
Clustering Based Pruning for Statistical Criticality Computation
under Process Variations

Hushrav D Mogal∗, Haifeng Qian†, Sachin S Sapatnekar∗ and Kia Bazargan∗∗Department of Electrical and Computer Engineering, University of Minnesota,
Minneapolis, MN 55455, {mhush, sachin, kia}@umn.edu†IBM Research, Yorktown Heights, NY, qianhaifeng@us.ibm.com

Abstract— We present a new linear time technique to compute criticality
information in a timing graph by dividing it into “zones”. Errors in using
tightness probabilities for criticality computation are dealt with using a new
clustering based pruning algorithm which greatly reduces the size of circuit-
level cutsets. Our clustering algorithm gives a 150X speedup compared
to a pairwise pruning strategy in addition to ordering edges in a cutset
to reduce errors due to Clark’s MAX formulation. The clustering based
pruning strategy coupled with a localized sampling technique reduces errors
to within 5% of Monte Carlo simulations with large speedups in runtime.

I. INTRODUCTION AND PREVIOUS WORK

With scaling of technology, process parameter variations render the circuit
delay as unpredictable [6], making sign-off ineffective in assuring against
chip failure. Recent works concerning Statistical Static Timing Analysis
(SSTA) in [1], [9] deal with this issue by treating the delay of gates and
interconnects as random variables with Gaussian distributions, and predict
the mean and variance of circuit delay to within a few percents.

With process variations in effect, no one path dominates the delay of the
circuit [5]. Work in [9] proposes the concept of edge(node) criticality, which
is the probability that an edge(node) lies on the critical path in a manufactured
chip. Works like [2], [5], [10] compute the criticality probability of edges in
a timing graph, using a canonical first order delay model.

In [9], the authors perform a reverse traversal of the timing graph
assuming independence of edge criticalities despite structural and spatial
correlations in the circuit. Subsequently, the work in [5] used sensitivity
matrices to compute the criticalities of nodes and edges in the timing graph,
with complexity potentially cubic in the number of principal components of
the circuit due to the matrix multiplications involved. Work in [2] perturbs
gate delays to compute its effect on the circuit output delay, using cutsets
to simplify computation. The quadratic time complexity of this approach is
reduced to linear in [10], where the criticality of edges in a cutset is computed
using a balanced binary partition tree.

Our contributions are twofold. We propose a linear time algorithm to
compute the criticality probability of edges (nodes) in a timing graph using
the notion of cutsets. Edges crossing multiple cutsets are dealt with using
a novel zone based approach, similar to [11], where old computations are
reused to the greatest possible extent. We develop a clustering based pruning
algorithm to effectively eliminate a large number of non-competing edges
in cutsets of several thousand edges. The proposed clustering scheme helps
order the MAX operations in a set, a source of significant error as shown
in [8]. Localized sampling on the pruned cutset further reduces errors in edge
criticalities to within 5% of Monte Carlo simulations, with large speedups
in run-time when compared to a pairwise pruning strategy.

II. BACKGROUND

A. Correlation Model and SSTA
We use the spatial correlation model in [1] to model intra-die parameter

correlations. Briefly, the chip is divided into a uniform grid in which gates in
a grid square have perfect correlation and gates in far-away grid squares have
weak correlations. A covariance matrix of size equal to the number of grid
squares is obtained for each modeled parameter. We model the length and
width of gates, and the thickness, width and inter-layer dielectric thickness
for interconnects. Process parameters are assumed Gaussian as in [1], [9]
and using the principal component analysis (PCA) technique each correlated
parameter is expressed as a sum of independent normal random variables,
or principal components (PCs). Delays of edges in the timing graph are
expressed in terms of the PCs and SSTA is then performed by a forward
propagation on the timing graph. For more details, readers are referred to [1].

B. Definitions
Definition II.1 (Timing Graph). A timing graph G(V, E) of a circuit is
a directed acyclic graph with V nodes representing gate terminals and E
edges representing connections between them. Primary inputs and outputs
are connected, respectively, to a virtual source node, vs, and a virtual sink
node, vt. The delay of an edge in G is represented by a probability density
function (pdf ).

This work was supported in part by the SRC under award 2007-TJ-1572.

