
A New Approach to the Use of Satisfiability in False Path
Detection

Felipe S. Marques1, Renato P. Ribas1, Sachin Sapatnekar2, André I. Reis1,2
1Instituto de Informática - UFRGS

CEP 91501-970 Caixa Postal: 15064
Porto Alegre – RS – Brazil

+55 (51) 3316-7036

{felipem, rpribas, andreis}@inf.ufrgs.br

2Department of Electrical and Computer Engineering
University of Minnesota
Minneapolis, MN 55455

(612) 625-0025

sachin@ece.umn.edu

ABSTRACT
This paper presents a novel method for false path detection using
satisfiability. It is based on circuit node properties that are related
to non-testable stuck-at faults as well as to false path detection.
When compared to traditional satisfiability methods that generate
sat instances associated to paths, the proposed method is more
efficient. This efficiency derives from the fact that most digital
circuits have a number of nodes that is smaller than the number of
paths.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids – optimization, switching
theory.

General Terms
Algorithms, Design, Theory.

Keywords
Unateness, False Paths, Satisfiability.

1. INTRODUCTION
Satisfiability (SAT) is a well-known and studied computer
problem [1]. Many satisfiability solvers are available, and recently
the efficiency of satisfiability solvers has largely increased. For
this reason, many CAD tools use a satisfiability solver as part or
as the core of the problem solver. This way, many combinatorial
algorithmic problems have been reduced to satisfiability instances.
Satisfiability has been used for test vector generation [2] as well
as for false path detection [3]. False path detection using
satisfiability normally is done path by path. This means that in
order to determine if a path is sensitizable, it is necessary to solve
a satisfiability instance. As circuits have many paths, due to path
reconvergence, the cost of using satisfiability to detect false paths
is increased. This paper introduces a new method to detect false
paths using satisfiability. The novelty of this method resides in the
fact that the satisfiability instances to be solved are associated to
properties of circuit nodes, instead of being associated to

paths. This way, the proposed method is more efficient, because
most circuits have a number of nodes that is smaller than the
number of paths. The node property to be checked is unateness
[4]. A circuit node may be positive or negative unate with respect
to each of the variables on which it depends. When the node is
both positive and negative unate in a given variable, it is said that
the node is binate (or mixed) on that variable. It may be very easy
and fast to prove that a node is binate through logic simulation.
However, in order to prove that a node is not binate, it is
necessary to solve a satisfiability instance. This paper compares
the proposed method of using satisfiability to detect false paths
based node information against the method based on path
information. Main contributions of this paper are: (1) the
description of a fast method to prove if a node is unate through
logic simulation; (2) the method to derive sat instances to prove if
a node is or is not unate; and (3) the use of this information to
detect false paths.

2. SAT AND PATH SENSITIZATION
Satisfiability (SAT) input is normally expressed as a product of
sums called Conjunctive Normal Form – CNF. Given a CNF
representing an instance of the sat problem, a SAT solver
determines a input vector for which the product is evaluated to 1,
or prove that such a input vector does not exist. It is easy to
produce a CNF formula for a given combinational circuit, as it is
the product of the individual CNF formulas for each gate of the
circuit. The CNF formula of an individual gate denotes the valid
input-output assignments for the gate. CNF formulas for simple
gates are shown in Table 1. They may be used to derive a SAT
expression for the circuit in Figure 1.

Table 1. CNF formulas for simple gates.

gate Equation CNF sat
and o=a⋅b (a’+b’+o) ⋅ (a+o’) ⋅ (b+o’)
nand o=(a⋅b)’ (a’+b’+o’) ⋅ (a+o) ⋅ (b+o)
or o=a+b (a+b+o’) ⋅ (a’+o) ⋅ (b’+o)
nor o=(a+b)’ (a+b+o) ⋅ (a’+o’) ⋅ (b’+o’)
not o=a’ (a+o) ⋅ (a’+o’)

Figure 1. A simple combinational circuit.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GLSVLSI’05, April 17–19, 2005, Chicago, Illinois, USA.
Copyright ACM 1-59593-057-4/05/0004...$5.00.

Consider the circuit shown in Figure 1. It is composed of three
simple cells, and the CNF formula for this complete circuit is
obtained through the product of the CNF formulas for each gate.
The circuit corresponding CNF formula is the following:

CNF = (a’+b’+x) ⋅ (a+x’) ⋅ (b+x’) . ⋅
(c’+d’+y) ⋅ (c+y’) ⋅ (d+y’) . (1)
(x+y+o’) ⋅ (x’+o) ⋅ (y’+o)

Satisfiability may be used to detect false paths. Consider the path
from input a to output o in the circuit from Figure 1. To activate
this path, it is necessary to have y=0 and b=1. Two new clauses
must be added in equation 1 in order to warranty that these
conditions hold. Equation 2 shows the equation 1 with the
sensitization conditions added. The method used to derive the sat
instance in equation 2 will be referred as path-sat in the
remaining of this paper. Please notice that four paths are present
in the circuit. Therefore, it would be necessary to create and to
solve four CNF instances to test all the paths in the circuit.

