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Abstract

Two new geometrical algorithms for design center-
ing are presented. In each case, the feasible re-
gion is �rst approximated by a convex polytope.
The �rst algorithm inscribes the largest Hessian
ellipsoid within the approximating polytope. The
second assumes Gaussian parameter distributions,
formulates the problem as a convex programming
problem, and uses an e�cient algorithm to perform
the optimization.

1 Introduction

While manufacturing a circuit, it is inevitable that
process variations will cause design parameters, such
as component values, to vary from their nominal val-
ues. As a result, the manufactured circuit may not
meet some behavioral speci�cations, such as require-
ments on the delay, gain and bandwidth, that it has
been designed to satisfy. The procedure of design cen-
tering attempts to select the nominal values of design
parameters so as to ensure that the behavior of the
circuit remains within speci�cations, with the greatest
probability. Previous approaches to solving this prob-
lem have traditionally taken two routes : the statis-
tical approach, which primarily involves Monte Carlo
techniques, and the geometrical approach. This work
presents a new geometrical approach.

Geometric techniques frequently assume that the
feasible region is convex and bounded. These meth-
ods approximate the feasible region by a known geo-
metric body, such as a polytope or an ellipsoid, whose
center is taken to be the design center. In the case
of ellipsoidal approximation, as in [1], the inherently
symmetric shape of ellipsoids prohibits them from ac-
curately approximating convex bodies that are \less
symmetric." A polytope can provide a better approx-
imation to a convex body than an ellipsoid, since any
convex body can be thought of as a polytope with an
in�nite number of faces. However, �nding the exact
center of a polytope is computationally di�cult [2].

In this work, the feasible region is �rst approxi-
mated by a convex polytope using the procedure de-
scribed in [3]. In the next phase, the design center
may be found using one of two approaches.

The �rst approach, called the largest Hessian el-
lipsoid (LHE) method, inscribes the largest Hessian
ellipsoid, de�ned in Section 3, inside the polytope.
The shape of the Hessian ellipsoid is well-known to be
representative of the shape of the polytope [2]. This
method presents an improvement over [4], in which
the center of either a hypersphere, or a crudely chosen
ellipsoid, is taken to be the design center.

The second approach, the convex programming
(CP) approach, proceeds by formulating the design
centering problem as a convex programming problem,
assuming that the variations in the design parameters
are modeled by Gaussian probability distributions. A
convex programming algorithm [2], whose e�cacy has

been illustrated, for example, in [5], is used to �nd the
solution to this problem. As shown by an example in
Section 4, the design center is sensitive to the parame-
ter probability distributions. This method recognizes
this, and explicitly uses the available probability dis-
tribution information. In doing so, it di�ers fromother
geometrical methods, such as [1] and [4].

2 Feasible Region Approximation

The feasible region F � Rn, where n is the number
of design parameters, is de�ned as the set of points in
the design parameter space for which the circuit sat-
is�es all speci�cations on its behavior. We persevere
with the common assumption made by geometrical de-
sign centering algorithms is that F is a bounded con-
vex body, and use some properties of convex sets to
approximate F .

The details of the algorithm are described in [3].
It is based on the supporting hyperplane theorem of
convex sets, and approximates a convex feasible re-
gion, F � Rn by a polytope

P = fx j Az � bg; A 2 Rm�n;b 2 Rm; (1)

formed by the intersection of m half-spaces in Rn.
It requires an initial feasible point to be speci�ed,
and thereafter requires simulations to check whether
a point is feasible or not, and constraint function gra-
dient evaluations.

3 Finding the Design Center

The random variations in the values of the design
parameters are modeled by a probability density func-
tion, �(z) : Rn ! [0; 1], with a mean corresponding
to the nominal value of the design parameters. The
yield of the circuit, Y, as a function of the mean, x, is
given by

Y(x) =

Z
F

�x(z)dz (2)

where F represents the feasible region, where the de-
sign parameters are such that the circuit satis�es its
behavioral requirements. The design center is the
point x at which the yield, Y(x), is maximized.

The simplicial approximation method [4] does not
attempt to evaluate the above integral. Instead, it
approximates the feasible region by a polytope and
attempts to inscribe the largest hypersphere within
the approximating polytope, taking its center as the
design center. For elongated regions of acceptability,
such as rectangles, a more realistic center would be
obtained by inscribing the largest ellipsoid inside the
polytope. In [4], a very approximate method is used,
in which only a limited set of ellipsoids (whose major
axes are along the coordinate directions) is considered.
Therefore, a better method of determining the shape
of the largest inscribed ellipsoid is required; this is
provided by our LHE method.



