A Fresh Look at Retiming via Clock Skew Optimization

Rahul B. Deokar and Sachin S. Sapatnekar

Department of Electrical and Computer Engineering
201 Coover Hall, Towa State University, Ames; TA 50011.

ABSTRACT

The introduction of clock skew at an edge-triggered flip-
flop has an effect that is similar to the movement of the
flip-flop across combinational logic module boundaries,
and these are continuous and discrete optimizations with
the same effect. While this fact has been recognized be-
fore, this work, for the first time, utilizes this information
to find a minimum/specified period retiming efficiently.
The clock period is guaranteed to be at most one gate de-
lay larger than a tight lower bound on the optimal clock
period; this bound is achievable using a combination of
intentional skew and retiming. All ISCAS89 circuits can
be retimed in a few minutes by this algorithm.

I INTRODUCTION

The importance of the issue of optimizing the timing be-
havior of VLSI circuits probably needs no introduction
to any reader of this paper. This paper considers one
method of timing optimization, retiming [1], which pro-
ceeds by relocating flip-flops (FF’s) within a network to
achieve faster clocking speeds. A novel approach to retim-
ing that utilizes the solution of the clock skew optimization
problem [2] forms the backbone of this work.

The introduction of clock skew at an FF has an effect
that is similar to the movement of the FF across combina-
tional logic module boundaries. This was observed (but
not proved) in [2], which stated that clock skew and re-
timing are continuous and discrete optimizations with the
same effect. Although the designer can choose between
the two transformations, these methods can, in general,
complement each other. The equivalence between retim-
ing and skew has been observed and used in earlier work,
e.g., in [3-5]. The contribution of this work is that it ex-
ploits this equivalence and presents a method that finds
an optimal retiming efficiently, with a clock period that is
guaranteed to be at most one gate delay larger than the
optimal clock period. The method views the circuit hier-
archically, first solving the clock skew problem at one level
above the gate level, and then using local transformations
at the gate level to perform retiming for the optimal clock
period.

The clock skew problem is first solved using efficient
graph-theoretic techniques [6]. The idea of using graph
algorithms i1s to take advantage of the structure of the
problem to arrive at an efficient solution. Like [2], our
technique 1s illustrated on single-phase clocked circuits
containing edge-triggered FF’s. The advantage of using
this graph algorithm is that it not only minimizes the
clock period, but that unlike a simplex-based linear pro-
gramming approach, it also ensures that the difference
between the maximum and minimum skews is minimized
at the optimal clock period, which may reduce the amount
of work required in the relocation phase.

The complexity of solving the retiming problem using
the technique in [1] is O(|G|*log|G|), where |G| is the
number of gates in the circuit; this could be phenome-
nally large; an efficient implementation has been reported
very recently [7]. Our method has similar run-times, and
solves the more general problem of retiming with skew
optimization.

In our algorithm, named ASTRA! (A Skew-To-
Retiming Algorithm), the gates in the circuit are assumed
to have constant delays. The solution is divided into two
phases. In Phase A, the clock skew optimization prob-
lem is solved with the objective of minimizing the clock
period and ensuring that the difference between the maxi-
mum and the minimum skew is minimized. This difference
provides an indication of how many gates have to be tra-
versed in the next phase, and therefore, it is important
that 1t be small. In Phase B, the skew solution is trans-
lated to retiming and some FF’s are relocated across gates
to reset the values of all skews to be as close to zero as
possible. The designer may choose to achieve the optimal
clock period by using a combination of clock skew and
retiming; alternatively, any skews that could not be set
exactly to zero may now be forced to zero. This could
cause the clock period to increase; however, 1t 1s shown
that this increase will be no greater than one gate delay.

The equivalence between retiming and clock skew is now
shown in Sections IT and III. The algorithm for the clock
skew optimization phase is described in Section I'V. Next,
in Section V, the process of finding a retiming solution
is described. Finally, we present experimental results in
Section VI and conclude the paper in Section VII.

