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ABSTRACT 

Many key technologies of our society, including so-called artificial 
intelligence (AI) and big data, have been enabled by the invention of 

transistor and its ever-decreasing size and ever-increasing integration at a 

large scale. However, conventional technologies are confronted with a clear 
scaling limit. Many recently proposed advanced transistor concepts are also 

facing an uphill battle in the lab because of necessary performance tradeoffs 

and limited scaling potential. We argue for a new pathway that could enable 
exponential scaling for multiple generations. This pathway involves 

layering multiple technologies that enable new functions beyond those 

available from conventional and newly proposed transistors. The key 
principles for this new pathway have been demonstrated through an 

interdisciplinary team effort at C-SPIN (a STARnet center), where systems 

designers, device builders, materials scientists and physicists have all 
worked under one umbrella to overcome key technology barriers. This 

paper reviews several successful outcomes from this effort on topics such 

as the spin memory, logic-in-memory, cognitive computing, stochastic and 

probabilistic computing and reconfigurable information processing.   

KEYWORDS: Spintronics, spin logic, spin memory, beyond-

CMOS, post-CMOS, neuromorphic computing, stochastic computing, 

logic-in-memory, probabilistic computing, nonvolatile computing. 

1 INTRODUCTION  

The inherent properties of ferromagnetic materials operating at room 

temperature and at the nanoscale couple with various aspects of spin physics 
(transport, switching, etc.), to offer abundant possibilities for developing 

novel memory and information processing devices . This has been a new and 
fruitful research direction 1 , 2 , 3 , 4 , 5  that diverges significantly from prior 

spintronics research. The fundamental advantage of this approach over the 

semiconductor-based switch concept is its projected low operation energy. 
Fig. 1 compares a generic spintronic switch and a generic electronic switch.  

There are many unique features that arise from nanomagnet-based 

spintronic devices. The most apparent is nonvolatility and a superior 
endurance behavior, where spin-based devices outperform other nonvolatile 

devices for designing embedded nonvolatile memory, nonvolatile 

processors, and logic-in-memory arrays, as shown in Fig. 26,7,8,9,10,11,12,13.  

In recent decades, there has been exciting progress in implementing 
spintronic devices with low switching energy. Fig. 3 summarizes the 

experimental demonstration and theoretical predictions of the switching 

energy based on various switching mechanisms and 

materials4,14,15,16,17,18,19,20,21,22,23,24,. Several device concepts have been 

predicted with high energy efficiency to approach the ideal case of 60 kBT.  
Spintronics can enable the efficient implementation of important primitive 

functionalities. For example: controllable interactions between spin-

polarized currents and/or electrical field and nanomagnetic states open the 
door for the efficient implementation of functions such as the dot product; 

Magnetic Tunnel Junctions (MTJs) provide low-cost solutions for nonlinear 

activation functions; and random number generators can be built simply by 
using the intrinsic stochastic behavior of nanomagnets with low energy 

barriers. 

 
Fig. 1 Operation energy comparison for a thermally stable nanomagnet 

(e.g., a free layer of an MTJ) and a generic electronic switch; Collective 
behavior of spin-polarized electrons coupled through different quantum 

mechanisms for the nanomagnet leads to unique operation energy 

advantages for spintronics.  

 

 

 
Fig. 2 Endurance of nonvolatile memory and computation devices; 

MRAM: magnetic random access memory cell (MTJ); FeRAM: 

Ferroelectric random access memory cell; RRAM: Resistive random 

access memory cell; PCM: Phase change memory cell;  



 

 

We believe that significant opportunities exit to realize compounded 
energy reductions beyond the improvements achieved via device and 

material optimizations alone when the intrinsic spin device behavior is 

appropriately blended with circuit, architectural, and algorithmic 
innovations, providing a pathway to exponential scaling. The rest of this 

paper focuses on key components of such a pathway. 

