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Abstract

While designing interconnect for MCM's, one must take

into consideration the distributed RLC e�ects, due to which

signals may display nonmonotonic behavior and substan-

tial ringing. This paper considers the problem of designing

clock trees for MCM's. A fully distributed RLC model is

utilized for AWE-based analysis and synthesis, and appro-

priate measures are taken to ensure adequate signal damp-

ing and for bu�er insertion to satisfy constraints on the

clock signal slew rate. Experimental results, veri�ed by

SPICE simulations, show that this method can be used to

build clock trees with near-zero skews.

1 Introduction

Multi-Chip Modules (MCM's) provide a medium for in-
tegration of several bare dies on a multi-layer substrate.
By virtue of a faster interconnect MCM's aim at alleviat-
ing, to a large extent, the bottleneck o�ered by conven-
tional packaging. However the interconnection medium of
a typical MCM substrate is characterized by a signi�cant
inductance and routing distances of several centimeters.
Accurate analysis of MCM interconnect requires the use
of lossy transmission line models. In comparison, the on-
chip interconnect design has traditionally been performed
by modeling lines as lumped resistance-capacitance (RC)
networks. The need for new methods which take into ac-
count the requirements of the MCM scenario while being
comparable in e�ciency to traditional IC design techniques
is of prime importance. This paper addresses the problem
of designing the clocking network for an MCM.

The design of the clock distribution network of an MCM
is critical from the point of view of achieving desired sys-
tem speed along with reliable operation. The clock dis-
tribution network on a MCM substrate can be considered
to be a tree of lossy transmission-lines delivering the clock
signal to the various dies placed on the substrate, with
bu�ers inserted into the network to maintain performance
constraints. The problem of constructing a clock tree for
MCM has three primary considerations:
a) that the lines are either critically damped, or the over-
shoot is acceptably constrained.
b) that the clock skew is minimized.
c) that constraints on the slew rate are met.

1This work was supported in part by the National Science
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The design of zero-skew clock-trees for IC's using an El-
more delay equalization algorithm was proposed by Tsay
in [6]. This algorithm hierarchically merges zero-skew sub-
trees by selecting a tapping point on the line interconnect-
ing the two trees such that the delay to the leaf nodes of the
trees is equal. In this paper, we generalize the zero-skew
design methodology in [6] to a higher order approximation
of the voltage waveform, so as to facilitate the design of
zero-skew clock-trees for an MCM scenario, while meeting
the above mentioned objectives. We also use a completely

distributed model for the interconnect here, rather than a
cascade of lumped sections, as has been done previously,
and we �nd that this gives more accurate estimates of de-
lay values.

There has been relatively little work in using higher
order models for interconnect optimization. Related re-
search in [7, 8] present methods for designing interconnect
exhibiting transmission line behavior.

This paper uses a second-order distributed parameter
transmission-line model [5] to construct a zero-skew tree.
The computational expense of the approach presented here
is very low. The work presented in this paper aims at min-
imizing both the skew as well as ensuring an appropriate
damping for clock trees. It is important to control ringing
in the clocking network because this could lead to undesir-
able cross-talk, and because high overshoots/undershoots
could also cause devices to switch incorrectly. However,
we consider the possibility of allowing a small overshoot,
as this can ensure an improved signal slew rate.

2 Evaluation of Interconnect Response

The concept of asymptotic waveform evaluation (AWE)
[3] has been used widely in recent years to simulate and
design the interconnect. AWE involves approximating the
response of a circuit by a lower order transfer function.

2.1 Approximation of Transfer Function

A reduced order model of the interconnect is obtained
here to evaluate the response of the RLC lines that com-
pose the clock-tree by an AWE technique called reciprocal
expansion (REX) [5]. The computational e�ciency of a
distributed-parameter formulation of REX is utilized to
model the RLC lines. The response at the output of any
leaf-node with respect to the root of a subtree in the fol-
lowing sections, is approximated by a transfer function

H(s) =
Vleaf(s)

Vroot(s)
=

1

1 + b1s+ b2s2 + � � � + bnsn
(1)



REX di�ers from conventional AWE in respect that, it
matches the inverse of the transfer function, i.e., 1

H(s)
to

the Maclaurin series. This proves useful in the computa-
tion of admittance as described below. It is also advan-
tageous due to the fact that for a transfer function of the
type (1) the Pad�e approximation step reduces to taking
the reciprocal of the Maclaurin series.1

2.2 Distributed Parameter REX

A second-order approximation to the transfer-function
of RLC lines, presented in [5], is used in the design of clock-
tree in the following sections. The conductance to ground
is assumed to be zero. The second-order distributed pa-
rameter REX is briey introduced here for completeness.