II Crock SKEw OPTIMIZATION AND RETIMING

In a sequential VLSI circuit, due to differences in inter-
connect delays on the clock distribution network, clock
signals do not arrive at all of the FF’s at the same time.

Luastra” (37%A): (Sanskrit) a sophisticated weapon.

Thus, there is a skew between the clock arrival times at
different FF’s. Several methods for achieving zero clock
skew have been developed, e.g., [8].

Viewing clock skews as a manageable resource rather
than a liability allows a designer to introduce intentional
skews to improve the performance of the circuit. To 1llus-
trate this, consider the example in Figure 1, where each
inverter has a unit delay. The combinational circuit blocks
CCh and CC5 have delays of 3.0 and 1.0 units, respec-
tively; therefore, the fastest allowable clock has a period
of 3.0 units. However, if a skew of +1.0 unit is applied to
the clock line to FF B, the circuit can run with a clock
period of 2.0 units. This approach was formalized in [2].

cc, cc,

FF FF FF

A > ° > ° > ° B > ° c
1112 13 14

Cck ck ck

Figure 1: The advantages of nonzero clock skew.

A second approach to timing optimization is the proce-
dure of retiming [1]. Retiming involves the relocation of
FF’s across logic gates to allow the circuit to be operated
under a faster clock, without changing its functionality.
For the circuit in Figure 1, the period of the original cir-
cuit can be minimized to 2.0 units by moving FF B to
the left across the inverter I3. This results in the combi-
national circuit blocks C'C; and C'Cy having delays of 2.0
units each as seen in Figure 2.

cc, cc,

FF FF FF

A > ° > ° B > ° > ° c
12 13 14

Cck ck Cck

Figure 2: Retiming for clock period optimization.

If one were to imagine the circuit as being drawn with
its inputs to the left and outputs to the right, then the con-
version of a negative (positive) skew to zero skew would
involve the relocation of FF’s to the right (left). In this
paper, we will use the terms “right” and “left” to denote
the direction of signal propagation and the direction op-
posite to that of signal propagation, respectively.

III EQUIVALENCE BETWEEN CLOCK SKEW AND
RETIMING

A more formal presentation of the equivalence between
clock skew and retiming is presented here.

Theorem 1 [9] For a circuit that operates at a clock pe-
riod P, satisfying long-path and short-path [2] delay con-
straints,

(a) retiming an FF by moving it to the left across a gate
of delay dy is equivalent to decreasing its skew by

dy.

b) retiming an FF by moving it to the right across a
g g g
gate of delay ds 1s equivalent to increasing its skew

by dz.

Therefore, if one were to calculate the optimal clock
skews corresponding to the minimum clock period, one
could retime the circuit by moving FF’s with posi-
tive(negative) skews to the left(right) until the skews at
the FF’s are nearly equal to zero. It must be noted that
since gate delays take on discrete values, it is not possi-
ble to guarantee that the skew at an FF can always be
reduced to zero through retiming operations.

An alternative view of the same procedure is as follows.
Retiming may be thought of as a sequence of movements of
FF’s across gates. We may start from the final retimed cir-
cuit, where all of the skews are zero, and the zero-clocking
and double-clocking constraints are met, and perform the
sequence of movements in reverse order. This procedure
can be used to move all FF’s back to their initial locations,
using Theorem 1 to keep track of the changed clock skews
at each FF. Therefore, the optimal retiming is equivalent
to applying skews at the inputs of FF’s.

Note that the optimal clock period provided by the
clock skew optimization procedure must, therefore, be no
greater than the clock period for the set of clock skews thus
obtained. Any differences arise due to the fact that clock
skew optimization is a continuous optimization, while re-
timing is a discrete optimization.

Corollary 2 : The clock period obtained by an optimal
retiming can be achieved via clock skew optimiza-
tion. The clock period provided by the clock skew
optimization procedure is less than or equal to that
provided by the method of retiming.

IV PHASE A: OPTIMIZING CLOCK SKEWS

Combinational

Subnetwork

Figure 3: The clock skew optimization problem.