2 NOVEL COMPUTING PARADIGMS 

ENABLED BY SPINTRONIC DEVICES 

2.1 Spin-based Random Access Memory 

For memory, spintronic devices are among the most promising candidates 

due to the smaller area per bit and zero leakage current25,26. Spin transfer 

torque magnetoresistive random access memory (STT-MRAM) using 
magnetic tunnel junctions (MTJs) has already been commercialized for 

specific applications, such as data centers, cloud storage, energy, industrial, 

automotive, consumer, and transportation markets. Toshiba and SK Hynix27, 

and Samsung 28 demonstrated their prototypes for STT-MRAM in 2016. 

STT-MRAM offers 3x-5x higher memory cell density compared to a 6-

transistor static random access memory cell, and its nonvolatility ensures that 

its state is maintained, without consuming leakage power, when the memory 
is powered down. However, the write energy of this device remains high as 

a large current is required for fast switching. Device scaling poses another 

set of challenges for STT-MRAM. Another potential candidate for spin-
based memory is the spin-Hall effect MRAM (SHE-MRAM). SHE-MRAM 

has a decoupled read and write path with competitive memory density, and 
its performance advantages are shown in Fig. 4.  

There are two types of magnetic anisotropy that are used for memory, in-

plane magnetic anisotropy (IMA) and perpendicular magnetic anisotropy 
(PMA)29. Of these, PMA magnets are considered more suitable for scaling 

devices.  There are challenges in working with PMA-based SHE-MRAM as 

SHE requires an external field to deterministically switch the magnetization. 
Several solutions have been proposed to address the PMA switching with 

SHE. Nevertheless, many of these solutions require specific fabrication 

processes or face challenges with scaling. One of the recently proposed 
solutions has used a simple composite structure that can switch a PMA 

without any external field, with no scaling or fabrication challenges 30. 

2.2 Spin-based Logic-in-memory 

In-memory processing is widely recognized as an effective approach to 

overcome the energy and latency bottleneck associated with fetching data 

from memory to a processor. In one approach31, suitable modifications are 

made to peripheral circuits that enable standard STT-MRAM arrays to 
perform bitwise, arithmetic, and complex vector operations, providing 

system performance improvements of 3.93X on average (up to 12.4X), and 

memory system energy reductions of 3.83X on average (up to 12.4X).  
An alternative solution proposes spin-based computational RAM 

(CRAM)32 structures, which offer a means for true in-memory computation 

and can provide over 18-28X better energy-efficiency with 2.8X speed gains. 

The state of an MTJ-based memory cell is characterized by its resistance, 

and this can be leveraged to implement logic functions entirely within the 

array. A subarray of three 2T1MTJ CRAM bit-cells is shown in Fig. 5(a). In 

normal operation, the dotted transistor acts as the access transistor and the 

solid transistor is off. In logic mode, BL0 and BL1 are connected to Vdd and 
BL2 to ground, creating the resistor configuration in Fig. 5(b) and the current 

through the rightmost MTJ depends on the states (resistances) of the two bit-

cells at left; depending on the current, this MTJ may be switched. The 
scheme can be used to implement functionalities such as NAND, NOR, 

MAJ, and others. Parallel operations can be performed simultaneously in the 
array, as shown in Fig. 5(c), which shows a snapshot of a dot product 

computation in four rows of the CRAM (the encircled cells are active).  

2.3 Spin-based Nonvolatile Processor 

The inherent nonvolatility of spin devices is not only promising in the 

context of memory, but also inspires novel pathways towards extremely 

energy-efficient information processing. A nonvolatile processor (NVP), 
where the intermediate state of the processor can be saved with near-zero 

time/energy overhead, allows ultra-fine-grained power management, and 

could tolerate arbitrary power supply interruption during information 
processing. Such an NVP can either be based on a traditional von Neumann 

architecture or consist of reconfigurable computing fabrics. Depending on 

how the state is saved, we can classify NVPs into three categories (Fig. 6)33: 
(i) NVP with explicit backup (EB-NVP), (ii) NVP with implicit backup (IB-

