
Energy-efficient Hardware Acceleration
of Shallow Machine Learning Applications

Ziqing Zeng
University of Minnesota
Minneapolis, MN, USA

Sachin S. Sapatnekar
University of Minnesota
Minneapolis, MN, USA

Abstract—ML accelerators have largely focused on building
general platforms for deep neural networks (DNNs), but less so on
shallow machine learning (SML) algorithms. This paper proposes
Axiline, a compact, configurable, template-based generator for
SML hardware acceleration. Axiline identifies computational
kernels as templates that are common to these algorithms and
builds a pipelined accelerator for efficient execution. The dataflow
graphs of individual ML instances, with different data dimen-
sions, are mapped to the pipeline stages and then optimized by
customized algorithms. The approach generates energy-efficient
hardware for training and inference of various ML algorithms,
as demonstrated with post-layout FPGA and ASIC results.

I. INTRODUCTION

Rapid advances in machine learning (ML) have motivated
extensive deployment of ML algorithms of two types:
(1) Deep ML algorithms implemented as deep neural networks
(DNNs), e.g., ResNet, VGG-16, Mask R-CNN, using many
convolution layers, plus operations such as pooling/activation.
Their execution involves high runtime, energy, and power.
(2) Shallow ML (SML) algorithms are classical ML ap-
proaches, e.g., support vector machines (SVMs), logistic re-
gression, backpropagation, k-nearest neighbors (KNNs), and
decision trees. Unlike DNNs, they do not use neural network
techniques, but are based on statistical methods.

In recent years, DNNs succeeded in solving a number
of previously intractable problems [1]–[3], and have brought
ML-based computation into the mainstream of computer ar-
chitecture. Future systems that integrate distributed sensing,
computation, and actuation can now realistically be built using
ML-based techniques that can provide new computational
capabilities that were impossible in prior systems. Designing
these hardware systems requires extreme energy efficiency,
particularly in the context of distributed systems. Using DNNs
everywhere within a system is not realistic: their implemen-
tation on standard hardware platforms, such as CPUs, GPUs,
FPGAs, or even on customized DNN-specific hardware accel-
erators, is not ultra-energy-efficient. In this context, SML can
complement DNNs through energy-efficient execution with
acceptable accuracy, especially in edge computing.

SML can provide high accuracy, appropriate to applica-
tion needs, e.g., SVMs for Wi-fi localization [4], [5], pest
detection [6], and cancer genomics [7]; logistic regression
for relational database management [8]; and decision trees
for detecting ionospheric scintillations [9] and screen content
coding [10]. Some SMLs have been proven to have higher

maximum accuracy than NN in many data sets [11], [12].
Improvements in execution time and energy efficiency are
possible on custom hardware accelerators [13], [14]. Since
SML algorithms are more heterogeneous in structure than
DNNs, with different computational structures, most prior
hardware acceleration methods have built dedicated hardware
for each SML algorithm [15]–[19].

This paper proposes Axiline, a platform that automatically
builds hardware for accelerating SML. Based on a representa-
tion of target SML algorithms using dataflow graphs (DFGs),
we observe similarities in the dataflows for multiple SML
algorithms. Recognizing similar computational structures in
classes of SML algorithms, we motivate the use of templates
for ML hardware acceleration, where each template provides
an efficient hardware substructure for the class. We consider
a library of templates for the most common computations,
and for each target SML algorithm, we map its DFG to
the templates. Axiline automatically synthesizes the register-
transfer level (RTL) description of hardware accelerators, for
either training or inference, for a class of SML algorithms.
Using this approach, we can create a parameterized template-
based design with various numbers of computational elements,
bit widths, etc., to customize the hardware to target SML
algorithms of specific sizes and power/energy specifications.

This work bridges the gap between general accelerators and
algorithm-specific accelerators for SML. We gain computa-
tional efficiency through a template-based framework, which
is general enough to address multiple SML algorithms, but cre-
ates custom hardware targeted to a specific algorithm, scoring
highly on accelerator metrics (hardware power, performance,
and area (PPA), and the runtime and energy for hardware
execution of the ML workload), while also enhancing designer
productivity through template reuse.

