if and

Property 2 If the hold time constraints are satisfiable then theonly if any pathp = v = z 5 y % v satisfies: ifA(p) +

auxiliary graphG, has no negative weight cycles. o(ei) —o(e;) < H thenw,(p) < 1.

Proof: Now consider a cycle”, in Go; clearly there must be Proof: (=) Assume, if possible that hold time requirements are
a corresponding cycl€' in G,. Also, this cycleC in G, must  satisfied and yet a path = v =3 z -5 y Xy hasA(p) +
contain at least one register as combinational cycles are illegal i(e;) — o(e;) < H andw,(p) > 2. Clearly, due to clock skew
G,. Lete; be an edge in this cycl€ containing a register. The monotonicity any register-to-register sub-pathpafill have a hold
cycle C is therefore of the form: =% z % u. Now the short- time violation. , ..

path metric for this cycle computed from to e; is = A(C) — (<) Clearly if any register-to-register path= u 3 2~ y = v
W(C) x H asw(e;) = 1, from Property 1. On the other hand has a hold time violation theA (p) + o(e;) — o(e;) < H while

the path-weight foC, in G, is also given byA(C) — W(C) x  w,(p) > 2 and hence= is proved.

H. Hence, a negative weight cycle @A, will imply a register- The potential problem with the above formulation is that for
to-register cycle with a negativhort-path metriadn G,. Since general values of hold tim& and clock skews(e;) the number

a register-to-register cycle with negative short-path metric impliesf constraints may grow exponentially. However, as it turns out,
unsatisfiability of the hold time constraints from Property 1, sofor the present retiming model to be applicable, the clock skew
does a negative weight cycle @#,. Any such cycle can be easily value for any edge must satisfyo(e) < ¢, i.e., we have a near
detected by a Bellman-Ford algorithm with V E') complexity. zero-skew clock network. Therefoeean be safely assumed to be



restricted to a small number of (s@y3) gate delays; in addition
the value ofH is also limited to abou? gate delays. This implies

that the hold time constraints only need to be enumerated for all[s]
paths over a small number of logic levels. The formulation of our

work and [3] are invalid for largedeliberatevalues of clock skew

[11] since additional constraints ensuring logic wave separation

[12] need to be included and are beyond the scope of this paper.

The above observations guarantee that the number of constraintd]
added for ensuring satisfaction of hold time requirements in prac-

tical circuits is significantly less tha®(V2?). This complexity re-

duction can probably be combined with the complexity reduction
in [6] to possibly develop a faster technique for retiming with both [8]
short-path and long-path constraints. We will now summarize the

new formulation that we call MARSH-II as follows:

Algorithm MARSH-II
0)Objective:
Minimizezuev (Indegree(u) - Outdegree(u))r(u)

1)Legality constraints: For every edge= v,
wr(ei) =r(v) —r(u) + wle;) > 0. (15)

2)Longpath Constraints: For every edge pair =% o %
v 3 y such thatD (u,v) + o(ei) — o(e;) > c¢— S we have,

W(u,v) +r(v) —r(u) > 1. (16)

3)Shortpath Constraints: For all paths= u <3 z % y =3
v satisfyingA(p) + o(e;) — o(e;) < H we have,

r(v) — r(u) + w(p) < 1. (7

rfu)€Z,ueV

5. CONCLUSIONS

(9]

[10]

[11]

[12]

We have presented the first polynomial-time algorithm ever re-
ported for min-area retiming with setup and hold constraints. Our

algorithm runs irO(|V3|log|V |log(|V'|C)) steps, as described in

section 4. We have also provided a practical argument to show that
the problem complexity can be be reduced considerably by follow-
ing an alternative formulation. In future we plan to study ways to
speed up the present retiming formulation using ideas similar to
[6]. Another interesting area of research could be trying to extend

the formulation to include level-clocked circuits.
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