CNF = (a’+b’+x) . (a+x’) . (b+x’) .
 (c’+d’+y) . (c+y’) . (d+y’) . (2)

 (x+y+o’) . (x’+o) . (y’+o) .
 (y’) . (b)

3. UNATE AND BINATE PROPERTIES
Unateness is a property of Boolean functions and gates that is
related to the polarities of the transitions they support. This
property has been used to produce fast heuristic algorithms for
logic synthesis, including the recursive unate paradigm used in
ESPRESSO [4].

3.1 Functional unateness
Definition 1. A function f(v1, v2, vi, …, vn) is functionally
positive unate in variable vi if there is a pair of input vectors {(a1,
a2, 0, …, an), (a1, a2, 1, …, an)} such as f(a1, a2, 0, …, an)=0
and f(a1, a2, 1, …, an)=1, where ai ⊂ {0, 1}.

Definition 2. A function f(v1, v2, vi, …, vn) is functionally
negative unate in variable vi if there is a pair of input vectors
{(a1, a2, 0, …, an), (a1, a2, 1, …, an)} such as f(a1, a2, 0, …,
an)=1 and f(a1, a2, 1, …, an)=0.

Definition 3. A function is said to be functionally binate when
both definitions 1 and 2 above are satisfied for two distinct vector
pairs.

Definition 4. A function is said to be functionally independent
of variable vi when there is no pair of vector to satisfy neither
definition 1 nor definition 2.

Notice that the above definitions for unateness are independent of
the equation or the circuit implementing these functions. Next
section will discuss about topological unateness, i.e. unateness
related to circuit topology.

3.2 Topological unateness
Definition 5. A gate is said to be a positive gate if the logic
function it represents is (only) positive unate with respect of all its
input variables. Examples of positive gates are AND, OR and
BUFFERS (non inverting buffers).

Definition 6. A gate is said to be a negative gate if the logic
function it represents is (only) negative unate with respect of all
its input variables. Examples of negative gates are NAND, NOR
and inverters.

At this point it is necessary to notice that an EXOR gate is neither
a positive nor a negative gate. Fortunately, this kind of gate may
be decomposed in a set of simpler gates that are either positive or
negative unate. Therefore, our discussion will be limited to
positive and negative gates only, without loss of generality.

Definition 7. A path containing an even number of negative gates
is defined as a positive path.

Definition 8. A path containing an odd number of negative gates
is defined as a negative path.

Definition 9. A circuit node n is topologically positive unate in
variable vi if there is a positive path leading from variable vi to
node n.

Definition 10. A circuit node n is topologically negative unate in
variable vi if there is a negative path leading from variable vi to
node n.

Definition 11. A circuit node n is said to be topologically binate
when both definitions 9 and 10 above are satisfied through two
distinct paths (one positive and other negative).

Definition 12. A circuit node n is said to be functionally
independent of variable vi when there is no path from variable vi
to node n.

Functional and topological unateness may be coded as vector
composed of a pair of bits <v+, v-> for each variable to be
catalogued. The bit v+ assumes the value 1 when the variable is
positive unate and the value 0 when the variable is not positive
unate. The bit v- codifies the negative unateness in a similar way.
The value <1,1> represents a binate node or function, while the
value <1,0> represents a positive unate node or function, and so
forth. All the four possibilities described above may be coded this
way.

Topological unateness information may be easily calculated using
a recursive routine. The topological information for input
variables is trivial, as all of them are topologically unate with
respect to themselves and independent from others. The
topological unateness at the output of a positive gate is given by
the bit-to-bit OR of the unateness information at the inputs,
expressed as multi-bit words. The topological unateness at the
output of a negative gate is obtained in two steps. First an OR
operation is made among the information from inputs, as for
positive gates. Second, the positive and negative information for
each variable is interchanged (vi+ and vi- information is
interchanged for each variable vi). This procedure has linear time
complexity O(|E|), where E is the edge set for the circuit graph.

Table 2 presents the bit vectors representing the topological
unateness information for all the circuit nodes in Figure 2. This
information may be easily obtained recursively as described
previously. Notice that our procedure finds that node out is binate
in variables a and d, positive unate in variable b and negative
unate in variable c.

Table 2. Topological unateness properties of the
circuit in Figure 2.

