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Abstract
This paper presents a new solution for combining technology

mapping with placement, coupling the two into one phase. The
original aspects of our work are the use of libraryless mapping and
a state space search mechanism that is used to find the best solu-
tion. Several heuristics are presented for speeding up the search.
Comparisons with a more conventional approach show that these
strategies provide improvements of about 20%, with reasonable
CPU times, on benchmark circuits.

1 Introduction
Traditionally, interconnect wire delays have only been consid-

ered at physical layout level, and only coarsely at the technology
mapping level. The traditional design strategy performs technol-
ogy mapping and physical layout design as two separate steps.
The move to deep submicron technologies, where interconnect de-
lays dominate, undermines the value of a stand-alone technology
mapping/placement methodology, and a closer interaction between
logic synthesis and physical design is now considered to be impor-
tant.

Techniques that are used for technology mapping must also be
examined anew. Traditional library-based design becomes limiting
as it constrains the circuit designer to the limited design space de-
fined by the library. A more complete exploration of the available
design space can be made possible by the use of a wider range of
possible gates, including complex static gates, which necessitates
the use of dynamically generated libraries. The maturation of mod-
ule generation techniques in layout synthesis has made the use of
dynamic libraries more feasible, and their use in an industrial set-
ting has been published in [3].

Several methods for merging technology mapping and physi-
cal layout design have been published in the past. One approach
performs technology mapping based on the estimated placement
information [1, 2, 8], possibly even modeling the effects of incre-
mental updates to the placement without actually reperforming the
placement [8]; we refer to this kind of method as placement-based
mapping. Another trend is to perform logic resynthesis based on
the placement information [3, 5, 10, 12]; this kind of method is
called remapping. Our work differs from these in that we more
completely merge the technology mapping and placement proce-
dures by performing logic optimization considering the placement
information.

�This research was supported in part by the National Science Foundation under
grant NSF-9796305, and by the Semiconductor Research Corporation under grant 98-
DJ-609.

Figure 1 illustrates the evolution of the interaction between tech-
nology mapping and physical layout design and places our method
into this context. The first column shows the traditional divide-and-
conquer strategy that completely separates these two steps. The
second column shows the two trends of placement-based mapping
and remapping described in the previous paragraph, and the third
column shows our work. Another example that lies in the same col-
umn is the work in [7, 9], which uses a combination of the DAGON
algorithm [6] and Yannakakis’ algorithm to perform linear place-
ment and technology mapping for the library-bound standard cell
environment. This method differs from ours in that we use library-
less mapping, and that we apply our placer to the entire circuit in
each iteration; the work in [7] applies Yannakis’ algorithm locally
but does not consider the effect of the new placement on existing
matches during its transformations.
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Figure 1: The evolution of merged technology mapping+placement

Both remapping and placement based mapping are likely to suf-
fer from inaccuracies in modeling the placement since the physical
placement is likely to change by a great amount under resynthe-
sis operations. Therefore, even though these techniques are faster
than a method that performs placement again after each resynthesis
step, they are likely to be inaccurate since their assumptions may be
quite inconsistent with the final placement. The approach proposed
in our work integrates placement with resynthesis operations, using
incremental methods where possible to update the placement.

2 Interconnect Wire Timing Model
We represent interconnect wires using theπ-model. A wire

with the lengthl can be modeled as a resistanceRunit � l connected
by two grounded capacitanceCunit�l

2 , whereRunit andCunit are the



interconnect wire resistance and capacitance, respectively, per unit
length. Gates are also modeled using RC elements.

Global gate collapsing technique [4] is a technique used for
technology mapping under a dynamic library that overcomes the
limitations of a fixed library at the technology mapping stage by dy-
namically using complex gate structures generated on the fly. The
global gate collapsing procedure structurally generates the complex
gates, based on a simple topological technique, called the OTR
(Odd-level Transistor Replacement) method, that permits subcir-
cuits with to be collapsed into a single complex gate.

