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ABSTRACT
A wide variety of error tolerant applications supports the
use of approximate circuits that achieve power savings by
introducing small errors. This paper proposes a fast and
novel algorithm for the design of such circuits with the goal
of maximizing power savings, constrained by a fixed error
budget, through an analytical expression to optimally se-
lect the number of bits to be approximated. This algorithm
outperforms uniform approximation schemes by over 30% in
power savings, with negligible computational overhead.

1. INTRODUCTION
Approximate computing has emerged as a new and promis-

ing paradigm [1,2] for low power design. This approach uses
circuits that deliberately introduce errors to reduce power
dissipation, leveraging the inherent error resilience of cer-
tain applications to produce good enough results within a
specific error margin. Such applications include (but are not
limited to) signal processing, multimedia, data mining and
other non-safety-critical domains [3, 4].
Approximate computing has been explored using circuit

level design [5–8] as well as gate-level synthesis [9]. At
higher levels of design, [10] and [11] perform various high
level synthesis transformations on abstract syntax trees and
directed acyclic graphs (DAGs) representing a circuit, re-
spectively, with consideration of approximate components.
These methods use coarse-grained decisions to choose among
a few approximation options in conjunction with other high
level decisions such as scheduling and binding.
We propose SABER, an optimization framework at the

register transfer level that is solely focused on the tradeo↵
between approximation with power, but deployed at a much
finer granularity level than [10] and [11]. More specifically,
our optimization can continuously decide how many bits to
be approximated for each arithmetic operation in a design.
The input to our optimization framework is the dataflow

graph of the circuit, represented as a DAG whose nodes
correspond to arithmetic units that can potentially be ap-
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proximated, and whose edges indicate the connections be-
tween these units. Our formulation maximizes the num-
ber of approximation bits in a circuit (which translates to
power/area minimization) so that it uses minimal resources
under a specified error budget. This work demonstrates re-
sults on fixed-point integer arithmetic operations. For con-
venience, in our exposition we assume operands to be inte-
gers since fractional operands can easily be scaled to integers
and back again through simple shift operations. To the best
of our knowledge, this is the first work on design optimiza-
tion through analytical methods considering approximation
at bit-level granularity. We develop an error model and a
fast heuristic such that the computing cost is very low and
highly scalable. This low cost provides the potential for our
technique to be frequently called in the inner loop of a high
level design-space exploration and optimization such as [10].
Our result serves as an initial solution for further refinement
by gate-level synthesis methods [9].

For a fair comparison, instead of comparing against a no-
approximation scheme (against which large improvements
are easy to show), we compare our approach with method-
ologies where uniform approximation is used to approximate
the circuit [5, 12], and demonstrate that our approach can
outperform such methodologies by over 30% in power sav-
ings, for similar error specifications. The contributions of
this paper are summarized as follows:

• Precharacterization: We perform gate level character-
ization of the error variance of multi-bit adders as a func-
tion of the number of approximated bits, starting from the
least significant bit (LSB). This step is a one-time e↵ort
for a library of approximate gates.

• Error Formulation: We propose a computationally ef-
ficient, and accurate framework for expressing the error
variance at the output of a DAG as a function of the
number of approximate LSBs within each of its nodes,
and model it as a nonlinear expression.

• Design Optimization: We formulate an optimization
problem to maximize the total approximation in a circuit,
constrained to an error budget. Since this optimization is
an integer non-linear programming problem, we propose
a heuristic to solve this NP-Hard problem. We generate
an accurate starting point, followed by a fast approach to
obtain the final solution in a simple, analytical form.

Through our optimization routine, we determine precisely
if and how each node of a DAG should be approximated and
optimize circuit performance under error specifications.

2. ERROR CHARACTERIZATION
The key ingredient of any methodology based on approx-

imate design is an accurate quantification of the error in-
jected into a computation by the approximation scheme. We



use the variance of this error as the error metric to be con-
strained within a user-specified budget. Here we obtain an
analytical expression of this error variance as a function of
the total approximation in a circuit.

Let us consider a circuit representing an arithmetic op-
eration with two N -bit operands, X and Y , producing an
output, Z. An approximate implementation of the hardware
unit yields the benefit of using fewer resources [1] than its
exact counterpart. Typically some of the LSBs can be al-
lowed to be erroneous, as this introduces a limited level of
approximation. Hence the hardware connected to y LSBs,
for example, is approximate, while that connected to the
(N � y) most significant bits (MSBs) is accurate. Clearly,
the higher the value of y, the greater is the power saving due
to the imprecise hardware, although the error is also higher.
We use the parameter, y, referred to as the number of ap-
proximate LSBs, to quantify the amount of approximation.