NVP), and (iii) NVP with hybrid backup (HB-NVP). In EB-NVPs, processor 

states must be explicitly backed up to and restored from NV memory. In IB-
NVPs, NV devices are used to realize all state-storing elements, and there is 

no need for a separate backup NV memory. For HB-NVPs, the retention time 

of the storage elements cannot be treated as “infinitely” long, and NV 
memory is still needed. If the time of a power outage is shorter than the 

retention time, no backup/recovery is needed. Thus, HB-NVP is an effective 

way to trade off operating energy with backup/ recovery overhead. Most 
existing NVPs belong to the EB-NVP category.   

 
Fig. 4. Write energy and write delay comparison between STT, SHE-
assisted STT, and SHE. Material parameters and simulation results are 

provided in the two tables above.  

 
Fig. 3 Experimental demonstration and theoretical prediction of switching 

energy for various mechanisms. STT: Spin transfer torque; GSHE: giant 
spin-Hall effect; VCMA: voltage controlled magnetic anisotropy; VCM: 

voltage controlled magnetism; ME/EB: magnetoelectric/Exchange Bias; 

AFM: antiferromagnetic; TI: topological insulator; 

 

(a)  (b)  

(c)  
 

Fig. 5: (a) CRAM structure and (b) a NAND (c) a CRAM computation. 



 

 
Spin devices, such as ASL3 and CoMET5, can be used to construct IB-

NVPs and HB-NVPs. We have examined two intermittent processing 

scenarios where such NVPs can help save significant amounts of energy. The 
first considers applications powered by harvested energy sources, which are 

frequently unreliable. Using an IB-NVP, we can eliminate the need for 

backup/recovery to/from NV memory, as well as the energy and delays 
associated with the backup and recovery operations. The second is from 

applications with idle intervals due to stall cycles. In both scenarios, there 

are benefits from the near-zero backup/restore overheads of IB-NVPs and 
HB-NVPs, as well as extremely low sleep state overheads. Fig. 7 illustrates 

energy/instruction results from a case study comparing an ASL-based IB-

NVP (1st bar from left), two ASL based HB-NVPs (2nd and 3rd bars), 
CoMET-based IB-NVP (4th bar), CMOS+STT-RAM-based EB-NVPs (5th, 

7th, and 9th bars), and CMOS+SHE-RAM-based EB-NVPs (6th, 8th, and 10th 

bars). Major savings are possible as the amount of backup/restore overhead 
can be avoided by using IB-NVPs or HB-NVPs.   

 

2.4 Spin-based Neuromorphic Computing  

Recent experiments on spin-orbit torque driven domain wall motion in 
ferromagnet-heavy metal bilayers have opened the possibility of emulating 

neural and synaptic operations by single device structures. As shown in Fig. 

8(a), input current flowing through an underlying heavy metal (between 
terminals WRITE and GND) results in spin-orbit torque induced domain 

wall motion in a ferromagnet lying on top34. The magnet is also part of a 

tunneling junction whose conductance is modulated by the domain wall 
position. The domain wall displacement, being a function of the input current 

magnitude, determines the final resistance state of the MTJ. Such a device 

structure can be used to mimic the synaptic functionality since the read 

current through it (due to a constant voltage between terminals READ and 
GND) is weighted by the device conductance35. Similar device structures 

mimicking neural operations (non-spiking36 and spiking37 functionalities) 

have been proposed. Device-circuit-algorithm co-design suggests that such 
all-spin neuromorphic architectures potentially yield two orders of 

magnitude lower energy over corresponding CMOS implementations38. 

