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ABSTRACT
This paper presents a novel method for false path detection using
satisfiability. It is based on circuit node properties that are related 
to non-testable stuck-at faults as well as to false path detection. 
When compared to traditional satisfiability methods that generate 
sat instances associated to paths, the proposed method is more 
efficient. This efficiency derives from the fact that most digital 
circuits have a number of nodes that is smaller than the number of 
paths.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids – optimization, switching 
theory.

General Terms
Algorithms, Design, Theory.

Keywords
Unateness, False Paths, Satisfiability.

1. INTRODUCTION
Satisfiability (SAT) is a well-known and studied computer 
problem [1]. Many satisfiability solvers are available, and recently 
the efficiency of satisfiability solvers has largely increased. For 
this reason, many CAD tools use a satisfiability solver as part or 
as the core of the problem solver. This way, many combinatorial 
algorithmic problems have been reduced to satisfiability instances. 
Satisfiability has been used for test vector generation [2] as well 
as for false path detection [3]. False path detection using 
satisfiability normally is done path by path. This means that in 
order to determine if a path is sensitizable, it is necessary to solve 
a satisfiability instance. As circuits have many paths, due to path 
reconvergence, the cost of using satisfiability to detect false paths 
is increased. This paper introduces a new method to detect false 
paths using satisfiability. The novelty of this method resides in the 
fact that the satisfiability instances to be solved are associated to 
properties of circuit nodes, instead of being associated to 

paths. This way, the proposed method is more efficient, because 
most circuits have a number of nodes that is smaller than the 
number of paths. The node property to be checked is unateness 
[4]. A circuit node may be positive or negative unate with respect 
to each of the variables on which it depends. When the node is 
both positive and negative unate in a given variable, it is said that 
the node is binate (or mixed) on that variable. It may be very easy 
and fast to prove that a node is binate through logic simulation. 
However, in order to prove that a node is not binate, it is 
necessary to solve a satisfiability instance. This paper compares 
the proposed method of using satisfiability to detect false paths 
based node information against the method based on path 
information. Main contributions of this paper are: (1) the 
description of a fast method to prove if a node is unate through 
logic simulation; (2) the method to derive sat instances to prove if 
a node is or is not unate; and (3) the use of this information to 
detect false paths.

2. SAT AND PATH SENSITIZATION
Satisfiability (SAT) input is normally expressed as a product of 
sums called Conjunctive Normal Form – CNF. Given a CNF
representing an instance of the sat problem, a SAT solver 
determines a input vector for which the product is evaluated to 1, 
or prove that such a input vector does not exist. It is easy to 
produce a CNF formula for a given combinational circuit, as it is 
the product of the individual CNF formulas for each gate of the 
circuit. The CNF formula of an individual gate denotes the valid 
input-output assignments for the gate. CNF formulas for simple 
gates are shown in Table 1. They may be used to derive a SAT 
expression for the circuit in Figure 1.

Table 1. CNF formulas for simple gates.

gate Equation CNF sat
and o=a⋅b (a’+b’+o) ⋅ (a+o’) ⋅ (b+o’)
nand o=(a⋅b)’ (a’+b’+o’) ⋅ (a+o) ⋅ (b+o)
or o=a+b (a+b+o’) ⋅ (a’+o) ⋅ (b’+o)
nor o=(a+b)’ (a+b+o) ⋅ (a’+o’) ⋅ (b’+o’)
not o=a’ (a+o) ⋅ (a’+o’)

Figure 1. A simple combinational circuit.
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Consider the circuit shown in Figure 1. It is composed of three 
simple cells, and the CNF formula for this complete circuit is 
obtained through the product of the CNF formulas for each gate. 
The circuit corresponding CNF formula is the following:

CNF = (a’+b’+x) ⋅ (a+x’) ⋅ (b+x’) .           ⋅
(c’+d’+y) ⋅ (c+y’) ⋅ (d+y’) .      (1)
(x+y+o’) ⋅ (x’+o) ⋅ (y’+o)

Satisfiability may be used to detect false paths. Consider the path 
from input a to output o in the circuit from Figure 1. To activate 
this path, it is necessary to have y=0 and b=1. Two new clauses 
must be added in equation 1 in order to warranty that these 
conditions hold. Equation 2 shows the equation 1 with the 
sensitization conditions added. The method used to derive the sat 
instance in equation 2 will be referred as path-sat in the 
remaining of this paper. Please notice that four paths are present 
in the circuit. Therefore, it would be necessary to create and to 
solve four CNF instances to test all the paths in the circuit.