We present an approach for characterizing the error vari-
ance of a DAG whose nodes are candidates for approxima-
tion. We begin by obtaining the error variance of an adder
as a function of the number of approximate LSBs, y, in the
adder. Using this function, we show how we can compute
the error variance of any DAG whose nodes are approximate
adders. The results for the adder DAG can be generalized to
DAGs whose nodes contain adders, subtractors, multipliers,
and dividers since the fundamental element of these opera-
tions is an adder [13], with shifters being implemented by
appropriately routing the outputs of one DAG node to the
inputs of others.

2.1 Error Precharacterization for an Adder
We consider transistor-level approximation where an N -

bit approximate adder is implemented as an array of accu-
rate and approximate full adders (FAs). If the error due to
y approximate LSBs is e, then e can range from �(2y � 1)
to (2y�1), and its exact value depends on the inputs. Typi-
cally inputs are assumed to be uniformly distributed random
variables [5, 11]. Hence e, being a function of these inputs,
can be assumed to be a random variable as well. Let p

x

be
the probability of e to be x, where x 2 [�(2y � 1), (2y � 1)]
is an integer owing to y being an integer. The error means
are negligible compared to the variance [5]. Hence we are
concerned with the variance, �2

e

(y), given by:
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Due to the x2 term in Eq. (1), �2

e

(y) clearly depends on y.
If x is uniformly distributed between �(2y�1) and (2y�1),
p
x

= 1

2

y+1�1

, 8x, and �2

e

(y) = (2y+1 � 1)2/12. We also

evaluate �2

e

(y) for normally distributed x in the later part
of this section (Fig. 1). In fact, the exponential dependence
on y holds for most practical error distribution functions
(not just uniform or normal) for y  N/2, N being the
word-length of the adder. Additionally, using the fact that
�2

e

(y) should be zero for y = 0 (no approximation implies
zero error), the variance of e is formulated empirically as:

�

2

e

(y) = a(2by � 1) (2)

where a and b are constants, obtained by fitting the error
variance for di↵erent y, through Monte Carlo simulations.

In this paper we consider the specific transistor-level ap-
proximate FAs from [5] and the Lower-part-Or Adder (LOA)
from [14] for our analysis. For a particular type of N -bit ap-
proximate adder with y approximate LSBs (N = 10 consid-
ered here), each simulation proceeds by uniformly sampling
two inputs, X and Y , from [0, 2N � 1], to produce an ap-
proximate result, Z, and hence the corresponding error, e,

can be calculated. Since N is relatively small, we obtain the
variance of e for a particular y by exhaustive simulations.
This procedure is repeated for y = 0, · · · , N � 1, to obtain
a and b in Eq. (2) through regression analysis.

The results are summarized in Table 1. The first column
lists the type of adder studied in this work, followed by the
respective values of a and b, defined in Eq. (2), in the next
two columns, respectively. The fourth and fifth columns
list the adjusted R2 values which refer to the goodness of
the fit (R2 = 1 indicates that the fitted model explains all
variability) and the root mean square error (RMSE) values
of the fitted curve, respectively. Both the quantities indicate
that the model is a good fit for the actual data.

Table 1: Fitting parameters for adder error variance.

Adder type a b adjusted R2 RMSE
appx1 0.05 1.98 1.00 1.04
appx2 0.11 2.01 1.00 1.17
appx3 0.14 2.00 1.00 0.25
appx4 0.10 2.00 1.00 0.11
appx5 0.08 2.00 1.00 0.00
LOA 0.06 2.00 1.00 0.00

The simulations shown above assumed the two inputs, X
and Y , of the adder node to be statistically independent. In
a general scenario, the two inputs of an adder node within a
DAG may have some correlation. Furthermore their distri-
bution may not be uniform, as assumed in the above exper-
iment. To observe the e↵ect of a di↵erent input distribution
that is correlated, we perform 5000 Monte Carlo simulations
on 10-bit adders implemented using the FAs from Table 1,
first with two independent 10-bit Gaussian inputs, and then
with two correlated Gaussian inputs (⇢ = 0.5), altering the
number of approximate LSBs, y. We compare �2

e

(y), for
both cases with that obtained through our model, for di↵er-
ent values of y, as shown in Fig. 1.
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Figure 1: Error variance due to the uncorrelated and corre-
lated adder inputs as a function of y.