A Problem formulation

Only the barest essentials of this phase are described here;
most of the ideas are similar to those published in [6].
Given a combinational circuit segment that lies between
two FF’s ¢ and j, as shown in Figure 3, if z; and z; are
the clock arrival times at the two FF’s, then the following
inequation must be satisfied:

T+ E(Z,j) + Tsetup S i + P (1)

where d(i, j) is the maximum delay of any combinational
path between FF’s ¢ and j. The clock skew problem for

minimizing the clock period is solved via the following
linear program:

minimize P
subject to ®; —x; + P > Tocrup +d(4,5) (2)
for every pair, (¢, j) of FF’s such that there is at least one
combinational path from FF ¢ to FF j.

In this work, we will ignore the short path constraints.
We thus obtain the clock skews that correspond to the
minimum clock period. The short path and logic signal
separation constraint violations [10] can be reconciled by
using an algorithm for minimum padding [11].

Notice that for a constant value of P, the constraint
matrix for the linear program in (2) reduces to a system
of difference constraints [12]. A feasible solution to the lin-
ear program exists iff the corresponding constraint graph
(i(P) contains no positive cycles. Tt is possible to derive
the following upper and lower bounds on the optimal clock
period, P,y [6]:

Prow = min w(e) < P,r < max w(e) =
i in () < Pop max (e)

Phigh (3)
where w(e) is the weight of a constraint graph edge. An
even better lower bound can be obtained by additionally
recognizing that the weight of any edge that begins and
ends at the same node constrains the optimal clock period
from below. _

For any input ¢, the procedure for computing d(¢, j) for
all j involves setting the arrival time at input ¢ to zero, and
that at all other inputs to —co [2]. The resulting signal
arrival time at each output j, found using PERT [13], is
the value of d(¢,j). The procedure can be made more
efficient by levelizing the circuit once, and propagating
the flow of PERT only along the excited paths; details are
omitted due to space constraints.

B The clock skew optimization procedure

The skeletal pseudo-code describing the algorithm for find-
ing the optimal clock period proceeds as shown below.

The theory behind this is described in [6].

Construct the constraint graph;
Pma.r = Phigh;
Pmin = Plow;
while (Praz — Prin) > € {
P = (Praz + Prmin)/2;
if G(P) has a positive cycle

else
Pma.r:P;

}

In the above algorithm, the presence of a positive cycle
in G/(P) may be tested using the Bellman-Ford algorithm
[12]. If the skews are initialized to 0, the Bellman-Ford
solution minimizes |&; mar — %imin|- On a graph with
V vertices and F edges the computatlonal complexity of
this algorithm is O(V - E). The number of iterations is
(Phigh— Prow) /€. Therefore, the iterative procedure above,

when carried to convergence, provides the solution to the
linear program (2) in time

O(|F]- E-logs [(Phigh = Prow)/€]) ~ O(IF|- E) (4)
where |F| is the number of FF’s in the circuit, E is the
number of pairs of FF’s connected by a combinational
path, Prign and P,y are as defined in (3), and ¢, defined
in the pseudo-code above, corresponds to the degree of ac-
curacy required. For real circuits, F = O(|F|); therefore,
for a fixed accuracy, the complex1ty of the procedure 1s
O(|F|?). The efficient use of back-pointers [7] can provide
further improvements in practice, so that these complexity
formulae are not very meaningful.

In the solution found above, all skews must necessarily
be positive, since the weights of each node in the Bellman-
Ford algorithm was initialized to zero. Also, in general,
the skew at the host node (corresponding to primary in-
puts and outputs) could be nonzero. Our objective is to
ensure a zero skew at the primary input and output nodes
since we do not have the flexibility of retiming these, and
hence we modify this solution. Note that if [x1,- - @,] is
a solution to a system of difference constraints in x, then
sois x' = [(w1 + k), (z2+ k), -, (xn + k)]. Therefore,
by selecting k& to be the negative of the skew at the host
node, a solution x’ with a zero skew at the host is found.