Topological unateness informationNode
name a+ a- b+ b- c+ c- d+ d-

m 0 1 0 0 0 0 0 0
n 0 0 0 0 0 1 0 0
o 0 0 0 0 0 0 0 1
p 1 0 1 0 0 0 0 0
q 0 1 0 0 0 1 0 0
r 0 0 0 0 0 0 1 1

out 1 1 1 0 0 1 1 1

Figure 2. A combinational circuit with false paths.

3.3 Functional vs. topological unateness
It is important to notice that when expressed by the 2 bit per
variable code presented in table 2, the following condition holds
for the logic function represented in each node of the circuit:

functional unateness ≤ topological unateness (3)

The inequality above holds because it is not possible to a node to
be functionally positive or negative binate if there is not a
topological path to enable the node positive or negative unateness.
However, as circuits may contain false paths, the function
represented in the nodes may simply not be able to functionally
use all the circuit paths. This relationship occurs for the node out
in the circuit of Figure 2, as shown in the following.

 a+a-b+b-c+c-d+d- ≤ a+a-b+b-c+c-d+d-
 1 1 1 0 0 1 0 0 < 1 1 1 0 0 1 1 1

The relationship above represents the fact that the variable d does
not affect the function in node out, even if there are paths from
variable d to out.

4. SIMULATION AND UNATENESS
Logic simulation may be used to determine functional unateness.
If the choice of the vectors is lucky, a pair of vectors where only
one variable changes may prove the functional unateness of
several nodes. All the nodes that have a transition will be proven
to be functionally positive or negative unate, depending on the
direction of the transition. However, nothing can be said about the
unateness of the nodes that remained unchanged, unless an
exhaustive simulation is performed, which is not practical.
Anyway, the simulation of a certain number of input vectors may
determine the unateness of a significant part of the circuit.

5. SATISFIABILITY AND UNATENESS
Satisfiability may be used to ensure that a circuit node is not
functionally unate in a given variable. Consider the satisfiability
clauses of the circuit in Figure 1. To prove that the circuit is or is
not positive (or negative) unate, it is necessary to prove the
impossibility of two input-output assignment pairs simultaneously
(see definition 1). For this reason, the circuit clauses are
duplicated. The input variable and the circuit node under test are
renamed differently in the two circuits, as shown in equation 4.
The same happens to internal circuit nodes, as they may have
different values for the two input-output assignments. The input
variables that are not being tested in the SAT instance preserve
the same name, to guarantee that they will have the same value in
both assignments. To test if output o is positive unate with respect
to variable a, the last four clauses are necessary: (a1’), (o1’), (a2)
and (o2). The method used to derive the sat instance in equation 4
will be referred as node-sat.

CNF= (a1’+b’+x1) ⋅ (a1+x1’) ⋅ (b+x1’) ⋅
 (c’+d’+y1) ⋅ (c+y1’) ⋅ (d+y1’) ⋅
 (x1+y1+o1’) ⋅ (x1’+o1) ⋅ (y1’+o1) ⋅
 (a2’+b’+x2) ⋅ (a2+x2’) ⋅ (b+x2’) ⋅ (4)
 (c’+d’+y2) ⋅ (c+y2’) ⋅ (d+y2’) ⋅
 (x2+y2+o2’) ⋅ (x2’+o2) ⋅ (y2’+o2) ⋅
 (a1’) ⋅ (o1’) ⋅ (a2) ⋅ (o2)

6. RESULTS
Table 3 compares the number of instances to solve the false path
problem based on path-sat (section 2) and our method based on
node-sat (section 5). It is possible to notice that the number of
instances needed to solve node-sat is significantly smaller.
Another advantage of node-sat is that a significant number of sat
instances may be solved through logic simulation as described in
section 4. Table 4 shows the number of the node-sat instances that
happen to be solved by simulation by applying 5, 25 and 125 pairs
of random vectors per input variable. Notice that a number
ranging from 12% to 71% of the instances were rapidly solved by
simulation. Notice that this acceleration by simulation may only
be performed for node-sat. In the case of path-sat, the
determination of paths that are being activated through input
vectors would need the maintenance and the search of the
complete list of paths during simulation. This information is
difficult to maintain and manage. Fortunately, for node unateness
information, associated with node-sat proposed here, it is very
simple to obtain and store this information, by using the two bit
encoding proposed in this paper. It is only necessary to mark the
nodes that switched for a pair of input vectors.

Table 3. Number of instances for path-sat and for node-sat.

Circuit # of instances
 path-sat node-sat

alu2 38623 5760
C1355 4173216 24722
C1908 729056 25522
C432 291826 11828
C499 397888 21938
C3540 26603318 46644
dalu 65463 55182
i9 36980 21936

Table 4. Number of node-sat instances solved by simulation.