In spite of the correlation among the inputs, which are also
from a di↵erent distribution than what was used for prechar-
acterization, variances of the error generated by the adder
using a and b from Table 1, show an excellent match with
those obtained from Monte Carlo simulations. Intuitively,
this e↵ect arises because the change in the distribution and
correlation is more likely to a↵ect the higher order bits,
which are not approximated, and the distribution of the
lower order bits is close to uniform regardless of correla-
tion and for any reasonable distribution. Hence we consider
the generated adder errors as independent random variables
to compute the total error variance of a DAG (in Eq. (3)).

2.2 Error Computation of a DAG
Let us consider a DAG consisting of adders and multipliers

as shown in Fig. 2(a) with multiple primary inputs (PIs) and
outputs (POs). A pair of adder and multiplier from Fig. 2(a)



is highlighted in Fig. 2(b) to depict the implementation of
the multiplier by add and shift operations. Overall, the DAG
has T nodes, each representing an adder, and each edge is
associated with a shift operation, denoted by <<.
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Figure 2: (a) A DAG consisting of adders and multipliers,
(b) Representation of multipliers as shift and add operations.

Each node, n
i

, is indexed by the subscript, i 2 [1, T ], and
the fanout of n

i

is represented by F
i

. Each of the F
i

fanout
edges of n

i

is associated with a weight resulting from a shift
operation of s

ij

bits, such that j ranges from 1 to F
i

. This
nomenclature is depicted in Fig. 2(b).

Let the number of approximate LSBs in n
i

be represented
by y

i

, hence the generated error variance in n
i

is �2

e

(y
i

),
and is obtained by substituting y = y

i

in Eq. (2). The er-
ror generation among di↵erent approximate operations can
be assumed to be independent for all practical purposes.
However, error propagation exhibits structural correlation
since the approximation in n

i

not only a↵ects its immedi-
ate fanouts, but also those in its fanout cone, through the
edges (and the associated weights) connecting n

i

to a PO
via the transitive fanouts. We use the error sensitivity, �

i

,
of n

i

, to a PO, to capture the structural correlations within
the DAG. For a single PO, if an error, e, at n

i

results in
an error, E

i

, at the PO, then �
i

= E
i

/e is computed by a
depth-first search of the DAG [11]. The total error variance,
�2

t

, which is a commonly used error metric [8] in the DAG,
is obtained as:
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t

=
TX

i=1

�

2

e

(y
i

)�
i

=
TX

i=1

a(2byi � 1)�
i

(3)

where �
i

is alternatively called the � value of the node, n
i

.
When there are multiple POs in a DAG, to minimize error

on all the POs, we simply add a dummy (but accurate) adder
node with all the POs. This node is not a part of the design
but conceptually indicates the summation of error variances
of all nodes to compute the total error variance, �2

t

for a
multioutput circuit. The addition of this dummy node is
a simple device that enables the depth-first traversal of the
DAG to compute the � values of the real nodes.

3. OPTIMIZATION THROUGH SABER
In this section, we outline the SABER algorithm, which

yields the number of approximate LSBs in each node of the
DAG, maximizing the total power and area savings, while
satisfying a specified error budget.
We first explain our proposed optimization problem, which

is NP-Hard, and obtain a feasible solution by relaxing some
of the constraints, to make it tractable. Next we propose a
heuristic to solve the original problem, using the solution of
the relaxed problem.

3.1 The Optimization Problem
Let us consider a DAG with T adder nodes. The power

savings increase with increasing levels of approximation in

the DAG, and all components of the power savings (dynamic
and leakage) are proportional to the number of approximate
bits, i.e., the number of approximate FAs. For adders, the
proportionality of power savings to the number of approx-
imate FAs has been empirically observed in previous work
( [5] and [12]). Even for a multiplier node, the linear pro-
portionality holds true, because as discussed in Sec. 2.2, we
decompose it into its constituent FAs, and hence the power
savings are linear in the number of FAs in the decomposed
graph. Therefore, the total number of approximate LSBs in
the DAG,