The work in [4] presented a dynamic programming algorithm
that used the OTR procedure for gate collapsing. The algorithm
here modifies the procedure to better incorporate interconnect wire
information. In particular, instead of collapsing a set of gates to-
gether, it may be preferable to keep these gates separate to act as
repeaters on the wire. This is illustrated in the example in Figure 2.
Consider a medium-length or long interconnect wire whoseR and
C are both proportional to the length of the interconnect wire. For
such a wire of lengthL, the delay is proportional toL2. If gates B,
C, D and E are not collapsed, then the gates divides the wire into
four parts with lengthl1; � � � ; l4. If these are sufficiently small, then
the delay grows linearly, rather than quadratically, withL. In such a
case, one may prefer not to combine the gates and instead use them
to perform the same function as repeaters on this wire.
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Figure 2: A situation where collapsing is not preferred

3 Merging Technology Mapping and Placement
Before commencing, we would like to point out that any placer

and technology mapper can be used in the design methodology pro-
posed in this work; in our experiments, we used our implementation
of the placer GORDIANL [11] and the technology mapping algo-
rithm (libraryless) in [4]. This technique can result in a solution
that can be optimized for various objectives such as minimizing the
circuit delay, the circuit area, or the power dissipation.

The initial circuit is decomposed into 2-nand gates and inverters
and the placement algorithm is executed for this initial circuit. The
decomposition has the advantage of allowing the placer to choose
simple gates as repeaters; it is well known that complex gates do
not make effective repeaters. Based on these placement results, we
apply the gate collapsing algorithm to determine the recommended
sets of gates to be combined into complex gates. This would result
in a scenario of the type shown in Figure 3, where the dashed lines
enclose the set of gates that are recommended to be collapsed.

However, the placement impact of gate collapsing is very sig-
nificant, and if we choose to perform all of the recommended gate
collapsings at the same time, the solution could result in an entirely
different placement for which this set of gate collapsing operations
would be suboptimal. In other words, the purpose of having place-
ment guide the logic optimization process would be lost. Therefore,
we perform gate collapsing and placement iteratively and intelli-
gently. In each iteration, we collapse one set of gates to create a
complex gate, update the placement, and based on this new physi-
cal layout, generate a new set of gates to be collapsed. Since each

Figure 3: All possible collapsings based on placement result

such step represents a small change in the total layout, we may use
a fast incremental engine to update the placement; in this case, we
have adapted GORDIAN-L for incremental placement.

We design a control strategy to combine the placement engine
and gate collapsing engine, as shown in Figure 4. The control en-
gine alternately calls upon the gate collapsing engine and the place-
ment engine, using information from each step to guide the other.
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Figure 4: Overview of the strategy

We represent the space of possible gate collapsing choices by
a search tree. We denote a state as a configuration of the circuit
after collapsing one set of gates and updating the placement. The
solution space can then be organized as a state space tree, as shown
in Figure 5. In this figure, the root represents the initial input circuit
that is decomposed into 2-nand gates and inverters. Each node in
level i+1 is the result of collapsing one set of gates from its parent
circuit at level i. Each nodev, it hasnv children, corresponding
to the total number of sets of possible gates to be collapsed based
on the placement corresponding to nodev. The leaves of the state
space tree are the states that correspond to the final circuit in which
no further gate collapsing is possible.

The optimal solution can be found using abranch-and-bound
technique to explore the solution space.

For the purposes of the branch-and-bound exploration, we de-
fine the following terms. Alive nodeis one that has been generated
during the search process without any child node yet to be gener-
ated. Adead nodeis a generated node that is not to be expanded
further. AnE-nodeis a live node whose children are currently being
generated.

4 Maximum Benefit (MB) Search
In both LIFO and FIFO branch-and-bound search, the selection

rule for the next E-node does not allocate any specific preference to
a node that has a very good chance of taking the search to the op-
timum solution. In our approach, we develop the maximum benefit
(MB) search method to explore the state space to get the optimum
solution.

The MB search assigns an intelligent benefit functionb(�) for
each live node, and selects the next E-node on the basis of this
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Figure 5: The state space tree

ranking function. The motivation for this is that a good choice of
E-node could lead to a better bounding function for the remaining
nodes.

If f (x) is the objective function, then the ideal way to assign the
benefit function for each nodex would be on the basis of the how
much improvement,∆ f (x), in the objective function has already
been achieved, using the root node of the search tree as a basis,
and how much potential reduction,∆ fpot(x), can be achieved in the
future from the descendants of nodex; while the former is a known
quantity, the latter can only be computed speculatively. For any
nodex, let ĝ(x) be an estimate of the∆ fpot(x) that can be achieved.
Nodex is assigned a benefit functionb̂(x) = ∆ f (x)+ĝ(x). Roughly
speaking,̂b(root) is equivalent to an estimate of the benefit function
value for the best leaf node descended from nodex.