As device dimensions start scaling, such domain wall motion based 
devices may not continue to exhibit such multi-bit precision. Thermal noise 

prevalent in such devices becomes increasingly dominant at scaled device 

dimensions, thereby leading to stochastic behavior. Fig. 8(b) shows a three-
terminal device structure where current through an underlying heavy metal 

probabilistically switches a mono-domain magnet lying on top. A 

corresponding stochastic switching characteristic is also shown in Fig. 8(c), 
where the probabilistic switching characteristics can be modulated by the 

pulse width duration. Neuromorphic computing with such stochastic single-

bit neurons39 and synapses40 have been recently demonstrated where the 
multi-bit precision requirements are replaced by probabilistic synaptic and 

neural updates over time. Such stochastic devices can thereby lead to highly 

compact neuromorphic hardware where the computing methodology 
leverages the underlying device stochasticity41, 42.   

2.5 Spin-based Error-Resilient and Stochastic 

Computing 

Several major applications (e.g., image or video processing, or neural 

network tasks) show inherent resilience to errors. Two versions of an JPEG-
compressed image, with and without approximations, are essentially 

indistinguishable (Fig. 9). Spin-based approximate computing leverages 

tradeoffs between error and circuit performance in spin-based computing 
structures such as all-spin logic (ASL) to reduce circuit power and increase 

speed with a controlled amount of injected error. Approximate logic43,44 can 

reduce the number of magnets in the ASL gates that implement a 
functionality (e.g., in a full adder (FA)), or by providing an early clock to a 

computation. In each case, errors may be introduced within the truth table, 

but with performance benefits. ASL gates can be optimized to deliver trade-
offs between power, delay, and error. For example, at quantified error 

levels, a four-magnet FA can be configured to reduce the delay of an 

accurate five-magnet FA by 46%, or its area by 42%. Realistically, to limit 
the maximum error, these errors are introduced to lower significant bits of 

a computation (e.g., when FAs are configured as n-bit adders). Executed 

appropriately, this approach can significantly improve power and delay over 
a conventional implementation, with about 40% power savings at iso-delay. 

Another approach uses the principles of Shannon-inspired computing45 to 

overcome high error rates within a single device to deliver reliable system-

level computing. The idea is to use a high-complexity main block with low-
energy gates that could have high error levels. The errors are compensated 

by a low-complexity estimator using low-error blocks and a fusion block 

that determines the best estimate of the output using the outputs of the main 
block and the estimator. The concept is applied to a support vector machine 

classifier for EEG seizure detection. A 1013-fold increase in tolerable device 

rates while maintaining system performance has been reported. 
Stochastic computing46, which represents and processes information in 

the form of stochastic bit-streams, can exploit the unique characteristics of 

spintronic devices to realize computations in an energy-efficient manner47. 
In a stochastic computing system [Fig. 10(a)], binary numbers are 

converted to stochastic bit-streams using stochastic number generators 

(SNGs), processed using low-complexity stochastic processing units 
(SPUs), and converted back to binary using stochastic-to-binary converters 

 
 

Fig. 6 Types of NVPs: (a) NVP with explicit backup, (b) NVP with 

implicit backup, and (c) NVP with hybrid backup. 

 

Fig. 7. Energy/instruction comparing implicit, explicit, and hybrid 

backup/recovery strategies with different technologies. 

 
Figure 8. (a) Domain wall motion based spintronic device that acts as a 
building block for All-Spin Neural Networks. “Write” current through the 

heavy metal (HM) programs the domain wall position in the ferromagnet 

(FM), which modulates the conductance of the MTJ, (b) A mono-domain 
FM lying on top of an HM switches probabilistically due to flow of charge 

current through the HM. 
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Fig. 9: The result of exact (left, PSNR=35.29) and approximate (right, 

PSNR=30.76) JPEG computations. 