Fig. 1. Example timing graph G (depth L) illustrating cutsets Σ(1) − Σ(4).

Definition II.2 (Cutset). A cutset Σ is a set of edges/nodes in G such that
every vs to vt path passes through one and only one member of Σ.
Definition II.3 (Arrival Time (Required Time)). The arrival time AT
(required time RT ) at an edge/node in G is the maximum delay from any
primary input (output) to the edge/node. Like delays, these are also pdfs.
Definition II.4 (Path Delay). The path delay of an edge/node (hereon, also
referred to as edge delay) i in G is defined as ei = ATi +RTi and is a pdf .
Each path delay ei is represented in a canonical form in terms of independent
principal components (PCs) pj , as

ei = µi +
∑j=k

j=1 aij · pj (1)

Here aij is the coefficient of PC j for edge i and k is the total number of
PCs. The mean of the edge delay is given by µi.
Definition II.5 (Complementary Path Delay). Given a cutset, Σ, in a timing
graph G, the complementary path delay of an edge/node k ∈ Σ ⊂ G, ek

′,
is defined as the pdf of MAX(∀ei : ei ∈ Σ, ei �= ek).
Definition II.6 (Local Criticality). The local criticality (also referred to as
tightness probability [9]) τij of edge ei with respect to ej , with means µi, µj
and standard deviations σi, σj respectively, and correlation ρij , is given by

τij = Φ(
µi−µj

θ
) (2)

where θ =
√

σ2
i + σ2

j − 2 · ρij · σi · σj . The degree of domination of edge
i over j is represented by τij . Φ is the distribution (cdf ) of a unit normal
random variable N (0, 1). It can be shown that τji = 1 − τij .
Definition II.7 (Global Criticality). The global criticality Ti (also referred
to as criticality hereon) of edge ei in cutset Σ is the probability that it has
maximum delay among all the edges in the cutset, i.e.,

= Pr(ei ≥ ei
′) (see Def. II.5) (3)

Ti is also referred to as the criticality probability of ei. It follows that the
global criticality of an edge ei in Σ cannot be greater than its local criticality
with respect to any other edge in Σ, i.e.,

Ti ≤ τij { ∀ ej ∈ Σ, ej �= ei } (4)
Definition II.8 (MAXθ). The maximum MAXθ of two normal random
variables ei and ej in canonical form using Clark’s formulation [3] is given
by c = MAXθ(i, j), where φ is the density (pdf ) function of N (0, 1) and

µc = τij · µi + τji · µj + θ · φ(
µi−µj

θ
)

σ2
c = τij · (σ2

i + µ2
i ) + τji · (σ2

j + µ2
j )

+(µi + µj) · θ · φ(
µi−µj

θ
) − µ2

c

ck = τij · aik + τji · ajk

(5)

III. STATISTICAL CRITICALITY COMPUTATION

This section describes a quadratic time complexity statistical criticality
(SC) algorithm followed by details of our linear time approach.



A. Cutset Computation
Fig. 1 illustrates cutset computation on a timing graph G. We topologically

traverse G, ordering nodes as per their levels, l, denoted Σn(l), and edges
crossing l denoted Σe(l). For instance, Σn(2) = {ne, nf} and Σe(2) =
{eap, ebm, ebn}. Σ(l) = Σn(l) ∪ Σe(l) forms a cutset by Def. II.2 since
every vs to vt path in G must pass through at least one member of Σ(l) and
its elements are disjoint. Our aim is to compute the criticalities of all edges in
G, using Def. II.7. Towards this end, the topological level-enumerated cutsets
are necessary and sufficient since they cover all the nodes and edges in G.
The number of cutsets equals the number of levels L in G. To compute the
criticality of all edges in G, we substitute nodes in Σn with their fanout edges.
For instance, cutset 2, Σ(2) = {eem, een, efg , efp, efm, eap, ebm, ebn}.
B. BSC: Basic SC Algorithm

The simplistic approach BSC shown in Algorithm 1 computes the global
criticalities of all edges in timing graph G. Step 1 performs a forward and
reverse SSTA to compute path delays (AT +RT ) of all edges (nodes) in G,
followed by a topological ordering of G into levels to compute its cutsets in
Σ. Steps 3-8 compute the criticality of each edge in Σ.