Each nodex has a benefit̂b(x) associated with it that is to be
maximized. The function̂b(�) is used to estimate an upper bound
on the best solutions obtainable from any nodex.

If lower is a designated lower bound on the benefit solution,
then all live nodesx with b̂(x) < lower may be killed (i.e., con-
verted to dead nodes) as all solutions reachable fromx haveb(x)<
b̂(x) < lower. Variants of the search algorithm can be obtained
from various choices of the parameterlower. If we set the bound-
ing functionlower= b f(x) = max[b̂(yi)], whereyi are the children
of nodex, then the algorithm is reduced to the greedy algorithm.
On the other hand, if we setlower = b f(x) = �∞, then the algo-
rithm will explore the entire state space since no nodes can be killed
by the bounding process. Note that greedy approach is not guaran-
teed to be optimal since if̂b(yi) (with yi defined as before) were a
precise estimate of the residual benefit function, then the solution
obtained by this approach at a leaf node is exact; however, asb̂(yi)
is an estimate, the approach is heuristic in nature.

The manner in which we select the benefit function,b̂(x) =
h(x)+ ĝ(x), and the bounding function,b f(x), is crucial to the suc-
cess of the procedure. The functionh(x) is easily computed as the
value of f (x) at nodex based on the partial decisions made so far.
The determination of ˆg(x), the estimate of the potential benefit from
the leaf nodes that are descendants ofx, calls for a detailed expla-
nation. By definition, we can see that ˆg(x) is the best estimate of
f (x)� f (lea f). Given the gate collapsing structure at nodex, we
can estimate the result of collapsing all of the candidatesimmedi-
atelywithout further exploring the search tree, and that result gives
us an estimate off (lea f), which is used to calculate ˆg(x). Note that
since this corresponds to an actual possible layout, it is guaranteed

that the best possible value of the benefit function is no worse than
this value. For the bounding functionb f(�), we useε�maxb̂(yi),
where max̂b(yi) is the maximum benefit among all the children of
nodex, nx is the total number of children of nodex, and 0� ε � 1
is a user-settable parameter.

The pseudo code for the algorithm is as follows:

Algorithm StateSpaceSearch
MB Search(netlist *initialcircuit)
/* Initial circuit is decomposed into 2-nand gates + inverters */

queuehead = initialcircuit
while(queuehead6= NULL) f

x = E-node = queuehead
perform gatecollapsing
for eachpossible set of gates recommended

to be collapsed (i.e., each childy of x ) f
perform collapsing
update the placement incrementally
find b̂(y)

g
find maxb̂(y)
for eachy f

if b̂(y)� ε�maxb̂(y) add queue
g
remove queuehead

g

5 Variants of the Algorithm
5.1 The Direct Algorithm

The direct method is a very simple heuristic that takes the set of
gates that were recommended to be collapsed after the initial place-
ment, and collapses them all at once. This is then followed by the
placement procedure to obtain the final physical layout. The direct
algorithm corresponds to the simplest extension to the conventional
method of performing technology mapping.

5.2 The Complete Search Algorithm
The complete search procedure explores the entire state space

tree and does not use a lower bounding function to reduce the
search space. This algorithm is obtained by applying Algorithm
StateSpaceSearch withε set to 0.

In practice, however, the run time of this approach is far too
large. Our experiments showed that there was no appreciable dif-
ference between anε value of 0.9 and 0.6, and therefore our pre-
sented results correspond to anε value of 0.618, which is the golden

section ratio (=
p

5�1
2 ).

5.3 The Greedy Algorithm
In the procedure of iteratively performing placement and gate

collapsing, a greedy approach may be applied to find the solution.
In each iteration, from the current statex, we choose the child node
that can have the maximum benefit as alive node. The procedure
is repeated until a leaf node of the search tree is reached, where no
further gate collapsing can improve the benefit function. This al-
gorithm is obtained from Algorithm StateSpaceSearch by setting
ε = 1.