II. RELATED WORK

SML accelerators can be classified as follows:
General Purpose Processors. SVM algorithms can be imple-
mented on CPUs and GPUs, facilitated by ML frameworks
such as PyTorch, TensorFlow, and MXNet. An example is the
RISC-V based PULP [20] used to accelerate SML in [21].
Algorithm-specific Architectures. This class corresponds to
dedicated architectures that are optimized for one specific
algorithm to achieve efficiency in performance, utilization, and
energy. These platforms sacrifice flexibility and generality to



achieve performance gains for the targeted algorithm. Many
existing shallow ML accelerators [13], [15], [16], [22] fall into
this category and are focused on a specific inference algorithm.
These approaches [15] are reported to provide 2–10× lower
LUT utilization than a more general approach such as [14].
Template-based Designs. These accelerators emplys a pa-
rameterizable number of hardware units. An example is
TABLA [14], which uses a uniform array of processing
elements and uses software templates to map standard building
blocks onto this uniform hardware. Although hardware tem-
plates have been used in the HLS community [23], [24], they
have seen limited use for building ML hardware architectures.

Our proposed Axiline platform differs significantly from
all of these. Unlike general-purpose processors or algorithm-
specific architectures, we build hardware that is specific to a
class of SML algorithms; unlike TABLA’s software templates
or SODA’s [25], [26] use of existing IP, we employ parameter-
izable hardware templates to build parameterizable platforms
for entire classes of SML algorithms.

TABLE I
TARGET FUNCTIONS AND OBJECTIVE FUNCTIONS GRADIENTS FOR

SEVERAL SHALLOW ML ALGORITHMS.
SML algorithm Inference Target Gradient of the

Function Training Objective Functions (∂f/∂W (t))

Linear WT ·Xi (WT ·Xi − Yi) ·Xi

Regression
Logistic σ(WT ·Xi) (σ(WT ·Xi)− Yi) ·Xi

Regression
SVM θ(WT ·Xi) (θ(WT ·Xi)− Yi)Xi

Recommender
∑

iW
T
j ·Xi,

∑
i(W

T
j ·Xi − Yij)Xi,

Systems
∑

j W
T
j ·Xi

∑
j(W

T
j ·Xi − Yij)Xj

Backpropagation σ(WT
2 · σ(WT

1 ·Xi))

(σ(WT
2 · σ(WT

1 ·Xi))− Yi)WT
2

(σ(WT
1 ·Xi))(σ(W

T
1 ·Xi)− 1)Xi,

(σ(WT
2 · σ(WT

1 ·Xi))− Yi)σ(WT
1 ·Xi)

SML algorithm Inference Target Function
Decision Tree At each node ni: fi(x) =WT

i ·X + wi0 > 0.
Next node: For a path n0 → · · · → nL, ni+1 = LUTni (fni ).
Prediction: Y = LUTnL (fnL ) = LUT (fn1 , fn2 , ...fnL ).

GBDT For each tree: Yi = LUTi,L(fi,L).
GBDT: Y =

∑N
i=1 Yi

Random forest For each tree: Yi = LUTi,L(fi,L).
Forest: Y = (1/N)

∑N
i=1 Yi or Y = MajNi=1Yi.