P
T

i=1

y
i

, is a good surrogate objective function
that captures the essential trend of power savings, which we
aim to maximize. The total error variance, �2

t

, accumulated
as a result of this approximation is given by Eq. (3). If the
specified error variance budget is m, then �2

t

must be less
than m. We thus formulate the optimization problem as:

max
TX

i=1

y

i

, s.t
TX

i=1

a

⇣
2byi � 1

⌘
�

i

 m, y

i

2 Z+ (4)

where Z+ represents the set of non-negative integers. The
constraint, y

i

2 Z+, arises because the number of approx-
imate LSBs in a node cannot be negative or fractional. A
feasible solution to the problem, which satisfies the error
budget, always exists: it is the zero approximation solution.
However, generating the optimal solution is NP-Hard since
(4) is an integer non-linear problem. Hence we relax the opti-
mization problem, to make it tractable, and obtain a feasible
solution. For this, we first remove the constraint, y

i

2 Z+

in (4), and then convert the inequality constraint into an
equality, since the optimal solution for the new maximiza-
tion problem, will lie on the constraint surface. We obtain
the solution through Theorem 1.

Theorem 1 If the relaxed optimization from (4) is,

max
TX

i=1

y

i

, s.t
TX

i=1

a(2byi � 1)�
i

= m (5)

with �
i

being the error sensitivity used in Eq. (3), then the

solution, ey
i

, is obtained as:
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= Y �
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) (6)

where Y =
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Proof: We rewrite the optimization problem from (5) as:

max S = y

1

+
TX

i=2

y

i

(8)

s.t a(2by1 � 1)�
1

+
TX

i=2

a(2byi � 1)�
i

= m (9)

Hence using Eq. (9), we obtain y
1

as:

y
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log
2
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where ✓ = [m+ a�

1

� a

TX
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(2byi � 1)�
i

]/a�
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(11)

We rewrite, S = 1

b

log
2

✓+
P

T

i=2

y
i

, by substituting y
1

from
Eq. (10) in Eq. (8). To maximize S, we set @S

@yi
= 0.

) 2byi =
✓�

1

�

i

(12)

Substituting 2byi in Eq. (11) and simplifying, we obtain:

✓�

1

=

 
m+ a

TX

i=1

�

i

!
(aT )�1 (13)

We obtain the result by substituting ✓�
1

in Eq. (12). 2

Next we impose the constraint on y
i

s to be integers. Since
the ey

i

s from Eq. (6), are not guaranteed to be integers, we
use Lemma 1 to obtain a feasible solution.



Lemma 1 A feasible solution of (4) is given by bey
i

c, where
b.c represents the floor function, and ey

i

is the optimal solu-

tion of the relaxed problem, (5), and is defined in Eq. (6).

Proof: The left hand side (LHS) of the constraint in (4) is
a monotonically increasing function of the state variables.
Since, bey

i

c  ey
i

, if ey
i

is a feasible solution (i.e., ensures the
LHS to be less than m), then so is bey

i

c. 2

Since, the solution from Lemma 1 may be suboptimal, or
even negative, we propose heuristics to address these issues.

3.2 Heuristics to Solve the Original Problem
We attempt to obtain the number of approximate LSBs,

ŷ
i

, in node, n
i

, of the DAG in Fig. 2, by pushing the bey
i

cs
towards the constraint surface while ensuring non-negativity.

For this, we first define X = bY c (with Y defined in
Eq. (7)), so that each node now has X � 1

b

log
2

�
i

approxi-
mate LSBs. This expression arises out of Eq. (6), where we
apply the floor function only to a part of the solution, ey

i

.
Next we use Theorem 2 to obtain a parameter, K, denoting
the number of nodes to which we add one more approxi-
mate LSB while satisfying the error constraints, thus fur-
ther increasing the objective function in (4), while keeping
the solution, feasible.

Theorem 2 If the nodes of a DAG are indexed in the in-

creasing order of their � values, such that each node, n
i

,

has (X� 1

b

log
2

�
i

) approximate LSBs, where X = bY c, and
Y is defined in Eq. (7), then the number of first K nodes

to which one more approximate LSB can be added to satisfy

the error constraint, m, is given by:

K =

$ 
m+ a

TX

i=1

�

i

� a2bXT

!�⇣
a2bX(2b � 1)

⌘%
(14)

where T is the total number of adder nodes, and K < T .