 Solved by simulation
Circuit # of inst 5v 25v 125v
alu2 5760 1751 3088 4094
C1355 24722 4750 8412 12417
C1908 25522 5136 7606 15363
C432 11828 2398 4034 5851
C499 21938 4642 8101 11633
C3540 46644 7295 19056 29026
dalu 55182 7018 13158 21817
i9 21936 4778 8336 12932

Table 5. CPU time for remaining node-sat solved by zChaff.
Circuit # of inst zChaff time (s)
alu2 1666 1.22
C1355 12305 1209.03
C1908 10159 384.85
C432 5977 59.41
C499 10305 3600.92
C3540 17618 9906.46
dalu 33365 728.89
i9 9004 13.81

As some sat-instances were solved through simulation, only part
of the node-sat instances must be solved through a sat-solver. For
example the circuit alu2 has 5760 different node-sat instances.
From these, 4094 were solved by simulation. Table 5 shows the
number of remaining node-sat instances and the CPU time to
solve them. Notice that the number of remaining node-sat
instances in table 5 is the difference given by the overall total
number of node-sat instances (from table 3) minus the number of
instances that were solved by simulation with 125 pairs of random
vectors. The sat-solver used for the remaining instances was the
zChaff solver [5]. A final issue is the percentage the difference
between topological and functional unateness, as shown in table
6. The results consider unateness encoded as a pair of bits per
variable. The column diff reports the number of vector positions
for which functional unateness is 0 while topological unateness is
1, as described in section 3.3. These differences indicate that the
circuit may contain false paths, which could be removed through a
redundancy removal algorithm like [6- 7].

7. CONCLUSIONS
This paper presented a new method of using satisfiability to detect
false paths. This method is based on unateness information for
circuit nodes and it compares functional and topological
unateness of the nodes to detect the presence of false paths. This
information may be used on a variety of algorithms and methods
that need information about signal observability. Preliminary
results show that the number of instances for unateness node
detection using satisfiability is significantly smaller than for path
sensitization satisfiability. These results are preliminary, and an
algorithm for redundancy removal based on the method for false
path detection presented here is being developed. This algorithm
will implement the concept of length-disjoint paths presented in
[6] as an improvement to the KMS algorithm [7].

Table 6. Difference between topological
and functional unateness.

Circuit diff diff (%)
alu2 724 14.21
C1355 208 0.84
C1908 1250 5.11
C432 3328 32.11
C499 128 0.58
C3540 2432 5.90
dalu 11028 24.15
i9 4120 22.36
cla2 14 10.76
cla4 72 14.06

csa2_2 23 15.03
csa4_4 85 20.48
csa8_2 428 32.13
csa8_4 362 28.68
ripple2 14 12.72
ripple4 68 21.51
ripple8 296 29.13
ripple16 1232 34.52
ripple32 5024 37.83
ripple64 20288 39.67
mult2_2 12 19.35
mult4_4 209 14.11
mult6_6 521 8.99
mult8_8 968 6.65

8. ACKNOWLEDGMENTS
This research was partially supported by CNPq, CAPES, and
FAPERGS Brazilian Founding Agencies.

9. REFERENCES
[1] Marques-Silva, P.J., and Sakallah, K.A., Boolean

Satisfiability in Electronic Design Automation, Design
Automation Conference, 2000, pp. 675-680.

[2] Larrabee, T., Test pattern generation using Boolean
satisfiability, IEEE Transactions on CAD, Vol. 11, Issue: 1,
January 1992, pp. 4 – 15.

[3] Ringe , M., Lindenkreuz, T., and Barke, E., Path verification
using Boolean satisfiability, Design, Automation and Test in
Europe, Feb. 1998, pp. 965 – 966.

[4] Brayton, R.K., Hachtel, G.D., McMullen, C.T., and
Sangiovanni-Vincentelli, A.L.M., Logic Minimization
Algorithms for VLSI Synthesis, Kluwer Academic Publishers,
Boston, 1984.

[5] Fu, Z., Mahajan, Y., and Malik, S., zChaff Solver,
http://www.princeton.edu/~chaff/zchaff.html

[6] Saldanha, A., Brayton, R.K., and Sangiovanni-Vincentelli,
A.L.M., Circuit structure relations to redundancy and delay,
IEEE Transactions on CAD, Vol. 13, issue 7, July 1994, pp.
875 – 883.

[7] Keutzer, K., Malik, S., and Saldanha, A., Is redundancy
necessary to reduce delay?, IEEE Transactions on CAD, vol.
10, issue 4, 1991, pp. 453-469.