III. COMPUTATIONAL STRUCTURE OF SML ALGORITHMS

The execution of an SML algorithm involves the evaluation
of a specific target function. Performing inference involves
the implementation of the target function, while training im-
plements an optimization process that determines the weights
associated with the target function. The training computation
is driven by stochastic gradient descent (SGD), an iterative
optimization algorithm, to find the set of weights that minimize
an objective function. Next, we present the core operations for
several sets of SML algorithms, summarized in Table I.
Classical SML algorithms Table I shows the operations for
training/inference for linear regression, logistic regression,
SVMs, recommender systems, and backpropagation.
Inference: The core operation for these algorithms is the inner
product (IP) WT · Xi, and may be followed by a nonlinear
transformation, such as the sigmoid (σ) or step function (θ).
Training: A key function is stochastic gradient descent (SGD),

which divides the objective function into smaller functions of
one input vector. The gradient of the smaller function over this
vector [14] provides a weight update in iteration t:

W (t+1) =W (t) − µ ·
[
∂f(W (t), Xi))/∂W

(t)
]
, (1)

where the gradient of the training objective function
(∂f/∂W (t)) is based on a (nonlinear) function of IP (W (t)T ·
Xi), minus the bias vector (Yi) and multiplied with Xi (in
Table I); t is the iteration index, indicating the processing of
the tth input vector set; and µ is the learning rate.
Decision tree: The next category in Table I is the class of
decision tree methods, including basic decision tree, gradient
boosting decision tree (GBDT), and random forests. The table
shows the inference target functions for these methods. Each
node i of the decision tree includes a comparison function,
fi, that checks whether the sum of an IP (WT ·X) of weight
and multiple features, plus a constant (wi0), is positive. Each
decision tree can be transferred into a single-variate decision
tree, where WT ·X is replaced with Xk, where k is a node
index variable. The path for inference processes a group of
nodes ni. For an intermediate node of the decision tree, the
next node ni+1 depends on the result of the comparison
function fni

and is generated using a look-up table (LUT);
for any leaf nodes, the LUT generates the final prediction,
i.e., the final prediction is based on a LUT of all fn in a path.

The GBDT and random forest algorithms process multiple
decision trees: the final prediction of a GBDT is the summation
of all decision tree predictions, while random forest computes
an average or majority among the decision trees.

IV. HARDWARE TEMPLATE LIBRARY

We introduce a library of hardware templates common to
several algorithms in Table I, e.g., inner product (IP), SGD,
and comparison units. These templates are specific to the SML
algorithms in Table I, but the principles could be extended
to optimally implement a wider range of SML algorithms.
Note that the goal of the templates is to efficiently implement
operations: the absence of a dedicated template does not mean
that an SML algorithm cannot be implemented (because it
can always be implemented using basic arithmetic operations):
templates merely enable more efficient implementations.
Inner product templates: The basic IP unit, illustrated in
Fig. 1, has parameterized hardware blocks that implement
accumulated inner product computations in each cycle. The IP
unit is parameterized by the dimension of the inner product
and the bitwidth. Based on data stationarity pattern, there are
two types of IP templates: input-stationary (IS) or output-
stationary (OS). The difference is IS IP unit must load and
store the partial inner product result, and requires a SRAM or
RF, which has one write and one read port. The OS IP template
has higher energy efficiency than IS IP template with the same
parameters. The reason for two types of IP templates is that we
can map two serial IP computations to an OS IP followed by
a IS IP with the same dimension to enhance energy efficiency.
As another optimization, multiple IPs could be used in parallel.



Constant comparison template: This unit compares one input
with a constant and generates a binary output, depending on
which is greater, and is parameterizable by the number of bits.
LUT template: For some computations, a lookup table (LUT)-
based implementation can be more energy efficient than arith-
metic units, e.g., a sigmoid with fixed-point inputs is often
implemented as a LUT that is populated based on the bitwdith
and the radix point location. This unit is parameterized by the
number of bits, and the number of LUT entries.
SGD template: The SGD unit supports the SGD computation
in training, as represented by Eq. (1). The SGD unit imple-
ments two slice multiplies with Xi and learning rate, and one
subtraction from weight W . This unit is parameterizable by
the number of bits for Xi, W and the learning rate.
Decision tree comparison template: The decision tree tem-
plate has a set of comparison units and is parameterized with
the number of units, bitwidth, and depth of local SRAM or
register file (RF), as shown in Fig. 2. The comparison unit can
access data from local memory, implement an IP operation and
compare it with input data to generate a one-bit output for a
decision tree, as shown in Table I. We can use parallel units to
speed up the computation, as will be illustrated in Section VI.
Multi-functional template: We can combine the functionality
of multiple operations to build a multi-functional template
(e.g., combining arithmetic operations, sigmoids, compara-
tors), with a control signal used to select the function to be
used. The unit is parameterizable by the types and number of
functions, bitwidths, and all parameters for involved functions.
In Section V, we will show how SML can use these units.