CNF =  (a’+b’+x) . (a+x’) . (b+x’) .  
 (c’+d’+y) . (c+y’) . (d+y’) .         (2)

             (x+y+o’) . (x’+o) . (y’+o) . 
             (y’) . (b)

3. UNATE AND BINATE PROPERTIES
Unateness is a property of Boolean functions and gates that is 
related to the polarities of the transitions they support. This 
property has been used to produce fast heuristic algorithms for 
logic synthesis, including the recursive unate paradigm used in 
ESPRESSO [4]. 

3.1 Functional unateness
Definition 1. A function f(v1, v2, vi, …, vn) is functionally 
positive unate in variable vi if there is a pair of input vectors {(a1, 
a2, 0, …, an), (a1, a2, 1, …, an)} such as f(a1, a2, 0, …, an)=0
and f(a1, a2, 1, …, an)=1, where ai ⊂ {0, 1}.

Definition 2. A function f(v1, v2, vi, …, vn) is functionally 
negative unate in variable vi if there is a pair of input vectors 
{(a1, a2, 0, …, an), (a1, a2, 1, …, an)} such as f(a1, a2, 0, …, 
an)=1 and f(a1, a2, 1, …, an)=0.

Definition 3. A function is said to be functionally binate when 
both definitions 1 and 2 above are satisfied for two distinct vector 
pairs.

Definition 4. A function is said to be functionally independent 
of variable vi when there is no pair of vector to satisfy neither 
definition 1 nor definition 2.

Notice that the above definitions for unateness are independent of 
the equation or the circuit implementing these functions. Next 
section will discuss about topological unateness, i.e. unateness 
related to circuit topology.

3.2 Topological unateness
Definition 5. A gate is said to be a positive gate if the logic 
function it represents is (only) positive unate with respect of all its 
input variables. Examples of positive gates are AND, OR and 
BUFFERS (non inverting buffers).

Definition 6. A gate is said to be a negative gate if the logic 
function it represents is (only) negative unate with respect of all 
its input variables. Examples of negative gates are NAND, NOR 
and inverters.

At this point it is necessary to notice that an EXOR gate is neither 
a positive nor a negative gate. Fortunately, this kind of gate may 
be decomposed in a set of simpler gates that are either positive or 
negative unate. Therefore, our discussion will be limited to 
positive and negative gates only, without loss of generality.

Definition 7. A path containing an even number of negative gates 
is defined as a positive path.

Definition 8. A path containing an odd number of negative gates 
is defined as a negative path.

Definition 9. A circuit node n is topologically positive unate in 
variable vi if there is a positive path leading from variable vi to 
node n.

Definition 10. A circuit node n is topologically negative unate in 
variable vi if there is a negative path leading from variable vi to 
node n.

Definition 11. A circuit node n is said to be topologically binate
when both definitions 9 and 10 above are satisfied through two 
distinct paths (one positive and other negative).

Definition 12. A circuit node n is said to be functionally 
independent of variable vi when there is no path from variable vi
to node n.

Functional and topological unateness may be coded as vector 
composed of a pair of bits <v+, v-> for each variable to be 
catalogued. The bit v+ assumes the value 1 when the variable is 
positive unate and the value 0 when the variable is not positive 
unate. The bit v- codifies the negative unateness in a similar way. 
The value <1,1> represents a binate node or function, while the 
value <1,0> represents a positive unate node or function, and so 
forth. All the four possibilities described above may be coded this 
way.

Topological unateness information may be easily calculated using 
a recursive routine. The topological information for input 
variables is trivial, as all of them are topologically unate with 
respect to themselves and independent from others. The 
topological unateness at the output of a positive gate is given by 
the bit-to-bit OR of the unateness information at the inputs, 
expressed as multi-bit words. The topological unateness at the 
output of a negative gate is obtained in two steps. First an OR 
operation is made among the information from inputs, as for 
positive gates. Second, the positive and negative information for 
each variable is interchanged (vi+ and vi- information is 
interchanged for each variable vi). This procedure has linear time 
complexity O(|E|), where E is the edge set for the circuit graph.