Let the per unit resistance, capacitance, inductance pa-
rameters be represented as �; �;  respectively. Consider
a line of length l, terminated in an admittance at the far
end (x = 0). The admittance and the transfer function
Vx=l(s)
Vx=0(s)

, at the near end (x = l) are to be determined.

2.2.1 Admittance Computation

Assuming that Y (0) at x = 0, is the following polyno-
mial in s (Y0(x) = 0, because conductance to ground is
assumed to be zero),

Y (0) = Y1(0)s+ Y2(0)s
2 (2)

The second-order approximation of the input admit-
tance Y (x) = Y1(x)s+Y2(x)s

2 at x = l can be determined
from equations (3) and (4).

Y1(x) = Y1(0) + �x (3)

Y2(x) = Y2(0)� �x(
(�x)2

3
+ �xY1(0) + (Y1(0))

2) (4)

2.2.2 Voltage Computation

Given a second-order approximation to the voltage at
x = 0 and Vout is the voltage at the leaf node of interest,

V (0) = (1 + b1(0)s+ b2(0)s
2) Vout (5)

We need to �nd the voltage at x = l

V (x) = (1 + b1(x)s+ b2(x)s
2) Vout (6)

The second-order approximation of V (x) can be computed
using the Equations (7) and (8).

b1(x) = b1(0) +
��x2

2
+ �Y1(0)x (7)

b2(x) = b2(0) + x(�(Y2(0) + Y1(0)b1(0)) + Y1(0))

+
x2

2
(��b1(0) + �) +

x3

6
�2�Y1(0) +

x4

24
�2�2 (8)

1It should also be pointed out that while Equation 1 is a [0=n]
Pad�e approximant, it is possible to perform moment-matching
to obtain a [m=n] Pad�e approximant using REX.

Tapping Point

Left Subtree Right Subtree

Y(l ) Y(l )

Y (0)
R

x’= 0

Y (0)
L

l l

V(l ) V(l )
RL

L R

12

2 1

12

x = 0

Figure 1: Zero-skew merge under distributed model

3 Zero-Skew Clock Tree Construction

A bottom up recursive procedure as in [6], is used here
to construct a zero-skew clock tree. The input consists of
a description of the location and loading capacitance of
each clock pin. We begin by assigning each clock pin to
a separate subtree; initially, each subtree consists of just
one node corresponding to the clock pin, and this node is
considered to be the root of the subtree. At each step, we
merge two subtrees. The merging process requires the de-
termination of a point on the line interconnecting the trees
such that the delay to all the leaf nodes is the same; this
point is taken to be the root of the merged subtrees, and
the process continues recursively. We describe one step of
the recursive process here, involving the determination of
a zero-skew merging point for two subtrees. The procedure
comprises of three steps:

� Admittance computation at the root of a subtree

� Voltage computation at the root of a subtree

� Merging of a pair of subtrees

In general, consider the merging of two zero-skew subtrees.
Let Y X(0) and V X(0) be the polynomials describing the
input admittance and voltage at the root of what will be
henceforth be referred to as \left" and \right" subtrees.

Y X(0) = Y X
1 (0)s+ Y X

2 (0)s2 (9)

V X(0) = 1 + bX1 (0)s+ bX2 (0)s
2 (10)

where, X = L represents left subtree and X = R the right
subtree. This merging is depicted in Figure 1. Consider
the two subtrees to be connected by a distributed RLC
line of length l (i.e., the Manhattan distance between the
root of the subtrees). Consider a point on the line which
divides it in a ratio r such that the wire interconnecting
the right and left subtrees now consists of two distributed
RLC lines, i.e., from �x = 0 to �x = l1 and x = 0 to x = l2.
The length of the line from the merging-point to the root
of right subtree is

l1 = r � l (11)
and the length of the line to the root of left subtree is

l2 = (1� r) � l (12)

The process of zero-skew merging requires the determina-
tion of r such that the skew is zero. Since the admittance
and voltage at the far end of the lines are known from
equations (9),(10), the voltage at the merging point, i.e.,