Algorithm 1 BSC (G(V, E))

1: Perform forward and reverse SSTA on G
2: Topologically order G and compute its cutsets Σ
3: for all cutsets Σ ∈ G do
4: for all edges ei ∈ Σ do
5: ei

′ = MAX(∀ej ∈ Σ, ej �= ei) {see Def. II.5}
6: Ti = τii′ {see Def. II.6}
7: end for
8: end for

Definition III.1 (mc-edge). An mc-edge is an edge with end level at least
one greater than its start level. With our level enumerated cutsets, these
are edges which cross over at least one cutset. In Fig. 1, eap, ebm and
ebn ∈ Σe(2) are a set of mc-edges crossing level 2. However, edges like
eaf and ebf are not mc-edges since they start at level 2 and end at level 3
with no cross over.

Due to mc-edges, each cutset Σ can potentially contain O(E) edges.
Moreover, since Step 5 computes the complementary path delay of an edge
in time linear in the size of Σ, over all cutsets in G, Algorithm 1 has a
complexity of O(LE2). Sections III-C and III-D discuss methods to reduce
the time complexity of the basic approach.

C. Linear Time Book-Keeping
Definition III.2 (Ordered Lists). Given an arbitrary set Σ = {e1, e2, . . . en}
of n random variables, we define ordered lists ΥF and ΥR as follows

ΥF (i) = MAX(e1, . . . ei) (6)
ΥR(i) = MAX(ei, . . . en) (7)

The global criticality of an edge ei ∈ Σ (Def. II.7) is

Ti = Pr(ei > MAX(e1, . . . ei−1, ei+1, . . . en))

= Pr(ei > MAX(ΥF (i − 1), ΥR(i + 1))
(8)

Computing ΥF and ΥR takes 2n MAX operations. Eq. 8 takes two MAX
operations for a total of 4n MAX operations over all edges in Σ. Our ordered
lists can thus compute criticalities of cutset edges in linear time.

D. Zone Computation
Using ΥF and ΥR, Steps 5-6 of Algorithm 1 take time O(E) as compared

to O(E2). However, since Algorithm 1 recomputes criticalities of mc-edges
(Def. III.1) in every cutset Σ, over L cutsets we could take O(LE) time, still a
considerable slowdown. Moreover, the complementary path delay (Def. II.5)
for each edge ei ∈ Σ (excluding mc-edges) at level l has in common all the
mc-edges crossing l. The only information therefore needed, is the collective
MAX of these mc-edges. Zones help us compute this MAX.

Definition III.3 (Zone). A zone Zi is a maximal set of mc-edges with the
end-level of any edge higher than the start-level of all edges in Zi, i.e., edges
enter a zone before any edge exits it.

We divide G into zones Zi, which contain mutually exclusive sets of mc-
edges and compute the MAX of these edges at any level by performing a
MAX over all the zones. To do this however, we also need to keep track of
the mc-edges which contribute to the MAX of a zone (called ZiMAX ) at
each level of G. This is performed using pointers zif and zir which maintain
the history of mc-edges entering (recorded in ZiF ) and leaving (recorded in
ZiR) each zone Zi respectively. The authors in [10] use an array based
structure to keep track of mc-edges, with no notion of a maximal set.

E. ZSC: Zone Based SC Algorithm
Our zone based criticality computation technique, ZSC, is shown in

Algorithm 2. Step 2 computes zones in G in time linear in the size of Σe.
We then forward traverse G from vs to vt. Steps 4-5 update the forward and
reverse history pointers of each zone Zi, to compute ZiMAX in constant
time. In Step 6 we compute the MAX over all the currently active zones.
Since we have on the order of O(L) number of zones, over all levels of
G this step takes O(L2) time. Finally using the book-keeping ordered lists
from Section III-C, we compute global criticalities of edges in Σ in linear
time. The overall runtime of our ZSC algorithm is therefore O(E + L2),
which for a reasonably sized circuit is O(E).