V. TEMPLATE-BASED DESIGN AND OPTIMIZATION

Template-Based Design Workflow. The SML algorithm,
specified using ONNX, is converted to an intermediate rep-
resentation, the sr-DFG, generated using the Polymath com-
piler [27]. The sr-DFG is a recursive representation of oper-
ations that allows simultaneous access to multiple levels of
operation granularity. For example, the sr-DFG node could
represent an operation such as matrix multiply or slice multiply
at one level of granularity, which maps to a finer-grained DFG
with operations at the level of multiplies/adds.

The workflow used to develop Axiline is shown in Fig. 3.
We begin by initiating a DFG traversal to map the nodes
to templates and basic arithmetic units. First, the compiler
tries to match the high-level nodes in sr-DFG (e.g., slice mul,
mat mul, sum) to the templates in our library (shown as
“Template match” in the figure). With an appropriate template

Fig. 1. Hardware templates for performing inner product (IP) computations:
(a) OS IP template (b) IS IP template.

Fig. 2. Decision tree comparison template.

library, it is expected that the most complex functions will map
onto an element of the library; the user has the opportunity to
extend the library to add new functions if needed. Not all nodes
in the sr-DFG will map to a template: the nodes that are not
matched are passed to low-level mapping (“Direct transfer”).
The compiler then uses the sr-DFG at the lowest level, where
each node is an arithmetic operation with up to two inputs and
one output (e.g., add, multiply, compare). The unmapped low-
level nodes are directly mapped to basic arithmetic blocks. The
traversal continues until all nodes in the sr-DFG are mapped.
The time complexity of mapping is O(N +E), where N and
E are the maximum numbers of nodes and edges over all
levels of granularity in the sr-DFG.

Because the structure of the sr-DFG is not always op-
timal for hardware implementation, the compiler initiates a
post-mapping traversal to perform some optimizations (“Post-
mapping optimization” in Fig. 3), which consists of matching
and replacement for the templates. The details of these opti-
mizations are provided in the later part of this Section. Finally,
the resulting optimized design is taken through synthesis,
placement, and route (SP&R) to determine the PPA, and
the energy consumption for running the SML algorithm is
determined, based on the total power (from the hardware PPA)
and the number of cycles (from a system-level analysis).
Flexibility. Different from HLS tools that generate specific
RTL for each algorithm, the Axiline template library involves
multi-functional templates that cover more than one computa-
tion. Therefore, Axiline can map a class of SML algorithms
with similar dataflow to the same hardware. In other words,
our platform generates an algorithm-specific accelerator, but
also can trade off energy efficiency for flexibility by building
platforms that support multiple SML algorithms with similar
dataflow. As an example, Fig. 4 shows the DFGs for training
and inference for four SML algorithms – linear regression,
logistic regression, SVM, and recommender system. Part of
the dataflow for IP (for training and inference) and SGD (for
training) is color-coded in yellow and blue, respectively, in
Fig. 4: it is clear that these segments are the same among

Fig. 3. Workflow for the Axiline generator.