V PuASE B: SKEwW MINIMIZATION BY RETIMING

In Phase B, the magnitudes of the clock skews obtained
from Phase A are reduced to zero by relocating FF’s across
logic gates, while maintaining the optimal clock period.
After the skew magnitudes have been reduced by as much
as possible, the retimed circuit may be implemented by
applying the requisite skews at each FF (to get the min-
imum achievable clock period) or by setting all skews to
zero (to get a clock period that is, as will be shown in
Section VI, no more than one gate delay above the opti-
mum).

Since only FF’s with nonzero skews are moved, we di-
vide the relocations into the two following categories:
(a) Flip-flops with negative skews
(b) Flip-flops with positive skews
We describe the algorithm for the former case; the latter
is similar and is described in detail in [9].

A Skew reduction

Consider the case of an FF j shown in the Figure 4(ag
that has a negative skew at the conclusion of Phase A.

Through retiming operations, it 1s possible to transform
the circuit in Figure 4(a) to the one in Figure 4(b); the
equivalent skews at each FF in Figure 4(b) are calculated
using a procedure that will be described later. At this
point, it need only be noted that the equivalent skews for
these FF’s may be found without physically moving them
to the gate inputs. The fact that this may be done is
shown by the following theorem:

2We assume here that each FF fans out to exactly one gate. If
the fanout of an FF is larger than one, then it is replicated at each
fanout branch. The replicated FF’s have exactly one fanout gate,
and each such FF is considered in turn.

Theorem 3 [9] (a) Retiming transformations may be
used to move flip-flops from all of the inputs of
any combinational block to all of its outputs. The
equivalent skew of the relocated flip-flop at output
J, considering long path constraints only, is given by
r; = maxi<i<n(2; +d(i, 7)) where the z;,1 <i<mn
are the skews at the input flip-flops, and z; is the
equivalent skew at output j, and d(%, j) is the worst-
case delay of any path from ¢ to j.

(b) Similarly, flip-flops may be moved from all of
the outputs of any combinational block to all of its
inputs, and the equivalent skew at input k, consid-
ering long path _constraints only, is given by z; =
min <;j<m(z; —d(k, j)) where the ;,1 < j < m are
the skews at the input flip-flops, and zy is the equiv-
alent skew at input &, and d(k, j) is the worst-case

delay of any path from & to j.

There now exists a set of n “virtual” FF’s at the input
to gate p, with skews sy, sa, - -+, 8,, which must satisfy the
constraints:

sp+delay < s, +PV1<k<n (5)
where P is the clock period, s; the skew at an output FF,
F'F;, of the combinational block to which F'Fy --- F F, are

input FF’s; and delay 1s the largest combinational delay
from the input of gate p to F'F;.

Negative skew

@7

skews FF's
skew=
a4,

(b) (©

Figure 4: Retiming for a negative skew FF.

Obviously, from the above constraints:

delay < s; + P 6
121kagxn(5k) + delay < s; + (6)
We may now have one of two scenarios:

(1) All of the n FF’s at the inputs have negative skews.
In this case, the maximum of all the negative skew

FF’s is negative and hence the set of FF’s may be
moved across the gate p, as shown in Figure 4(c). If
the sign of the skew were to change after the relo-
cation, the relocation would be carried out only if it
reduced the magnitude of the skew. If not, all FF’s
would be left in their current locations, and the skew
of FF; would be set to maxi<;<n(s;). For example,
an FF with a skew of -0.75, t0 be moved across a
gate with unit delay, would have a new skew value
of 0.25; such a relocation would be desirable. How-
ever, it would be undesirable to move an FF with
skew -0.25 across a unit delay gate. Therefore, in ei-
ther case, this effects a reduction in the magnitudes
of the skew values, as is desirable.

(2) One or more of the virtual FF’s has a positive effec-
tive skew. In this case, the skew at the FF j under
consideration may be set to zero without violating
any timing constraints, i.e., the maximum skew at
the input to gate p would be unchanged by this.

B Minimization procedure

The steps involved in minimizing the skew magnitudes for
FF’s with negative skews are outlined below:

Step 1 All FF’s in the circuit with negative skews are
placed on a queue,). For each FF, we consider one fanout
at a time, using the transformation in footnote 2.