V R(l1) = 1 + bR1 (l1)s+ bR2 (l1)s
2 (13)

V L(l2) = 1 + bL1 (l2)s+ bL2 (l2)s
2 (14)
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Figure 2: Damping of zero-skew tree

can be determined using equations (7) and (8).
We will consider the case where the �rst order moments

(of 1
H(s)

) is matched, i.e., bR1 (l1)�bL1 (l2) = 0. Substituting

equations (11) and (12) and solving for r,

r =
��
2
l2 + �lY L

1 (0) + (bL1 (0)� bR1 (0))

��l2 + �l(Y L
1 (0) + Y R

1 (0))
(15)

The admittance of the tree formed as a result of merging
the left and right subtrees can be calculated as a sum of
their admittances given by equations (3) and (4). The
voltage at the root of this tree is given by averaging the
coe�cients corresponding to the left and right subtrees.
Hence, at the end of each stage of merging, there exist a
set of subtrees whose second-order admittance and voltage
estimates at the root are know.

For typical parameter values (from [2]) it was found that
the �rst-order moments dominate the delay characteristics
of the waveform in the �nal subtree. However it is essential
to perform voltage computation up to at least the second
order to determine a suitable termination.

4 Damping Of Zero-Skew Trees

Due to non-negligible inductance, the routing con-
structed on the MCM substrate results in under-damped
behavior. The zero skew trees are damped appropriately
here by series-termination at the source end. The second-
order estimate of voltage computed during the construc-
tion of the clock-tree is used to calculate the value of the
series-termination for this tree. The series termination
could be implemented either by sizing the clock driver for
a speci�c output resistance or by including a discrete re-
sistance in series with the driver.

To determine the termination resistance Rb consider a
zero-skew tree (as shown in Figure 2), whose root node is
labeled as u. The admittance and voltage at u are,

Y (u) = Y1(u)s+ Y2(u)s
2 (16)

V (u) = 1 + b1(u)s+ b2(u)s
2 (17)

Given that the voltage at the driver (node v) is

V (v) = 1 + b1(v)s+ b2(v)s
2 (18)

further,
V (v) = (1 + Y (u)Rb)V (u) (19)

It can be shown that Rb,

Rb =
� �
p
�2 � 4Y1(u)2(b1(u)2 � 4�2b2(u))

2Y1(u)2
(20)

where, � = (4�2(Y2(u) + b1(u)Y1(u))� 2b1(u)Y1(u)) and �
is the damping factor. The value of Rb for critical damp-
ing is obtained by setting � = 1 in the Equation (20).

Similarly any under-damped condition can be obtained for
0 < � < 1, and the corresponding maximum overshoot
is given as,

Vpeak = 1 + exp
(�� �p

1��2
)

(21)

Alternatively, substituting the value of � in Equation (20),
the clock-tree can be designed for any acceptable over-
shoot.

� =
ln(Vpeak � 1)

�
p
1 + (ln(Vpeak � 1)=�)2

(22)

5 Insertion Of Bu�er Stages

The phase delay of large clock-trees can be signi�cant
and may limit the system clock-speed. In order to reduce
the phase delay, bu�er stages are introduced as part of the
clock-tree construction. Bu�ers also perform the role of
regenerating the signals, by supplying the current neces-
sary to drive the subtrees. In addition to achieving these
advantages, we consider sizing of bu�ers to hierarchically
damp the clock-tree. It should be pointed out that in the
MCM scenario the bu�ers can be fabricated only on the
dies placed on the substrate. We assume the availability
of two bu�ers per die and include the detour to a bu�er
as part of our delay computation. A linear model for a
bu�er is assumed. The computation of bu�er resistance
is as shown in the previous section. The load seen by the
bu�ers is balanced to minimize skew introduced due to
the nonlinearity of the bu�ers. The concept is similar to
bu�er relocation [1] or delay equalization [4] and hence is
not elaborated here.

6 Summary of the Algorithm

The following pseudo-code summarizes the procedure
for clock-tree synthesis.