Fig. 4. Example of generating one accelerator for multiple SML algorithms.

these four algorithms. If we define a multi-function template
that covers the computation for their distinct operations (in
green in Fig. 4), then all four of these SML algorithms can be
mapped into the same hardware. This is shown on the right of
the figure: the upper half of the figure uses an IP stage and a
multi-functional stage for inference; the lower half uses an IP
stage, a multi-functional stage, and an SGD stage for training.
Optimization rules. To support a group of SML algorithms,
the optimization must handle both their similarities and dis-
crepancies. We create optimization rules with a list of pattern
matching and replacement methods, implemented as functions
in a traversal through the graph of pipeline stages. We define a
set of original patterns and optimized patterns. If the pattern of
nodes in traversal matches an original pattern in the optimiza-
tion rule, we can replace them with an optimized pattern that
is functionally equivalent but more efficient. For example, any
basic computations – add, subtract, multiply – connected to
an SGD template are replaced by optimized blocks (pre-SGD
stage, parallel SGD stage), as shown in Fig. 5. Optimizations
in this example include switching the order of slice multiplies
to reduce computations (multiplication by µ in the optimized
implementation to the right appears before multiplication by
Xij), and delay-balancing between the two pipeline stages.

Other optimization rules include: (1) A LUT and constant
comparison block can be merged into a following pipeline
stage. (2) Two or more basic computations can be combined
into one pipeline stage. (3) For a training algorithm, the
dimension of the SGD unit must be the same as the IP unit
that accepts its output. Because the space of SML algorithms
is much narrower than the wide scope of HLS, which covers a
much wider range of architectures, it is possible to compactly
define these rules for SML algorithms. The worst-case time
complexity for optimization is O(R(N ′+E′)), where N ′ and
E′ are the numbers of nodes and edges in the implementation
graph, and R is the number of defined rules.

VI. EXAMPLE HARDWARE IMPLEMENTATIONS

Logistic regression. Fig. 6 shows an example of transferring
an sr-DFG of logistic regression training into pipeline stages.
Fig. 6(a) shows the coarse-grained sr-DFG, where the nodes
“slice mul”, “sum”, “minus”, and “sigmoid” correspond to
slice multiplication, summation, subtraction, and the sigmoid

Fig. 5. An example of optimization rules for an SGD instance in the sr-DFG.

function, respectively. In the first traversal, W , X , Y , and µ are
mapped to memory transfer operations to bring data on-chip;
the adjacent “slice mul” and “sum” nodes are recognized as an
IP operation and mapped into an IP template, two “slice mul”
and one “slice minus” and recognized as an SGD operation
and transferred into an SGD stage. The sigmoid function and
“minus” nodes are mapped to basic templates: a LUT and an
elemental subtractor, creating a four-stage pipeline.

After generating the hardware graph in Fig. 6(b), the com-
piler starts the optimization traversal with the original four-
stage pipelined architecture. Using the rules in Section V,
the sigmoid stage is merged with the minus stage and delay-
balanced with the SGD stage. The architecture is then trans-
formed into a three-stage pipeline in a post-mapping optimiza-
tion (Fig. 6(c)). Any one-dimensional basic operations before
the SGD stage are balanced with the SGD stage to generate a
pre-SGD stage and an optimized SGD stage. The optimization
includes dimension-matching: the parallel SGD output must
have the same dimension as the IP in the next pipeline stage,
where it sends data for the next training iteration.
Decision tree. Fig. 7 shows the implementation of hardware
for inference on a decision tree. The dimension of the decision
tree comparison units in each pipeline stage is user-defined by
the user: here, we choose 2 units for the first stage and 3
for the second. In the mapping process, we group the nodes
in the graph based on the dimension of each stage. We map
nodes (1,2) to stage 1, with 2 units. Supernode (1,2) has 3
branches with the root nodes (4, 5, 3). Because stage 2 has
3 units, (4, 5, 3), (8, 6) and (9, 7) are mapped to each of
these units; if the nodes exceed the limit of defined stages,
more units or stages are needed. The memory size of each
comparison unit depends on the number of mapped nodes.
Depending on the result of stage 1, the local memory address
for stage 2 indicates the branch selected in the grouped node.
A LUT-based combinational logic is generated to transfer the

Fig. 6. Using our approach for to build hardware for logistic regression.