Step 2 Let j be the FF that is currently at the head of the
queue, and p the gate that it fans out to. We will assume
for now that p is a gate; the case where it is the input of
an FF will be dealt with separately. The equivalent skew
at every other fanin node of p is found. These FF’s are
not actually moved to the gate input at this time, and are
hence referred to as virtual FF’s.

The equivalent skews are found as follows. Consider an
FF j with negative skew, as shown in Figure 5. The gate
p to which it fans out to 1s added to the tail of a queue
R3 A backward PERT is employed to trace back along
the fanin cone of gate p. When a gate is encountered, it is
added to the queue. In Figure 5, gate z is first added to
R, and in the next step, gate y is added. The trace-back
continues until an FF is encountered. In the example in
Figure b, the trace-back terminates when FF z is encoun-
tered. During this process, we keep track of the worst-case
delay, d, to gate p. As a consequence of Theorem 3, if the
skew (calculated in Phase A) at FF is ¢ units, then its
equivalent skew at the input to gate p is ¢ + d units.
Step 3 If any equivalent skew at a virtual FF is positive,
then the skew at j is set to zero and it is not retimed;
if not, the skew after retiming is found using the criteria
described earlier. If the magnitude of this skew is smaller
than the current skew at j, then j and all of the virtual
FF’s at the input to p are retimed across p. (Notice that if
the skew changes sign after retiming, then the magnitude
of the retimed skew could become larger.) Note that the
motion of the virtual FF’s to their new location may entail
replicating these FF’s. For example, if FF j were to be
moved across gate p, a new FF would have to be created
at y» with an equivalent skew corresponding to the skew
of FF x, retimed to position y3. The new skews are found

3Note that the queue R is distinct from the queue Q.

: @7

Figure 5: Reproduction of FF’s during the backtrace.

as explained in the previous section. Any such FF’s that
have a negative skew (as will happen most of the time,
unless relocation changed the sign of the skew) are now
placed at the tail of the queue, Q, and are processed later.
Step 4 If the retimed FF has a negative skew, it is placed
at the tail of ().

Step 5 If Q 1s not empty, go to Step 1; if not, all negative
skew FF’s have been processed.

In Step 2 above, if the FF j fans out to another FF,
which we shall call &, then since there is no combinational
delay between the FF’s, and retiming preserves the zero-
clocking constraints, it must be true that

i + Tsetup
le., x;

<ap+ P
Sxk‘i‘P_Tsetup

If the right hand side is positive, then z; can be set to
zero without violating any constraints. If not, then z; <
Tietup — P < 0, which implies that & is an FF that will
eventually move to the right, thereby allowing FF j the
leeway to move as well. Therefore, if this is the case, the

skew of FF j is set to
$j:xk+P_Tsetup<0 (7)

and the FF j is reprocessed after FF & has been processed
(i.e., its skew is set to the value calculated above, and it
is placed at the tail of Q). All such FF’s will eventually
be processed, and their skews set to nearly zero. It 1s
interesting to note that the latter case was rarely seen to

happen in the ISCAS89 benchmarks.

VI PROPERTIES OF THE RETIMING PROCEDURE

Lemma 4 [9] At the end of the retiming procedure in
Phase B, the skew at each FF is no more than half
a gate delay.

Theorem 5 [9] If, at the end of the retiming procedure,
all skews are set to zero, then the optimal clock pe-
riod for this circuit is no more than Fop; + dpae,
where P,,; is the optimal clock period found in
Phase A, and d4, 1s the maximum delay of any
gate in the circuit.

VII EXPERIMENTAL RESULTS
The ASTRA algorithm was implemented as a 3000-line C

program, and experimental results running from ASTRA
on circuits in the ISCAS89 benchmark suite are presented
in Table 1. It is interesting to note here that the versions
of these circuits that we obtained from mcnc.org are dif-
ferent from those in [7]; we find that for the same circuit,
our version has about twice as many gates as those in [7].