Algorithm 2 ZSC (G(V, E))

1: Steps 1-2 of Algorithm 1
2: Compute zones of all edges in Σe {see Section III-A}
3: for l = 1 to L do
4: ∀ej with end-level l, zjr = zjr + 1; ZjMAX = ZjR(zjr)
5: ∀ei with start-level l, zif = zif + 1; ZiMAX = ZiF (zif )
6: ∀k ∈ Z, ZMAX = MAX(ZMAX , ZkMAX)
7: Σ = {fanouts of nodes in Σn(l)} ∪ ZMAX

8: Create ΥF and ΥR. Compute Ti ∀ ei ∈ Σ {see Section III-C}
9: end for

IV. ERRORS IN ZSC AND THE “ABC” PROBLEM

Algorithm 2 was run on the ISCAS89 benchmarks to compute the global
criticalities (see Def. II.7) of all edges in the timing graph G. We compared
our implementation with a Monte Carlo (MC) simulation and noted the
absolute maximum difference in criticalities of edges (denoted δ hereon).
The δ was larger than 50% (for example, an edge reported by MC as 80%
critical was reported by Algorithm 2 as 30% critical). As an illustration of
these errors, consider a cutset Σ with random variables a, b and c, each with
independent PCs p1 and p2 (where pi is an N (0, 1) Gaussian), shown below,

a = 4.000 + 0.5000 · p1 + 0.5000 · p2

b = 3.999 + 0.4999 · p1 + 0.5001 · p2

c = 3.800 + 0.6001 · p1 + 0.3999 · p2

(9)

Observe that a and b are nearly identical highly correlated random
variables, and for any sample value of the pi

′s, a ≥ b (high correlation
coupled with the difference in means ensures Pr(b > a) ≈ 0.0). We ran a
MC simulation with 100000 samples to determine the global criticalities of
a, b and c. Table I shows a comparison with Clark’s formulation MAXθ (see
Def II.8). We obtained errors of 57% and 30% in the global criticality of a
and b respectively, as shown in the last row of Table I. For better illustration
purposes, Fig 2 depicts the scenario of Eq. 9, but using just one principal
component (PC), p. We make the following observations.

TABLE I
COMPARISON OF MC AND MAXθ FOR THE ABC PROBLEM

Method Ta Tb Tc

MC 0.923 0.000 0.077
Clark 0.356 0.297 0.079
Error δ 56.7% 29.7% 0.2%

Fig. 2. A pictorial depiction of the abc example scenario with random variables
a, b and c with one PC, p. The figure is not to scale.

(1) The local criticality of b with respect to a, i.e., τba ≈ 0. This is indicated
by a large value of γ 
 3σp (the region where b ≥ a). Moreover, Clark’s
tightness probability formulation from Eq. 2 also gives τba ≈ 0.
(2) Global criticality of b, Tb ≈ 0. This is evident in Fig. 2 where regions
a ≥ MAX(b, c) and c ≥ MAX(a, b) cover the entire probability space.



Observations 1 and 2 are consistent with Eq. 4. Now consider global
criticality of b, using the cutset approach. We first compute complementary
path delay b′ = MAX(a, c). It follows (Def. II.7) that Tb = Pr(b ≥
MAX(a, c)). With Clark’s formulation MAXθ , for the MAX, we get
Tb = Pr(b ≥ MAXθ(a, c)) = 0.297.

Intuitively, for this scenario Clark’s formulation is accurate with respect
to local criticality tba of b, but it overestimates global criticality Tb, and is
inconsistent with Eq. 4.

Definition IV.1 (Local Errors). With respect to Clark’s formulation, edge
ei in cutset Σ is said to have local errors iff there exists some edge ej ∈ Σ
for which its local criticality is smaller than its global criticality, i.e.,

{ ∃ ej ∈ Σ, ej �= ei } : τij < Ti (10)

In other words, Eq. 4 does not hold. The difference, Ti−τij is called the local
error of ei. By definition, local errors always overestimate the criticality of
an edge in Σ. In our toy example, b exhibits local errors with a magnitude
of 0.297. Local errors were found to propagate in the ZSC algorithm, where
variables (edges) like b that should never have been critical, were found to
have a significant global criticality.