Fig. 7. Using our approach for hardware implementation of a decision tree.

binary output of one stage into the address for the next stage.
The final output is the combination of outputs for each stage
(Table I). During optimization, the LUT is embedded into the
parallel comparison stage, as shown in the figure.

VII. EXPERIMENTS

We evaluate our architecture with on-chip energy and runtime
for the SML algorithms in Table II, comparing Axiline against
TABLA [14] (both as ASIC) and against HLS (both on FPGA).
Axiline and HLS both custom-generate the hardware for each
ML algorithm, while TABLA uses the same platform. For
FPGA, we use Xilinx Vivado for an Artix-7 board in 28nm.
For ASIC, we use Design Compiler+Innovus to run synthesis,
placement and routing (SP&R) at 12nm. The RTL template in
TABLA uses fixed point arithmetic, with input bitwidth of 16
and internal bitwidth of 32. We use the same setup for Axiline
and HLS, and assume off-chip memory bandwidth loads up
to 20 features/weights per cycle. The platform specifics are:
Axiline: We use Axiline directly transferring the sr-DFG into
pipeline design and synthesize the RTL on ASIC or FPGA.
TABLA [28]: We use three configurations: 4× 4, 4× 8, and
8 × 8 (#PUs × #PEs per PU). We use the static scheduling
algorithm in [14] to analyze the number of cycles.
HLS: We use C++ code to convey the same dataflow infor-
mation as sr-DFG and then use the Vitis HLS platform to
transfer the C++ code into RTL. We add a pipeline directive
in the outer loop (among input vectors), and use the same
initiation interval as Axiline to generate pipeline designs. The
number of cycles is generated from Vitis.
Axiline+HLS: We combine Axiline and HLS for FPGA im-
plementation, first using Axiline to generate architectures, then
Vitis HLS to optimize the C++ description of the architectures.

We select different target clock periods (TCPs) during
SP&R as timing constraints. For SP&R on the Artix FPGA, the
TCPs range from 10–100ns in steps of 5ns, and we only keep
the data points with slack in (−5ns, 5ns). For ASIC SP&R, we
use TCP = 500ps, 1000ps, 1500ps, 2000ps, 3000ps, 4000ps.

For each benchmark, we generate the hardware PPA tradeoff
curve and report the design point with the lowest energy. We
report the energy consumption and runtime within the same
plot by normalizing the number of input vectors to 10,000. In
FPGA implementation, we report the resource usage, which is
the summation of LUT, register, and DSP usage.
Comparison to TABLA. We compare the on-chip energy
and runtime of accelerators generated through Axiline and
TABLA, both in ASIC implementations, for all benchmarks

TABLE II
A LIST OF EVALUATED SML BENCHMARKS.

Algorithm Number of
Weights

Input
Vectors

Model
Topology

Linear Regression 55 10000 55
Support Vector Machine (SVM) 200 500000 200
Logistic Regression 54 581000 54
Recommender System 240 1161 10–24
Backpropogation 192 10000 8–16–4
Decision Tree 169 5620 depth=15