 

 

(SBCs). Additionally, stochastic bit-stream perimeters (SBPs) are used to 
ensure that the inputs to SPUs are uncorrelated. A key advantage of 

spintronics in realizing stochastic computing systems is that the SNGs, 

STBs and SBPs can be realized in a highly compact and power-efficient 
manner, as illustrated in Fig. 10(b) and 10(c). A second key advantage is 

that the low complexity and logic depth of the processing units masks the 

inefficiencies of stochastic logic such as static power and slow switching 
time. Third, the processing units can be operated with lower switching 

currents and/or switching times, resulting in improved energy efficiency at 

the cost of errors, which can be tolerated by the intrinsically fault-tolerant 
nature of stochastic computing. Although stochastic computing does suffer 

from higher processing latency due to the serial nature of stochastic bit-

streams, the fine-grained parallelism across bits in a bitstream can be 
leveraged for vectorization or pipelining. Evaluations on a suite of signal 

processing, CMOS image processing and machine learning benchmarks 

suggest that spin-based stochastic logic implementations were ~9X more 
energy efficient than CMOS. 

2.6 Spin-based Probabilistic Computing  

Conventional logic and memory devices use stable deterministic units 

such as standard MOS transistors, or nanomagnets, with energy barriers in 
excess of 40−60 kT, which represent a bit (0 or 1). A very different paradigm 

is based on a “p-bit” that continuously fluctuates between 0 and 1, a behavior 

that arises naturally from the physics of low barrier nanomagnets. 
Such stochastic nanomagnets can be driven by the spin current from a spin-

Hall material to construct a three-terminal unit (Fig.10a) whose output mi(t) 

fluctuates between 0 and 1 with a mean value that can be tuned with an 
analog signal Ii(t) applied to the input terminal (Fig.10b). We call this tunable 

random bit generator a p-transistor. If these can be interconnected to build p-

circuits, a new class of circuits could provide novel functionality. This not 
only includes non-Boolean functions like optimization and inference48, 49, but 

also precise Boolean logic that is invertible unlike standard digital circuits50, 

51. 
The compact model50 describing such p-circuits is essentially the same 

as the equations for Boltzmann machines52, 53, which are key to machine 

learning, but are usually implemented in software. The physics of low 
barrier nanomagnets driven by the spin-Hall effect provides a natural 

hardware for p-transistors that could be built out of state-of-the-art 

materials and phenomena. Other p-transistor realizations are also possible. 
Large numbers of p-transistors (Fig. 11(a)) can be interconnected into 

networks (Fig. 11(c)) of correlated p-bits that can perform many novel 

functions. Fig. 11(d) shows an example of a 32-bit adder implemented using 
an interconnected network of nearly 500 p-bits. Initially, when the 

connections are weak relative to the noise, the sum bits (S) fluctuate in an 

uncorrelated manner. But once the connections are turned on, they overcome 
the noise, and the magnets get precisely correlated to converge on the one 

correct answer out of 233 (~ 8 billion) possibilities. When we quench a 

molten liquid we expect a solid full of uncontrolled defects. Instead our 

design yields a perfect crystal every time50. Remarkably, the adder is 

invertible as well. For example, when the output (S) is clamped to a fixed 
number, the inputs (A) and (B) fluctuate in a correlated manner to make 

A+B=S. This ability of a system to implement the inverse function has far-

reaching possibilities. For example, we have shown that a 4-bit multiplier 
acting in the inverse mode performs integer factorization, suggesting that 

probabilistic computers based on robust room temperature p-bits could 

provide practically useful solutions to many challenging problems by rapidly 
sampling the phase space in hardware.  

We are currently using SPICE simulations to evaluate the energy and delay 

for different realizations of p-transistors which compare well with standard 
CMOS implementations 54  since the randomness and the summation of 

multiple inputs come naturally from the underlying physics 55 . More 

importantly, p-transistors can enable functionalities such as invertible logic 
that are truly novel compared to existing digital logic. 