For each circuit, the table provides data that describes
its size in terms of the number of Gates, |G|. All gates are
assumed to have unit delays, and the setup and hold times
are arbitrarily set to 0. Ppsgp is the upper bound on the
clock period provided by (3); note that it corresponds to
the clock period in the original circuit. The next column
shows change from Pj; 45 to the optimal value, P,,;, calcu-
lated at the end of Phase A of ASTRA, using clock skew
optimization. At the end of retiming in Phase B of AS-
TRA, any skews that could not be set exactly to zero are
now forced to zero and the new period P,.; 1s shown, along
with the corresponding percentage improvement over the
initial period. Note that as claimed, P,.; is always within
one gate delay of P,,;. The total CPU times, T', for run-
ning ASTRA on an HP 735 is shown for all these circuits.*
The last column shows the initial and final number of FF’s
in the circuit. For example, for s38584, a circuit with 1426

Table 1: RESULTS OoF CLOCK SKEW OPTIMIZATION

Circuit |G| Prigh — Impr. T |F|s — |F|f
Pret(Popt) (%)

51488 656 17.0 — 16.0(16.0) 6% Os 6 — 17
51494 653 17.0 — 16.0(16.0) 6% Os 6 — 20
s3271 1572 28.0 — 14.7(15.0) 87% 2s 116 — 428
53330 1789 29.0 — 14.0(14.0) 107% 3s 132 — 330
53384 1685 60.0 — 26.5(27.0) 122% 19s 183 — 1697
54863 2342 58.0 — 30.0(30.0) 93% 2s 104 — 241
55378 2779 25.0 — 21.0(21.0) 19% 9s 179 — 553
s6669 3080 93.0 — 29.0(29.0) 221% 50s 239 — 2585
59234 5597 58.0 — 38.0(38.0) 53% 10s 211 — 359
513207 7951 59.0 — 51.0(51.0) 16% 2s 638 — 640
515850 9772 82.0 — 63.0(63.0) 30% 7s 534 — 572
535932 16065 29.0 — 27.0(27.0) 7% 24s 1728 — 1729
s38417 22179 47.0 — 32.0(31.5) 47% 77s 1636 — 1691
538584 19253 56.0 — 48.0(48.0) 17% 5s 1426 — 1428

FF’s, the value of Ppsgp is found to be 56.0 units. At the
end of Phase A (skew optimization), ASTRA calculates
the value of P,,; to be 48.0 units, which is the same as
the value of P,.; at the end of Phase B. The improvement
in the clock period after the two phases is calculated as

Prign — Py

Yochange = L % 100

ret

and is found to be 16.7% for s38584. The number of FF’s

was increased in the process from 1426 to 1428.

4At the time of writing this paper, Phase A has been greatly
optimized. For example, the total run-time (Phase A + Phase B)
for the algorithm for 38417 has been brought down from 1 hour in
the first implementation to 77s in the current implementation. Phase
B, whose run-time was insignificant in the first implementation, is
now often the bottleneck. The code for Phase B is currently not
very efficient, and further run-time improvements are possible.

It was observed that in 36 out of 44 ISCAS89 circuits,
ASTRA caused the clock period to improve, with the im-
provement being as much as 221% in the case of s6669.
Although it is theoretically possible for retiming to reduce
the number of FF’s in the circuit, this was never seen to
happen. The percentage increase in the number of FF’s
ranged from 0% to even about 1000% in two cases; it must
be stressed, though, that minimizing the number of FF’s
is not incorporated in the objective here and is a direction
for future research.

It is worth noting that the CPU times for ASTRA are
rather small; even the largest circuit could be retimed in
just over a minute. The run-times for ASTRA versus the
circuit size (|G|) and the corresponding reduction in the
clock period are shown in Figure 6.

100
80 | o
60 | .

40 + 7

CPU tine (sec)
<

20 F o °© -

i
I I I

o & I

0 5000 10000 15000 20000

Nunmber of Gates
(a)

250 \

200 k

150 h

100

<

© 0 ¢
1

50

fo
§ ° P
<
o w °© I M I L& O\
0 5000 10000 15000 20000 25000
Nunmber of gates

(b)

Figure 6: Performance vs. circuit complexity.