Table 2 presents the bit vectors representing the topological 
unateness information for all the circuit nodes in Figure 2. This 
information may be easily obtained recursively as described 
previously. Notice that our procedure finds that node out is binate 
in variables a and d, positive unate in variable b and negative 
unate in variable c. 



Table 2. Topological unateness properties of the 
circuit in Figure 2.

Topological unateness informationNode 
name a+ a- b+ b- c+ c- d+ d- 

m 0 1 0 0 0 0 0 0
n 0 0 0 0 0 1 0 0
o 0 0 0 0 0 0 0 1
p 1 0 1 0 0 0 0 0
q 0 1 0 0 0 1 0 0
r 0 0 0 0 0 0 1 1

out 1 1 1 0 0 1 1 1

Figure 2. A combinational circuit with false paths.

3.3 Functional vs. topological unateness
It is important to notice that when expressed by the 2 bit per 
variable code presented in table 2, the following condition holds 
for the logic function represented in each node of the circuit:

functional unateness ≤ topological unateness    (3)

The inequality above holds because it is not possible to a node to 
be functionally positive or negative binate if there is not a 
topological path to enable the node positive or negative unateness. 
However, as circuits may contain false paths, the function 
represented in the nodes may simply not be able to functionally 
use all the circuit paths. This relationship occurs for the node out
in the circuit of Figure 2, as shown in the following.

   a+a-b+b-c+c-d+d- ≤ a+a-b+b-c+c-d+d- 
   1 1 1 0 0 1 0 0  < 1 1 1 0 0 1 1 1 

The relationship above represents the fact that the variable d does 
not affect the function in node out, even if there are paths from 
variable d to out.  

4. SIMULATION AND UNATENESS 
Logic simulation may be used to determine functional unateness. 
If the choice of the vectors is lucky, a pair of vectors where only 
one variable changes may prove the functional unateness of 
several nodes. All the nodes that have a transition will be proven 
to be functionally positive or negative unate, depending on the 
direction of the transition. However, nothing can be said about the 
unateness of the nodes that remained unchanged, unless an 
exhaustive simulation is performed, which is not practical. 
Anyway, the simulation of a certain number of input vectors may 
determine the unateness of a significant part of the circuit. 

5. SATISFIABILITY AND UNATENESS 
Satisfiability may be used to ensure that a circuit node is not 
functionally unate in a given variable. Consider the satisfiability 
clauses of the circuit in Figure 1. To prove that the circuit is or is 
not positive (or negative) unate, it is necessary to prove the 
impossibility of two input-output assignment pairs simultaneously 
(see definition 1). For this reason, the circuit clauses are 
duplicated. The input variable and the circuit node under test are 
renamed differently in the two circuits, as shown in equation 4. 
The same happens to internal circuit nodes, as they may have 
different values for the two input-output assignments. The input 
variables that are not being tested in the SAT instance preserve 
the same name, to guarantee that they will have the same value in 
both assignments. To test if output o is positive unate with respect 
to variable a, the last four clauses are necessary: (a1’), (o1’), (a2) 
and (o2). The method used to derive the sat instance in equation 4 
will be referred as node-sat. 

CNF= (a1’+b’+x1) ⋅ (a1+x1’) ⋅ (b+x1’) ⋅ 
           (c’+d’+y1) ⋅ (c+y1’) ⋅ (d+y1’) ⋅ 
           (x1+y1+o1’) ⋅ (x1’+o1) ⋅ (y1’+o1) ⋅ 
           (a2’+b’+x2) ⋅ (a2+x2’) ⋅ (b+x2’) ⋅                  (4) 
           (c’+d’+y2) ⋅ (c+y2’) ⋅ (d+y2’) ⋅ 
           (x2+y2+o2’) ⋅ (x2’+o2) ⋅ (y2’+o2) ⋅ 
           (a1’) ⋅ (o1’) ⋅ (a2) ⋅ (o2) 
 