To further see the inconsistencies of the tightness probability approach
using Clark’s formulation we consider the event a ≥ MAXθ(b, c), with a
represented as a = a0 +

∑
aipi = a0 +ap. Variables b and c are represented

similarly. We have,

Event {a ≥ MAXθ(b, c)} ≡
τbc(a − b) + τcb(a − c) ≥ α + s(τbcbp + τcbcp)

(11)

Here α and s are factors used to equate the first two moments (mean
and standard deviation) of the non-Gaussian MAX with Clark’s Gaussian
MAXθ approximation. Values of α ≈ 0 and s ≈ 0 could result in a true
event even for cases in which b ≤ a ≤ c or c ≤ a ≤ b, overestimating the
global criticality Ta of a. Values of α > 0 could result in a false event even
in the case that a ≥ b and a ≥ c, underestimating Ta.

Definition IV.2 (Global Errors). With respect to Clark’s formulation, edge
ei in a cutset Σ is said to have global errors, iff its computed criticality Ti
differs from its true criticality and the edge does not exhibit local errors, i.e.,

Ti ≤ τij { ∀ ej ∈ Σ, ej �= ei } (12)

and Ti is in error.
By definition, global errors can either overestimate or underestimate the
criticality. For the toy example, Ta is underestimated by 0.567. Note that the
value of Ta is consistent with Eq. 4, since both τab = 1.0 and τac = 0.921
are greater than Ta = 0.356

In summary, although local and global errors result from the linear
approximation of Clark’s MAXθ operation, local errors are an artifact of the
manner in which we compute global criticalities of edges in a cutset whereas
global errors are more fundamental, overestimating or underestimating the
true criticality of an edge in a cutset.

V. CLUSTERING BASED PRUNING AND ORDERING

Definition V.1 (Dominant and Non-dominant Edges). An edge ei in set Σ
is said to be dominant iff its local criticality with respect to all other edges
in Σ is above a threshold ε, i.e.,

τij > ε { ∀ ej ∈ Σ, ej �= ei } (13)

Otherwise, ei is said to be non-dominant in Σ, i.e.,

{ ∃ ej ∈ Σ, ej �= ei } : τij ≤ ε (14)
Definition V.2 (Mutually-dominant Edges). A set of edges Σ are said to
be mutually dominant iff each edge in Σ is dominant, i.e.,

τij > ε { ∀ ei, ej ∈ Σ, ej �= ei } (15)

As seen in the previous section, non-dominant edges (like b in Fig. 2) in
a cutset exhibit local errors. Moreover, they also contribute to global errors
of other edges in the cutset (like a in Fig. 2). To avoid the bulk of these
errors we propose to prune the cutset, eliminating its non-dominant edges
from competing and injecting errors in global criticality computations.

Pruning is justified by Eq. 4, wherein eliminating edge ei with local
criticality lower than a sufficiently small threshold value ε does not hurt
global criticality computations because Ti ≤ ε. The benefits are accentuated
in cutsets with dominant edges with large global criticalities, since the sum
of global criticalities across a cutset equals 1.0 (implying that many edges
have very small local criticalities).

It must be pointed out, that not every edge with global criticality below ε
can be eliminated by pruning because its local criticality might not be smaller
than ε. Such edges cause global errors using the linear MAXθ operation.

A. nC2 Cutset Pruning
A straightforward approach to pruning a cutset would be to perform

pairwise comparisons of edges, eliminating those that have a minimal local
criticality less than a predefined threshold ε. The main drawback of this
approach is its quadratic time complexity of O(n2), due to nC2 local
criticality computations, where n is the number of edges in the cutset. This
can be prohibitive for large circuits.

B. Clustering Based Cutset Pruning and Ordering
To overcome the quadratic runtime complexity overhead of the nC2

approach we present a new clustering-based pruning heuristic based on the
K-center clustering algorithm of [4]. Algorithm 3 describes the procedure.
The basic idea is to prune a cutset into a set of mutually dominant edges by
removing its non-dominant edges. Variables used in the algorithm are,

κ : Each cluster σ contains a center κ
diκ : Distance of an object i from its cluster center κ is its local criticality τiκ

rσ : Radius of cluster σ is distance of the object farthest from κ, i.e., rσ =
MAX(diκ) ∀i ∈ σ
Rσ : Border R of cluster σ is object with the maximum distance from κ, i.e.,
Rσ = j : djκ = rσ

We first prune cutset Σ with respect to seed χ, chosen as the object with
maximum mean in Σ. Steps 5-8 of Algorithm 3 compute new clusters from
existing ones (Algorithm 4) until no cluster has size exceeding S. Finally,
cutset Σ is replaced by the remaining un-pruned objects.