in Table II, with the exception of decision trees, which are
not supported by TABLA. Figs. 8 show the comparisons,
respectively, for training and inference hardware. Our designs
achieve an average of 98% energy saving and 3.5× speedup
for the inference benchmarks, and 94% energy saving and
3.1× speedup for the training benchmarks. The energy con-
sumption of the TABLA PE array is at least an order of mag-
nitude higher than our algorithm-specific designs for several
reasons. (1) The TABLA design needs more instances (e.g.,
buffers, buses, memories, etc.) and complex control logic as it
is a general-purpose accelerator for multiple ML algorithms,
while we focus on improved system performance, energy, and
hardware PPA by customizing our solution. (2) Our design
maps high-level operations (e.g., IP, MatMul, SGD) onto
dedicated IP units and SGD units, which is more efficient than
mapping low-level operations (e.g., multiplication, addition) to
arithmetic units, as in TABLA. (3) TABLA does not utilize all
PEs/PUs in every cycle due to its generality; in contrast, our
dedicated hardware has better utilization.
Comparison to HLS. The energy and runtime comparison
between our design and HLS-generated design on the Xilinx
Artix-7 FPGA platform for all benchmarks (including decision
trees) in Table II is illustrated in Fig. 9. Axiline-generated
accelerators save 29.7% of energy on average compared to
HLS-generated accelerators, with a speedup of 1.35×. Ax-
iline+HLS designs can save 39.2% of energy on average
compared to HLS-generated designs, with a speedup of 1.38×.
For training benchmarks, both Axiline-generated designs and
Axiline+HLS designs achieve better energy efficiency and
shorter runtime than HLS-generated designs. For inference
benchmarks, especially the two small benchmarks (Linear-
55 and Logistic-54) which are simpler to synthesize, HLS-
generated designs can achieve a shorter runtime than Axiline
designs, but Axiline-generated designs can save 23.7% of
energy on average. Axiline+HLS design can achieve 1.06 ×.
Most importantly, Axiline and Axiline+HLS designs signifi-
cantly outperform HLS on the larger benchmarks with more
operations (e.g., backpropagation and recommender systems).
In addition, given that the performance of Axiline+HLS de-
signs significantly depends on the optimization implemented in
HLS, our Axiline+HLS results are not optimal. This indicates
that Axiline and HLS are not mutually exclusive: Axiline
can be improved with HLS technologies. HLS may generate
an efficient design if the SML algorithm has a very simple
dataflow, e.g., inference for linear regression, which only
includes one IP operation. For more computational algorithms,
acceleration by directly using HLS on dataflow is less energy-
efficient than using Axiline or Axiline+HLS methods.



Fig. 8. Energy, runtime vs. TABLA (training benchmarks, ASIC).

VIII. CONCLUSION

This paper presents Axiline, a simple and effective template-
based methodology for accelerating SML algorithms. Axiline
first maps the nodes among any levels of granularities in sr-
DFG of SML algorithms to pipeline templates, then optimizes
the pipeline design by matching and replacement of the
predefined patterns among pipeline stages. and finally gen-
erates algorithm-specific accelerators to achieve higher energy
efficiency. We compared The results to TABLA and directly
using HLS. Axiline-generated designs can achieve 96% lower
energy, 3.3× speedup compared to TABLA and 29.7% lower
energy, 1.35× speedup compared to HLS. However, Axiline
and HLS are not mutually exclusive, and Axiline can be
improved with HLS tools. A combined Axiline+HLS design
can achieve 39.2% lower energy, 1.38× speedup than HLS.

ACKNOWLEDGMENTS AND DISCLAIMERS

This material is based on research sponsored in part by Air
Force Research Laboratory (AFRL) and Defense Advanced
Research Projects Agency (DARPA) under agreement number
FA8650-20-2-7009. The U. S. government is authorized to
reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied,
of AFRL, DARPA, or the U. S. government.

REFERENCES

[1] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[2] D. Silver et al., “Mastering the game of Go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[3] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[4] UCI Machine Learning Repository, “Geo-magnetic field and WLAN
dataset for indoor localisation,” 2017. [Online]. Available: https:
//archive.ics.uci.edu/ml/datasets.php

[5] H. Esmaeilzadeh et al., “VeriGOOD-ML: An open-source flow for
automated ML hardware synthesis,” in Proc. ICCAD, 2021.

[6] M. Ebrahimi, M. H. Khoshtaghaza, S. Minaei, and B. Jamshidi, “Vision-
based pest detection based on SVM classification method,” Computers
and Electronics in Agriculture, vol. 137, pp. 52–58, 2017.

[7] S. Huang et al., “Applications of support vector machine (SVM) learning
in cancer genomics,” Cancer Genomics & Proteomics, vol. 15, no. 1,
pp. 41–51, 2018.