MCM_Clock-Tree() {

/* Initialization */

/* Each pin is a subtree */

/* Voltage is a unit source */

/* Admittance is the capacitance at each pin */

Level_number = 0;

Number_of_subtrees = Number_of_pins;

While (Number_of_subtrees >= 1){

Zero-Skew Merge();

Compute_Admittance();

Compute_Voltage();

If (Delay > Delay_constraint){

Equalize_Load();

Insert_Buffers();

}

Level_number ++;

Number_of_subtrees = Number_of_subtrees/2;

}

Series_Termination();

}

The routine Zero-Skew Merge �nds a merging point which
minimizes the skew for two given subtrees. The rou-
tines Compute Admittance, Compute Voltage calculate the
input-admittance and the voltage at the root of the new
subtree. Bu�ers are inserted at the root of subtrees at ap-
propriate levels by the Insert Bu�ers routine based on the
delay requirements. The Equalize Load routine balances



the load seen by the bu�ers. The recursive application of
these routines on a set of pins results in the desired zero-
skew clock-tree. The termination at the root of the tree is
computed by the Series Termination routine.

7 Experimental Results

The procedure described above was tested on a set
of examples which portray a typical MCM routing sce-
nario. A substrate with area 10 cm x 10 cm was assumed.
The distribution of the clock pins and the loading capac-
itances at each pin was generated randomly. The num-
ber of clock pins varies from 8 to 128 in the examples
MCM-1 through MCM-5. The clock-trees were designed
assuming MCM-L process parameters obtained from [2]
(� = 0:24
=cm; � = 7:2nH=cm;  = 0:76pF=cm). A
constant width of 10 �m and a Manhattan geometry is
assumed for the routing. The clock-trees were simulated
with SPICE to verify accuracy.

7.1 Clock Tree Construction

The characteristic parameters of the clock-trees con-
structed using our approach are presented in Table 1, cor-
responding to termination condition � = 1:0. These clock-
trees have a driver at the root and no additional bu�ers
inserted. The Figure 3, 5, 6 show waveforms correspond-
ing to the undamped (large, low resistance driver), criti-
cally damped, and overshoot controlled case (� = 1p

2
) for

MCM-5. The clock-skews were measured at the 50% delay
point. The maximum observed skew is less than 1% of a
clock-period of 10nS (100 MHz).

7.2 Damping Of Clock Trees

The damping of the clock-tree was performed with se-
ries termination at the source end. The e�ect of a range
of damping conditions (� = 0.5 to 1.0) was studied. Fig-
ure 4 shows the step response at a particular sink node
of MCM-2 for the range of �. Table 2 summarizes the
variation of rise-time (tr, 10% Vdd to 90% Vdd), delay (td,
50% Vdd), peak overshoot (Vpeak), driver resistance Rb)
with the damping factor (�).
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Figure 3: Undamped
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Figure 4: �= 0.5 to 1.0

Table 1: Termination with critical damping
Example � = 1:0

Name Sinks Rb(
) td(nS) tr(nS) % Skew

MCM-1 8 4.326 0.9156 1.028 0.0128

MCM-2 16 4.042 1.402 1.832 0.0627

MCM-3 32 3.283 1.296 1.674 0.0052

MCM-4 64 1.647 1.902 2.842 0.3218

MCM-5 128 1.390 2.419 3.874 0.1624

Table 2: Termination varying damping factor
� td(nS) tr (nS) Rb(
) Vpeak (Volts)

0.5 1.193 0.950 2.001 1.153

0.6 1.233 1.033 2.408 1.090

0.7 1.273 1.202 2.816 1.042

0.8 1.311 1.401 3.225 1.014

0.9 1.358 1.612 3.633 1.009

1.0 1.402 1.832 4.042 1.000

7.3 Bu�er Insertion

The e�ect of improvement in delay and slew rate was
studied by inserting bu�ers as described in Section 6. The
sharpest slew rate is observed for the level closest to the
leaf nodes and as the level of insertion is moved toward the
root the slew rate and delay become worse. A choice of one
or more bu�er levels for a tree could be made depending
on the timing constraints and bu�er availability.

MCM-5

v(1) 

v(128)

V

-9S x 10-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

0.00 5.00 10.00 15.00

Figure 5: Critical damped

MCM-5

v(1) 

v(128)

V

-9S x 10-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

0.00 5.00 10.00 15.00

Figure 6: Over-shoot control

8 Conclusion

A distributed-parameter AWE-based technique for
MCM clock tree construction has been developed. A
second-order approximation is found to be adequate for
practical circuits, is used to recursively build a clock tree
and to select series terminations with either critical damp-
ing or controlled overshoot. The algorithms are computa-
tionally very e�cient and experimental results exhibit low
values of skew and appropriate waveform damping.
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