Algorithm 3 K = KCenterPrune (Σ, ε, S) // Σ = cutset; ε = pruning threshold; S =

max. cluster size; K = # clusters

1: Ω = NULL; σ = NULL; K = 0 {Ω is the set of clusters, σ is the 1st cluster}
2: Assign seed χ = object with max. µ ∈ Σ as the center of σ
3: Prune Σ with respect to χ; mark χ = pruned if ∃ j ∈ Σ : (1 − τjχ) ≤ ε
4: Compute rσ and Rσ ; K = K + 1; Ω(K) = σ {insert cluster σ into Ω}
5: while (max. size of a cluster in Ω > S) do
6: δ = CreateNewCluster (Ω)
7: K = K + 1; Σ(K) = δ {insert new cluster δ into Ω}
8: end while
9: insert all un-pruned objects of Ω in Σ and return K

Intuitively, χ in Algorithm 4 is the object upon which its center has
the lowest degree of domination (Def II.6) and hence a good candidate
to facilitate pruning of other edges in the cutset. Step 3 uses χ to prune
objects j (with local criticality with respect to χ less than ε) from their
respective clusters. Alternatively, if χ has a higher degree of domination
over j compared to its current center κ, j is removed from its cluster and
inserted into new cluster δ (Step 3). Intuitively, a greater degree of domination
between two edges results in smaller global errors in MAXθ . We return δ
after adjusting it radius and border and those of all currently existing clusters
in Ω (Step 4). The algorithm has the following properties.

Algorithm 4 δ = CreateNewCluster (Ω) // Ω = set of clusters; δ = new cluster

1: Assign χ = border of cluster with max. radius as center κ of new cluster δ
2: Prune Ω with respect to χ; mark χ = pruned if ∃ j ∈ Ω : (1 − τjχ) ≤ ε
3: if ∃ j ∈ Ω : τjχ < djκ, remove j from its current cluster and insert into δ
4: compute radius and border for δ and all existing clusters in Ω; return δ

Property V.1. At any iteration, all objects in Ω (excluding cluster centers
marked pruned) are dominant with respect to all existing cluster centers.

Proof: To avoid pruning in Line 3 of Algorithm 3, objects must be
dominant with respect to the seed (1st cluster center). Moreover, every object
j is compared with every newly added cluster center (over the entire run of
the algorithm, all cluster centers) in Line 2 of Algorithm 4. Clearly, j must
be dominant with respect to these centers to avoid being pruned. Moreover,
Line 3 of Algorithm 3 and Line 2 of Algorithm 4 compare every cluster center
with every object for dominance. Although not removed from Ω, centers are
marked pruned if they are non-dominant with respect to other cluster objects.

Property V.2. With S = 1, KCenterPrune(Σ, ε, 1) returns a set of mutually
dominant edges (see Def.V.2) in Σ.

Proof: With S = 1 each cluster in Ω contains only one object, its cluster
center. From Property V.1 above we know that that these are either marked
pruned or are dominant with respect to other cluster centers. It follows from
step 9 of Algorithm 3 that Σ contains mutually dominant objects.
Property V.3. For any cluster σ ∈ Ω, its center χ has a higher degree of
domination over its members than any other cluster center κ, i.e.,

τχj > τκj { ∀ j ∈ σ, κ ∈ Σ, κ �= χ} (16)



TABLE II
CRITICALITY RUN-TIMES AND ERRORS FOR VARIOUS BENCHMARKS; ε = 5% AND Nls = 1000

Metric Pruning Benchmark
Scheme s27 s1196 s5378 s9234 s13207 s15850 s38417 s35932 s38584
ZSC 3.84 2.25 47.99 45.79 38.11 58.49 40.82 24.99 43.56

max. nC2 3.84 2.99 3.13 21.97 2.65 6.43 37.82 16.68 18.65
δ% CPSC 3.84 2.99 3.13 23.65 5.30 5.49 37.82 16.12 18.65