3.1 Largest Hessian Ellipsoid Algorithm

Consider a polytope P de�ned by (1), and let ai
T

be the ith row of matrix A 2 Rm�n, and bi be the
ith element of b 2 Rm. The approximate polytope
center xc, is taken to be the point that minimizes the
log-barrier function

F (x) = �
mX
i=1

loge(ai
Tx� bi): (3)

Note that near the boundary of the polytope, F (x)
tends to in�nity and its value decreases as one moves
deeper into the interior of the polytope. The value of
F (x) is unde�ned outside the boundary of the poly-
tope. F is a convex function of x 2 P , with an n � n
Hessian matrix (for further details, see [5,8])

H(x) = r2F (x) =
mX
i=1

aiai
T

(ai
Tx � bi)2

: (4)

Let E(x,B,r) denote the ellipsoid�
y j (y � x)TB(y � x) � r2

	
: (5)

The Hessian ellipsoid at a point x in the polytope P,
namely the ellipsoid E(x,H(x),r), where H(x) is the
Hessian of the log-barrier function (Equation (3)) is
a good approximation to the polytope locally around
x [2]. Hence, the goal is to �nd the largest ellipsoid
in the class E(x, H(x),r) that can be inscribed in the
polytope, and its center xc. The point xc will be taken
to be the computed design center.

The minimum of the log-barrier function gives a
good approximation to xc, and is used as an initial
guess for the iterative process, described below:

distance = 1
xc = Minimizer of the log barrier function (Eq. (3))
while (distance > �) {
xold = xc
H = Hessian at xc
Inscribe the largest ellipsoid of the type E(x, H(xc), r)
(Note that the ellipsoid shape, determined by H(xc),
is �xed, and that x and r are allowed to vary)
Set xc = center of this ellipsoid
distance = kxc � xoldk

}

In each iteration, the shape of the ellipsoid is �xed
by the Hessian, H, computed at the current value of
xc; x and r are allowed to vary. Since H is positive
de�nite and can be Cholesky-decomposed, the process
of inscribing an ellipsoid of shape H can be mapped
through a linear transformation to the problem of in-
scribing a hypersphere in a polytope, as in [4].
3.2 Convex Programming Approach

The LHE algorithm computes a single point that
is the design center, regardless of the probability dis-
tributions; this ignores the fact that the design cen-
ter is, in reality, sensitive to probability distributions.
The convex programming approach assumes that the
probability density functions that represent variations

in the design parameters are Gaussian in nature, and
poses the design centering problem as a convex pro-
gramming problem.

The joint Gaussian probability density function of n
independent random variables z = (z1; � � � ; zn), where
zi has mean xi and variance �i, is given by

�x(z) =
1

(2�)
n

2 �1 � � ��n
exp

"
i=nX
i=1

�
(zi � xi)

2

2�2i

#
(6)

where x = (x1; � � � ; xn). This is a log-concave func-
tion of x and z. (Note that arbitrary (symmetric)
covariance matrices can be handled, since a symmet-
ric matrix may be converted into a diagonal form by
a simple linear transformation.)

The design centering problem is now formulated as

maximize Y(x) =
R
P
�x(z)dz: (7)

where P is the polytope approximation to the feasi-
ble region F . It is a known fact that the integral
of a log-concave function over a convex region is also
a log-concave function [6]. Thus, the yield function
Y(x) is log-concave, and the above problem reduces to
a problem of maximizing a log-concave function over
a convex set. Hence, this can be transformed into a
convex programming problem, with the correspond-
ing property that any local minimum of the problem
is a global minimum. It is worth noting here that the
yield function remains convex as long as �x(z) is any
log-concave function of x and z.

Applying the Convex Programming Algorithm

The convex programming algorithm proposed in [2]
provides an e�cient technique for solving a convex
programming problem, such as (7). If P is the poly-
tope that approximates the feasible region, we de�ne
the feasible set

S = fz 2 Rn j z 2 Pg (8)

and let xc be the solution to (7). Initially, we set
Q = P; the invariant here is that Q always contains
the design center, xc. The polytope Q is given by

Q = fz j Âz � b̂g; Â 2 Rp�n; b̂ 2 Rp: (9)

The algorithmproceeds iteratively as follows. First,
a center zc, deep in the interior of the current poly-
tope Q is found, by minimizing the log-barrier func-
tion

F (z) = �

pX
i=1

loge(â
T
i z � b̂i) (10)

where âTi is the ith row of matrix Â and b̂i is the i
th

element of b̂. The minimization procedure is as in [5].
There exists a hyperplane that divides the polytope

into two parts, such that xc is contained in one of
them, satisfying the constraint

cTz � cT zc (11)

with c = �[rY(x)]T

being the negative of the gradient of the yield (objec-
tive) function.