3 SPINTRONIC DEVICE BENCHMARKING 

The recent benchmarking research for Boolean circuits, such as 32-bit 

adders, has projected a limited performance gain for only a few beyond-

CMOS device candidates 56 . Research in beyond-CMOS devices is 
progressing fast, and the proposed devices are being continuously revised 

and reinvented. While such innovations are hard to predict, there is little 

doubt that they will make emerging devices more competitive. However, one 
needs to recognize that conventional CMOS devices and their corresponding 

circuits and architectures have evolved together over many years. Some of 

the emerging beyond-CMOS devices offer fundamentally different (and in 
some cases unique) characteristics requiring novel and nontraditional circuit 

concepts to realize their full potential.  

To better utilize emerging spin-based technologies, alternative non-
Boolean platforms based on neuromorphic circuits are quite attractive57,58,59. 

Biologically-inspired computing platforms are highly efficient for solving 

many problems, particularly in voice, image, and video processing, by taking 
advantages of massive parallel low-power computing blocks60, 61. Fig. 12 

shows results from a uniform non-Boolean benchmarking performed for a 

variety of beyond-CMOS devices based on the Cellular Neural Network 
(CeNN) architecture. The CeNN is a suitable platform for benchmarking 

because a variety of charge- and spin-based devices can be used to 

 
Fig. 11 (a) A possible implementation of a p-transistor to generate the 

required input-output characteristics for a p-bit combining a spin-Hall 

metal and an MTJ with a low-barrier free layer. (b) The input-output 
characteristics of the idealized p-bit based on the generic model. The 

blue line shows the real-time response of the p-bit, and the red line is 

the RC averaged p-bit value that follows a sigmoidal behavior. (c) A 
network of correlated p-bits operating as a p-circuit. (d) An example 

illustrating a p-circuit used to implement precise Boolean logic: a 32-
bit adder implemented using a network of p-bits. Remarkably, the 
operation is invertible as discussed in the text. 

 
Fig. 10: Spin-based stochastic computing system 
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implement CNNs efficiently62,63,64. Moreover, the mathematical framework 
for CNN circuits is well-defined and understood, facilitating benchmarking 

of various implementations for a given task and desired accuracy.  

For the charge-based CNN implementation, CMOS HP and LV devices 
are employed to quantify the performance of the digital CNN and to compare 

against their analog counterparts. Comparing the benchmarking results for 

Boolean and non-Boolean circuits65, shown in reference 56 and Fig. 12, 
respectively, spintronic devices shift much closer to the preferred corner and 

are competitive compared to charge-based devices. This is because a single 

magnet can mimic the functionality of a neuron and these spintronic devices 
operate at a low supply voltage. The domain wall device provides the best 

performance in terms of the EDP thanks to its low critical current 

requirement.  

 

4 CHALLENGES AND OPPORTUNITIES 

Several challenges remain for future spintronic devices and materials. If 

the switching speed can be improved through experimental demonstrations, 
more impactful applications will be expected. Fig. 13 summarizes the 

experimental demonstration and theoretical prediction of nanomagnet 

switching speeds for various switching mechanisms14, 15, 16,17, 66,67,68,19,69,70,71. 
A demonstration of switching at 10ps could happen in the near future.  

 There are many remaining challenges to develop practical materials that 
could further reduce the operation voltage of spintronic devices down to 

several tens of mV. Future research should emphasize heterostructured, 

hybrid, and composite materials that could meet a package of strict device 
requirements and be implemented for future spintronic devices and systems. 

5 OUTLOOK 

In summary, we have reviewed the opportunities and challenges of 

spintronic devices and several selected enabled circuits and architectures.  

We believed that MRAM would become the mainstream embedded NV 
memory nearly a decade ago. The recent experimental and theoretical 

progress on spintronic materials and devices further confirm its potential to 

go beyond memory applications, e.g. cognitive computing and memory 
chips. This is not only based on the fundamental potential of the projected 

operation energy (60 kBT) of nanomagnets, but also on the unique package 

of primitive functions of spintronic devices such as superior endurance 
performance and easily implemented dot product position as shown in Fig. 

14. Fig. 14 also shows both the bottom-up and top-down views between 

spintronic devices and important applications.  
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