% period reduction

VIII CoONCLUSION

An approach that takes advantage of the equivalence be-
tween retiming and clock skew is presented, and is used
for gate-level retiming. Results on all of the circuits in
the ISCAS89 benchmark suite have been presented and
can easily be handled by this algorithm.

The chief reason for the improvement is that ASTRA
takes a global view of retiming by first solving the clock
skew problem in a smaller number of variables. In the sec-
ond phase, local transformations are used to perform the
retiming. The logic behind this approach is that a circuit
would have to be very poorly designed indeed to require
enormous computation time for the local transformations,
and hence in most practical cases, the latter phase takes
only a small amount of computation; this is borne out by
our experimental results. It must be pointed out that the
algorithm performs retiming only for timing optimization
and does not take into account the fact that retiming may

cause initial states to change. This may be offset by the
use of methods such as [14].

The ASTRA algorithm may trivially be adapted to per-
form retiming to satisfy a given clock period, Psp... Phase
A consists of a single pass through the graph G(P;p..). If
Pspec 1s infeasible, this will be reported immediately; else,
the skew solution at the end of Phase A may be translated
to a retiming solution using the methods of Phase B.

REFERENCES

[1] C. E. Leiserson and J. B. Saxe, “Retiming syn-
chronous circuitry,” Algorithmica, vol. 6, pp. 5-35,
1991.

[2] J. P. Fishburn, “Clock skew optimization,” IEEFE
Transactions on Computers, vol. 39, pp. 945-951,
July 1990.

[3] H-G. Martin, “Retiming by combination of relo-
cation and clock delay adjustment,” in Proceed-
wngs of the Furopean Design Automation Conference,
pp. 384-389, 1993.

[4] B. Lockyear and C. Ebeling, “Minimizing the effect
of clock skew via circuit retiming,” Tech. Rep. UW-
CSE-93-05-04, Department of Computer Science and
Engineering, University of Washington, Seattle, 1993.

[5] L.-F. Chao and E. H.-M. Sha, “Retiming and clock
skew for synchronous systems,” in Proceedings of the
IEFEE International Symposium on Circuits and Sys-
tems, pp. 1.283-1.286, 1994.

[6] R. B. Deokar and S. S. Sapatnekar, “A graph-
theoretic approach to clock skew optimization,” in
Proceedings of the IEEE International Sympostum on
Circutts and Systems, pp. 1.407-1.410, 1994.

[7] N. Shenoy and R. Rudell, “Efficient implementation
of retiming,” in Proceedings of the IEEE/ACM In-
ternational Conference on Computer-Aided Design,
pp- 226-233, 1994.

[8] R.-S. Tsay, “An exact zero-skew clock routing algo-
rithm,” IEEE Transactions on Computer-Aided De-
sign, vol. 12, pp. 242-249, Feb. 1993.

[9] S. S. Sapatnekar and R. B. Deokar, “Utilizing the
retiming-skew equivalence in an efficient algorithm
for retiming large circuits,” Tech. Rep. ISU-CPRE-
94-5506, lowa State University, Ames, A, 1994.

[10] D. Joy and M. Ciesielski, “Clock period minimiza-
tion with wave pipelining,” TEFFE Transactions on
Computer-Aided Design, vol. 12, pp. 461-472, Apr.
1993.

[11] N. V. Shenoy, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli, “Minimum padding to satisfy short path
constraints,” in Proceedings of the IEFE/ACM In-
ternational Conference on Computer-Aided Design,
pp- 156-161, 1993.

[12] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,
Introduction to Algorithms. New York, New York:
McGraw-Hill Book Company, 1990.

[13] S. Even, Graph Algorithms. Potomac, MD: Computer
Science Press, 1979.

[14] H. J. Touati and R. K. Brayton, “Computing the
initial states of retimed circuits,” IEEE Transactions
on Computer-Aided Design, vol. 12, pp. 157-162, Jan.
1993.