Since the yield function is not available in an ex-
plicit form, its gradient is estimated using the yield
gradient approximation method presented in [7]. This
yield estimator works with the polytope approxima-
tion of the feasible region. A point is considered to
be feasible if it lies within the approximating poly-
tope; this leads to a substantial savings in computa-
tion, since it is much cheaper to �nd out whether a
point lies within a polytope than to simulate a circuit
for many sets of parameter values.

In practice, the yield gradient is approximate, and
possibly erroneous, as it is based on a Monte Carlo
simulation. To o�set this problem, the new hyper-
plane is taken as cTz � cTzc � � where � is small,
representing the fact that the plane is moved away by
a certain fraction towards the boundary of the cur-
rent polytope. Qualitatively speaking, the above hy-
perplane shaves o� less from the polytope given by
Equation (11), thereby reducing the possibility of er-
rors due to incorrect gradient estimations.

The new constraint is added to the current poly-
tope to give a new polytope, Q, that has roughly half
the original volume. The process is repeated until the
polytope is su�ciently small, and the �nal center zc
is taken to be the computed design center.

4 Experimental Results
We �rst present an example that illustrates the de�-

ciencies of ellipsoidal-based approaches, such as [1], [4]
and our LHE approach. This example provides an
exposition of the need for using information on the
probability distributions of the design variables. The
feasible region, F , illustrated in Fig. 1, is a triangle
in R2, described by the planes x1 + x2 � 1; x1� x2 �
�1; and x2 � 0. Any approach that attempts to
inscribe the largest circle or ellipsoid in this region
would compute the center of the incircle of the trian-
gle, [0; 0:414]T as the design center.
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Figure 1: Triangular Feasible Region

The actual design center, however, is a function of
the parameter variances, �x1

and �x2
. Due to sym-

metry, the x1 coordinate of the design center is 0 and
is insensitive to the variance. However, changes in the
variance of the random variables do a�ect the x2 co-
ordinate of the design center. As �x1

=�x2
! 0, the

design center ! (0; 0:5). As �x1
=�x2

increases, the
design center starts moving downward along the x2
axis. When �x1

=�x2
= 1, the design center is the cen-

troid. As �x1
=�x2

! 1, the design center ! (0; 0).
For actual yield �gures for this example, see [8].

These algorithms has been tested on a wide variety
of circuits [8], including several �lter circuits that are
often used as circuit examples for design centering al-
gorithms. For all of these circuits, the feasible region
is nonconvex. These two methods provided compara-
ble or better results than [1].Due to space limitations,
we only present two circuit examples here, that of a
CMOS op amp circuit shown in Fig. 2 [9], and a high-
pass �lter [1], shown in Fig. 3.
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Figure 2: A CMOS operational ampli�er.

In Fig. 2, the transistor pairs M1-M2 and M3-
M4 are matched. The designable parameters are the
widths of M1, M5, and M6. The constraints that de-
�ne the feasible region for this problem are (i) Gain �
98 dB, (ii) Area = sum of widths of M1, M5 and M6
� 308, (iii) Bandwidth � 17 �106 rad/sec, (iv) Power
dissipation � 0.65 mW.

Table 1 : CMOS Operational Amplifier

Yield
Variances CP Design Center (500 max)

[�w1 ; �w5 ; �w6 ] in [�m; �m; �m] CP LHE
[3:0; 3:0; 3:0] [106.7,87.8,108.8] 452 446
[7:0; 7:0; 7:0] [105.5,93.9,98.7] 252 219
[5:0; 8:0; 1:0] [108.4,94.7,94.7] 302 281
[5:0; 7:0; 4:0] [103.5 93.7 101.3] 300 288
[3:0; 4:0; 9:0] [108.4,94.7,94.7] 288 289
[4:0; 1:0; 4:0] [106.6,84.9,107.2] 425 411
[3:0; 2:0; 4:0] [106.5,88.6,102.9] 440 437
[4:0; 2:0; 3:0] [108.1,88.2,102.0] 445 421

The nominal values of all transistor widths, corre-
sponding to an initial feasible solution, are shown in
the �gure. We performed the LHE and the CP design
centering procedures in the transformed domain, to
obtain the results shown in Table 1. The LHE design
center was found to be [101:0�m; 94:1�m; 103:4�m].
The yield estimates are based on a Monte Carlo simu-
lation of 500 points with the design center correspond-
ing to the mean value. The variances are in terms of
percentages of a nominal value that corresponds to the
design center found by the LHE. algorithm. For this
example, the CP method is almost always better than
the LHE method. However, this is not true for all
circuits.