5.4 The 0/1 Algorithm
For each possible set of gates that are recommended for col-

lapsing, there are two choices: either to collapse them or not. We
denote the choice of collapsing them as ‘1’, and that of not collaps-
ing them as ‘0’. ForN possible sets of gates to be collapsed, in
theory, there are total 2N configurations. Since the computation is
expensive, we resort to a heuristic method to solve this problem.



Table 1: Experimental Results
Circuit Complete Search Algorithm Greedy Algorithm 0/1 Algorithm Direct Algorithm

Min. Delay (ns) CPU (s) Min. Delay (ns) CPU (s) Min. Delay (ns) CPU (s) Min. Delay (ns) CPU (s)
C432 42.56 (24.05%) 261 43.76 (21.91%) 31 45.26 (19.24%) 23 56.04 8
C499 61.27 (15.35%) 189 63.85 (11.79%) 31 66.13 (8.63%) 24 72.38 8
C880 49.83 (26.92%) 247 51.82 (24.01%) 32 52.79 (22.58%) 23 68.19 15
C1355 73.18 (20.15%) 325 75.27 (17.87%) 51 78.05 (14.84%) 32 91.65 17
C1908 135.25 (19.83%) 401 139.68 (17.21%) 77 144.69 (14.23%) 45 168.71 31
C2670 151.62 (21.44%) 1784 154.47 (19.97%) 158 171.73 (11.03%) 103 193.01 49
C3540 200.91 (20.08%) 1839 209.29 (17.84%) 221 231.81 (8.94%) 162 254.56 70
C5315 310.17 (14.97%) 2184 326.51 (10.49%) 601 331.96 (8.99%) 259 364.79 173
C6288 238.98 (20.64%) 3147 247.03 (17.97%) 613 264.37 (12.21%) 397 301.14 260
C7552 352.73 (21.49%) 3381 359.96 (19.88%) 872 404.47 (9.98%) 593 449.29 310

We begin with a configuration of(0;0;0; � � � ;0)
| {z }

N

where all gates are

uncollapsed, and then performN iterations. Inith iteration, we
collapse theith possible complex gate. In doing so, we get a new
configuration, which is then compared to the best configuration so
far. If the new configuration is better, then the best configuration is
updated. Otherwise, we continue to the(i +1)th iteration.

6 Complexity of the Algorithms
The complexity of the placement engine isO(mnlgn), wheren

is the number of gates in the circuit andm is the number of itera-
tions required by the conjugate gradient scheme. The complexity of
global gate collapsing is as given in [4], but it is greatly dominated
by the complexity of placement in practice and is not counted here
in the complexity computations. In the complete search algorithm,
the complexity isO(2nmnlgn). For the greedy and 0/1 algorithms,
the complexities areO(mn2 lgn). For the direct method, the com-
plexity is simplyO(mnlgn).

7 Experimental Results
All of the above algorithms were implemented in C on a SUN

Sparc 1/170 workstation.
Tables 1 shows the results of each of the heuristics and the com-

plete search algorithm. All of these results were generated with the
intention of minimizing the delay of the final circuit. The tech-
nology parameters used here correspond to the 0.5µm technology
parameters from MCNC.

The percentages shown inside the parentheses beside the de-
lays are the delay improvements with respect to the delay of Direct
Algorithm, which is the simplest extension to the conventional al-
gorithm for placement with technology mapping. From the results,
we note that all of the other three methods work well as compared
with the direct algorithm. The most accurate approach we have
listed is the complete search algorithm, and the greedy and 0/1 al-
gorithm work well in comparison with this method. The reasons
for that are because our gate collapsing sets are obtained on the ba-
sis of the physical layout information and our estimation function
ĝ(x) is a good estimate of the real benefit function.

8 Conclusion
A new family of approaches for combining technology map-

ping with placement is presented in this work. The method explic-
itly considers interconnect effects and uses them to guide the search
process. A more conventional approach is implemented, and is re-
ferred to as the direct algorithm. This is the baseline method against
with other techniques are compared. Two methods, the greedy and
0/1 algorithms, are proposed to overcome the limitations of the di-
rect algorithm. Significant improvements are seen in the quality of

the results, and the algorithm is also seen to perform well in com-
parison with the Complete Search Algorithm that makes the most
complete exploration of the search space.

We expect similar gains to be made regardless of the mapper
and placer by using our merging methods and more gains to be
made by using our libraryless mapper instead of library-based map-
per.
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