6. RESULTS 
Table 3 compares the number of instances to solve the false path 
problem based on path-sat (section 2) and our method based on 
node-sat (section 5). It is possible to notice that the number of 
instances needed to solve node-sat is significantly smaller. 
Another advantage of node-sat is that a significant number of sat 
instances may be solved through logic simulation as described in 
section 4. Table 4 shows the number of the node-sat instances that 
happen to be solved by simulation by applying 5, 25 and 125 pairs 
of random vectors per input variable. Notice that a number 
ranging from 12% to 71% of the instances were rapidly solved by 
simulation. Notice that this acceleration by simulation may only 
be performed for node-sat. In the case of path-sat, the 
determination of paths that are being activated through input 
vectors would need the maintenance and the search of the 
complete list of paths during simulation. This information is 
difficult to maintain and manage. Fortunately, for node unateness 
information, associated with node-sat proposed here, it is very 
simple to obtain and store this information, by using the two bit 
encoding proposed in this paper. It is only necessary to mark the 
nodes that switched for a pair of input vectors. 

Table 3. Number of instances for path-sat and for node-sat. 

Circuit  # of instances 
 path-sat node-sat 

alu2 38623 5760 
C1355 4173216 24722 
C1908 729056 25522 
C432 291826 11828 
C499 397888 21938 
C3540 26603318 46644 
dalu 65463 55182 
i9 36980 21936 



Table 4. Number of node-sat instances solved by simulation. 

  Solved by simulation 
Circuit  # of inst 5v 25v 125v 
alu2 5760 1751 3088 4094 
C1355 24722 4750 8412 12417 
C1908 25522 5136 7606 15363 
C432 11828 2398 4034 5851 
C499 21938 4642 8101 11633 
C3540 46644 7295 19056 29026 
dalu 55182 7018 13158 21817 
i9 21936 4778 8336 12932 

Table 5. CPU time for remaining node-sat solved by zChaff. 
Circuit # of inst zChaff time (s) 
alu2 1666 1.22 
C1355 12305 1209.03 
C1908 10159 384.85 
C432 5977 59.41 
C499 10305 3600.92 
C3540 17618 9906.46 
dalu 33365 728.89 
i9 9004 13.81 

As some sat-instances were solved through simulation, only part 
of the node-sat instances must be solved through a sat-solver. For 
example the circuit alu2 has 5760 different node-sat instances. 
From these, 4094 were solved by simulation. Table 5 shows the 
number of remaining node-sat instances and the CPU time to 
solve them. Notice that the number of remaining node-sat 
instances in table 5 is the difference given by the overall total 
number of node-sat instances (from table 3) minus the number of 
instances that were solved by simulation with 125 pairs of random 
vectors. The sat-solver used for the remaining instances was the 
zChaff solver [5]. A final issue is the percentage the difference 
between topological and functional unateness, as shown in table 
6. The results consider unateness encoded as a pair of bits per 
variable. The column diff reports the number of vector positions 
for which functional unateness is 0 while topological unateness is 
1, as described in section 3.3. These differences indicate that the 
circuit may contain false paths, which could be removed through a 
redundancy removal algorithm like [6- 7]. 

7. CONCLUSIONS 
This paper presented a new method of using satisfiability to detect 
false paths. This method is based on unateness information for 
circuit nodes and it compares functional and topological 
unateness of the nodes to detect the presence of false paths. This 
information may be used on a variety of algorithms and methods 
that need information about signal observability. Preliminary 
results show that the number of instances for unateness node 
detection using satisfiability is significantly smaller than for path 
sensitization satisfiability. These results are preliminary, and an 
algorithm for redundancy removal based on the method for false 
path detection presented here is being developed. This algorithm 
will implement the concept of length-disjoint paths presented in 
[6] as an improvement to the KMS algorithm [7]. 

Table 6. Difference between topological  
and functional unateness. 

Circuit diff diff (%) 
alu2 724 14.21 
C1355 208 0.84 
C1908 1250 5.11 
C432 3328 32.11 
C499 128 0.58 
C3540 2432 5.90 
dalu 11028 24.15 
i9 4120 22.36 
cla2 14 10.76 
cla4 72 14.06 

csa2_2 23 15.03 
csa4_4 85 20.48 
csa8_2 428 32.13 
csa8_4 362 28.68 
ripple2 14 12.72 
ripple4 68 21.51 
ripple8 296 29.13 
ripple16 1232 34.52 
ripple32 5024 37.83 
ripple64 20288 39.67 
mult2_2 12 19.35 
mult4_4 209 14.11 
mult6_6 521 8.99 
mult8_8 968 6.65 
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