[8] X. Feng et al., “Towards a unified architecture for in-RDBMS analytics,”
in Proc. ACM SIGMOD, 2012, pp. 325–336.

Fig. 9. Energy, runtime comparison vs. HLS (training benchmarks, FPGA).

[9] N. Linty et al., “Detection of GNSS ionospheric scintillations based
on machine learning decision tree,” IEEE Aerosp. Electron. Syst. Mag.,
vol. 55, no. 1, pp. 303–317, 2018.

[10] W. Kuang et al., “Machine learning-based fast intra mode decision for
HEVC screen content coding via decision trees,” IEEE Trans. Circuits
Syst. Video Technol., vol. 30, no. 5, pp. 1481–1496, 2019.

[11] M. Fernández-Delgado et al., “Do we need hundreds of classifiers to
solve real world classification problems?” JMLR, vol. 15, no. 90, pp.
3133–3181, 2014.

[12] M. W. Ahmad et al., “Trees vs neurons: Comparison between random
forest and ann for high-resolution prediction of building energy con-
sumption,” Energ. Buildings, vol. 147, pp. 77–89, 2017.

[13] A. Lu et al., “CHIP-KNN: a configurable and high-performance k-
nearest neighbors accelerator on cloud FPGAs,” in Proc. ICFPT, 2020,
pp. 139–147.

[14] D. Mahajan et al., “TABLA: A unified template-based framework for
accelerating statistical machine learning,” in Proc. HPCA, 2016.

[15] T. Koide et al., “FPGA implementation of type identifier for colorectal
endoscopie images with NBI magnification,” in Proc. APCCAS, 2014,
pp. 651–654.

[16] Y. Ago et al., “A classification processor for a support vector machine
with embedded DSP slices and block RAMs in the FPGA,” in Proc.
MCSoC, 2013, pp. 91–96.

[17] M. Qasaimeh et al., “FPGA-based parallel hardware architecture for
real-time image classification,” IEEE Trans. Comput. Imaging, vol. 1,
no. 1, pp. 56–70, 2015.

[18] S. Afifi et al., “Dynamic hardware system for cascade SVM classification
of melanoma,” Neural Computing and Applications, vol. 32, no. 6, pp.
1777–1788, 2020.

[19] O. Elgawi et al., “Energy-efficient embedded inference of SVMs on
FPGA,” in Proc. ISVLSI, 2019, pp. 164–168.

[20] A. Pullini et al., “Mr. Wolf: An energy-precision scalable parallel ultra
low power SoC for IoT edge processing,” IEEE J. Solid-State Circuits,
vol. 54, no. 7, pp. 1970–1981, 2019.

[21] E. Tabanelli et al., “DNN is not all you need: Parallelizing non-neural
ML algorithms on Ultra-Low-Power IoT processors,” arXiv preprint
arXiv:2107.09448, 2021.

[22] F. Saqib et al., “Pipelined decision tree classification accelerator imple-
mentation in FPGA (DT-CAIF),” IEEE Trans. Comput., vol. 64, no. 1,
pp. 280–285, 2015.

[23] M. Corazao et al., “Performance optimization using template mapping
for datapath-intensive high-level synthesis,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 15, no. 8, pp. 877–888, 1996.

[24] A. Ayupov et al., “A template-based design methodology for graph-
parallel hardware accelerators,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 37, no. 2, pp. 420–430, 2018.

[25] M. Minutoli et al., “SODA: A new synthesis infrastructure for agile
hardware design of machine learning accelerators,” in Proc. ICCAD.
IEEE, 2020.

[26] J. J. Zhang et al., “Towards automatic and agile AI/ML accelerator
design with end-to-end synthesis,” in Proc. ICCAD, 2021, pp. 218–225.

[27] S. Kinzer et al., “A computational stack for cross-domain acceleration,”
in Proc. HPCA, 2021, pp. 54–70.

[28] “TABLA,” 2021, github.com/VeriGOOD-ML/public/tree/main/tabla.