The next circuit example is a high-pass �lter
[1], whose circuit diagram and speci�cations are
shown in Fig. 3. The frequencies of interest are
f170; 350; 440; 630;680;990; 1800g Hz, which corre-
spond to seven constraints.

For this example, the reference frequency, !0, is
990 Hz. The design parameters are
[C1; C3; C4; C5]. The initial feasible point was taken
as [11:1nF; 12:9nF; 34:3nF; 97:3nF], as in Abdel-Malek
et al.'s ellipsoidal method (A-ME) [1], where the solu-
tion was found to be [10:37nF; 13:28nF; 34:63nF; 87:84
nF]. The solution found by the LHE method is the
point [9:614nF; 14:148nF; 33:642nF; 99:301nF]. The
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Figure 3: A high-pass �lter.

CP method was applied and, as before, the design cen-
ter was found to change, depending on the variances
associated with the p.d.f.'s.

The yield �gures for the design centers found by the
A-ME method, the LHE method and the CP method
are displayed in Table 2. As before, the �gures are
based on a Monte Carlo simulation of 500 points, with
the mean at the calculated center. It can be seen from
this table that both the LHE and the CP methods
frequently performed better than the A-ME method,
and none of these three methods is consistently better
than another. However, here the overall performance
of LHE is the best of the three.

Table 2 : High Pass Filter (4 Parameters)

Parameter Variations Yield (500 max)
[�C1 ; �C3 ; �C4 ; �C5 ]

LHE A-ME CP
[9:0; 9:0; 9:0; 9:0] 439 432 434

[10:0; 10:0; 10:0; 10:0] 412 407 415
[10:0; 15:0; 20:0; 5:0] 262 258 252
[15:0; 20:0; 5:0; 10:0] 432 403 422
[5:0; 8:0; 10:0; 12:0] 423 409 417
[5:0; 8:0; 10:0; 15:0] 411 400 404
[5:0; 10:0; 10:0; 15:0] 403 392 402
[5:0; 10:0; 12:0; 15:0] 365 365 364
[8:0; 12:0; 10:0; 12:0] 409 390 403
[8:0; 12:0; 10:0; 10:0] 411 399 416
[15:0; 12:0; 10:0; 10:0] 398 387 395
[8:0; 12:0; 12:0; 10:0] 373 360 369

The second experiment took [C1; C2; C3; C4; C5; L1;
L2] as the design parameters. The initial feasible
point was taken, as in [1], as [11.65 nF,10.47 nF,13.99
nF,39.93 nF,99.4 nF,3.988 H,2.685 H]. A-ME's de-
sign center was found to be [12.76 nF,10.37 nF,11.88
nF,40.26 nF,117.37 nF,3.609 H,2.504 H]. The solu-
tion obtained by the LHE method was [12.68 nF,8.775
nF,12.68 nF,30.93 nF,93.17 nF,4.623 H,2.748 H]. A
comparison of results for this experiment from the
LHE, CP and A.M.-E. methods, for various values of

component variances (as percentages of the LHE de-
sign center), is shown in Table 3. Both the CP and
LHE methods provide better solutions than A-ME for
almost all cases here.

Table 3 : High Pass Filter (7 Parameters)

Parameter Variations Yield (500 max)
[�C1; � � � ; �C5 ; �L1 ; �L2 ]

LHE A-ME CP

[10; 10; 10; 10; 5; 5; 5] 243 244 251
[10; 10; 10; 10; 10; 10; 10] 159 149 155

[8; 8; 8; 8; 8; 8; 8] 237 220 231
[5; 5; 5; 5; 5; 5; 5] 420 363 410
[8; 8; 8; 8; 5; 5; 5] 307 303 306

[5; 10; 5; 10; 5; 10; 5] 243 205 230
[8; 12; 10; 12; 5; 8; 8] 175 162 164
[4; 4; 8; 8; 8; 4; 4] 361 359 363

[5; 5; 5; 5; 10; 10; 10] 257 228 246
[9; 10; 8; 10; 5; 4; 6] 256 253 260

5 Conclusion
While the approaches presented here assume that

the feasible region is convex, real feasible regions are
almost always nonconvex. In the practical examples
that we tested, however, it was seen that both the LHE
and CP approaches provided good results. This could
be attributed to the fact that real feasible regions are
often \nearly convex," and that the polytope approxi-
mation algorithm shifts the hyperplane away from the
feasible region boundary to compensate for slight non-
convexities [3].

For convex feasible regions, it would be expected
that the CP method would give better results than
the LHE method. However, this is not always so in
practice, since real feasible regions are typically non-
convex.
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