CPSC+TGR+LS 3.84 2.99 3.13 2.92 5.21 2.37 2.17 2.79 15.82
ZSC 0.00 0.03 0.16 0.30 0.45 0.54 2.51 2.71 3.06

run nC2 0.00 0.02 0.39 0.71 2.31 2.19 43.53 55.39 51.76
time CPSC 0.00 0.01 0.02 0.05 0.07 0.09 0.27 0.34 0.25
(sec) CPSC+TGR+LS 0.00 0.00 0.03 0.08 0.09 0.11 0.34 0.37 0.34

ZSC 7 202 593 644 1329 1688 2821 7340 5680
η nC2 2 1 2 11 4 4 5 49 11

CPSC 2 1 2 11 4 4 5 49 11
CPSC+TGR+LS 2 1 2 11 4 4 5 49 11

Proof: This is evident from Step 3 of Algorithm 4. Each object in Ω
is compared with the new cluster center χ. The condition τjχ < djκ is
equivalent to τχj > τκj , i.e., the new cluster center χ has a higher degree
of domination over object j than its current cluster center κ.
Property V.4. For a cutset Σ of size n and K clusters returned, KCenter-
Prune takes O(nK) time.

Proof: A single run of Algorithm 4 compares every object in Σ with
center χ of the new cluster δ, taking O(n) time. Since each iteration in
Algorithm 3 returns a new cluster, with K clusters returned, the overall
runtime is O(nK).

C. CPSC: Clustering Based SC Algorithm
Using Algorithm 3 for SC computation is straightforward. Step 2 in

Algorithm 5 derives a set of mutually dominant edges from cutset Σ,
facilitated using Property V.2 and orders Σ, facilitated by Property V.3. Such
an ordering cannot be obtained with the nC2 pruning strategy of Section V-A.
Property V.4 ensures that with a small number of dominant edges K in a
cutset, the algorithm runs in linear time.

D. Localized Sampling and Timing Graph Reduction
To tackle edges that lead to global errors (Def. IV.2), we perform a quick

localized Monte Carlo sampling of the edges in cutset Σ after pruning. We
generate Nls samples of the k independent identically distributed Gaussians,
k being the number of PCs (Def. II.4). Each sample is used in instantiating
ei (∀ei ∈ Σ), from which we compute the edge in Σ with the maximum
delay. By keeping count of the number of samples for which an edge in Σ
has maximum delay, we can compute its global criticality probability.

Algorithm 5 CPSC (G(V, E), ε)

1: Algorithm 2 Steps 1-7
2: K = KCenterPrune (Σ, ε, 1); KCenterPrune (Σ, ε, S)
3: Algorithm 2 Step 8

The runtime of LS increases with the number of samples Nls and the depth
L of the timing graph G. Reducing Nls reduces the accuracy of criticality
computation but L has no effect on the accuracy. Moreover, the criticality
of a node in G is equivalent to the sum of its fanin edge or fanout edge
criticalities. Exploiting this property, we perform a timing graph reduction
(TGR) procedure on nodes with a single fanin or fanout. A straightforward
and practical example of this reduction is an inverter chain

Table III shows the effect of TGR on the depth (number of levels) L and
maximum cutset size η on the three largest benchmark circuits. Column 2
shows the size of the circuit. As their names imply, columns w/ red. and w/o
red. are results with and without TGR respectively, applied to G.

TABLE III
EFFECT OF TGR ON CIRCUIT DEPTH L AND MAXIMUM CUTSET SIZE η

Benchmark # of L η
Gates w/o red. w/ red w/o red. w/ red

s38417 22179 51 13 2821 6638
s35932 16065 33 10 5473 10742
s38584 19253 60 19 5680 10374

VI. RESULTS

Our algorithms were implemented in C++ on top of an SSTA engine and
exercised on the ISCAS89 benchmarks, with parameter values corresponding
to the 100nm technology node [7]. Experiments were conducted on a Linux
PC with a 3.0-GHz CPU and 2GB RAM. We compared four schemes with
Monte Carlo simulations using 10000 samples, shown in Table II.

The first scheme is the ZSC approach in Algorithm 2. Scheme nC2
implements the pairwise pruning strategy of Section V-A with a pruning
threshold ε of 5%. CPSC implements Algorithm 5 using our clustered
pruning and ordering technique. Finally, CPSC+LS+TGR performs clustered
pruning on the reduced timing graph (TGR) and computes criticalities using
the LS procedure with Nls = 1000 samples. Row max. δ reports the
maximum difference between the edge criticality computed using any of
the above mentioned schemes and the Monte Carlo simulations, run-time
reports the running time in seconds and η reports the maximum number of
edges in any cutset of the timing graph after pruning . We exclude the times
for SSTA and generating samples in the LS scheme.

From Table II, ZSC which computes criticalities using Clark’s MAXθ
formulation results in large errors (the largest being 58%). Since ZSC
fundamentally does not differ from [10], we expect to see errors of similar
magnitude. CPSC with cutset pruning and ordering does better than ZSC in
accuracy and runtime. For circuits exhibiting large global errors, ordering
is insufficient to reduce these errors. Rows in bold compare ZSC with
CPSC+TGR+LCS. The combined approach greatly reduces errors with
negligible increase in runtime compared to CPSC. For the 3 large benchmarks
we obtain about an order of magnitude difference run-times of ZSC and the
combined approach. Most circuits have errors below 5%, except for s38584.
On investigation, it was found that for large fanout structures, path delays
themselves (computed in terms of the PCs) contained large errors and hence
the LS procedure does not completely eliminate global errors. In terms of
the efficacy of our pruning strategy, as expected we vastly outperform the
nC2 procedure in run-time (about two orders of magnitude for the larger
benchmarks). Moreover, each circuit contained an identical number of edges
remaining in the cutsets using the nC2 and CPSC pruning strategies.

REFERENCES

[1] H. Chang and S. S. Sapatnekar, “Statistical timing analysis considering
spatial correlations using a single PERT-like traversal,” in Proceedings of
the 2003 IEEE/ACM International Conference on Computer-Aided Design.
IEEE Computer Society, 2003, p. 621.

[2] K. Chopra, S. Shah, A. Srivastava, D. Blaauw, and D. Sylvester, “Parametric
yield maximization using gate sizing based on efficient statistical power
and delay gradient computation,” in Proceedings of the 2005 IEEE/ACM
International Conference on Computer-Aided Design. IEEE Computer
Society, 2005, pp. 1023–1028.

[3] C. E. Clark, “The greatest of a finite set of random variables,” Operations
Research, vol. 9, no. 2, pp. 145–162, Mar-Apr 1961.

[4] T. F. Gonzalez, “Clustering to minimize the maximum intercluster distance,”
Theoretical Computer Science, vol. 38, no. 2-3, pp. 293–306, 1985.

[5] X. Li, J. Le, M. Celik, and L. T. Pileggi, “Defining statistical sensitivity
for timing optimization of logic circuits with large-scale process and envi-
ronmental variations,” in Proceedings of the 2005 IEEE/ACM International
Conference on Computer-Aided Design. IEEE Computer Society, 2005,
pp. 844–851.

[6] S. R. Nassif, “Design for variability in DSM technologies,” in Proceedings
of the 1st International Symposium on Quality of Electronic Design. IEEE
Computer Society, 2000, p. 451.

[7] Predictive technology model (PTM). [Online]. Available: http://www.eas.
asu.edu/∼ptm/

[8] D. Sinha, H. Zhou, and N. V. Shenoy, “Advances in computation of
the maximum of a set of random variables,” in Proceedings of the 7th
International Symposium on Quality Electronic Design, Mar. 27–29, 2006.

[9] C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker, and S. Narayan,
“First-order incremental block-based statistical timing analysis,” in Proceed-
ings of the 41st Annual Design Automation Conference. ACM Press, 2004,
pp. 331–336.

[10] J. Xiong, V. Zolotov, N. Venkateswaran, and C. Visweswariah, “Criticality
computation in parameterized statistical timing,” in Proceedings of the 43rd
Design Automation Conference. ACM Press, 2006, pp. 63–68.

[11] T. Yoshimura and E. S. Kuh, “Efficient algorithms for channel routing,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 1, no. 1, pp. 25–35, Jan. 1982.