Proof: Comparing the impact of adding one more approxi-
mate LSB to two nodes, n

1

and n
2

, with � values, �
1

and �
2

,
respectively, where �

1

< �
2

, we observe that n
1

introduces
lower error in the DAG compared to n

2

. In other words, for
the same increase in approximation, the total error incorpo-
rated is lower if we start increasing the number of approx-
imate LSBs in the nodes in the order of their increasing �
values. Hence we renumber the nodes in increasing order of
the � values in Theorem 2, so that ŷ

i

= bX � 1

b

log
2

�
i

+ 1c
for the first K nodes, while for the rest, ŷ

i

= bX� 1

b

log
2

�
i

c,
i 2 [1, T ]. The new error variance with the increased num-
ber of approximate LSBs should satisfy the error constraint,
m, in (5), such that,

KX

i=1

(2b(X� 1
b log2 �i+1) � 1)�

i

+
TX

i=K+1

(2b(X� 1
b log2 �i) � 1)�

i

=
m

a

Simplifying
⇣
2b(X� 1

b log2 �i) � 1
⌘
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as 2bX � �
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, we obtain:
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=
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i=1

(2b(X+1) � �
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) +
TX

i=K+1

(2bX � �

i

) (15)

Expanding the right hand side of Eq. (15), we obtain:

m = a2bX(2b � 1)K � a

TX

i=1

�

i

+ a2bXT (16)

Hence K is obtained by simplifying the above equation. Ad-
ditionally, K < T , since starting with bey

i

c, we can never
increase all the bey

i

cs by one and remain in the feasible re-
gion, because such an increment will lead to dey

i

e (d.e being
the ceiling function), and if it were in the feasible region,
Theorem 1 would have chosen that solution over ey

i

. 2

This analysis till now holds true even if some of the ŷ
i

s are
negative. However, since a negative ŷ

i

does not have any
physical meaning, we need to reassign these values to zero,
which in turn may violate the error constraint in (4). To ad-
dress this non-trivial issue we propose Algorithm 1 to obtain
non-negative approximate LSBs while satisfying the error
budget, m. Algorithm 1 first resets the negative ŷ

i

s to zero,
and then, by decreasing the other ŷ

i

s, computes the error to
be compensated for. This compensation is performed by re-
ducing ŷ

i

of the nodes corresponding to the highest �
i

value
as much as possible, before proceeding to the next with the
second highest � value, and so on. The complexity of our
algorithm is dominated by the sorting of nodes in term of
their � values, so that the overall complexity is O(T log T ).

Algorithm 1 Algorithm to ensure non-negativity of ŷ
i

.

Input: ŷ
1

,· · · ,ŷ
T

values with decreasing order of � values.
Input: Error constraint, m, of the optimization problem

in (4).
Output: Updated non-negative ŷ

1

,· · · ,ŷ
T

values.
1: Initialize C  0 //Need to compensate error by C
2: for each j from 1 to T do
3: if ŷ

j

< 0 then
4: ŷ

j

 0 //Setting negative ŷ
j

to 0
5: end if
6: C  C + a(2bŷj � 1)�

j

//Error from positive ŷ
j

s
7: end for
8: if C �m < 0 then
9: exit //Resetting ŷ

j

to 0 did not violate error
10: end if
11: Set C  C �m //Compensate by C �m, * C � m
12: for each i from 1 to T with decreasing order of �

i

do
13: if C  a(2bŷi � 1)�

i

then

14: Find Z where (2bŷi � 1)� (2b(ŷi�Z) � 1) = C

a�i

15: ŷ
i

 ŷ
i

� dZe
16: exit
17: else
18: C  C � a(2bŷi � 1)�

i

19: ŷ
i

 0
20: end if
21: end for

4. EXPERIMENTAL RESULTS
We implement SABER in MATLAB R2015b on a 64-bit

Ubuntu server with a 3GHz Intel® Core™2 Duo CPU E8400
processor. We consider the appx5 approximate adder which
uses transistor-level approximation [5] for our analysis, and
consider two examples to demonstrate SABER.

4.1 Optimization Results on an Example DAG
First we demonstrate the results of using SABER through

an example structure, DAG10, with ten nodes, as shown in
Fig. 3. Each node, n

i

, can be represented by a 20-bit adder,
where the approximation is introduced by replacing y

i

LSB
FAs with approximate FAs. A dummy node has been added
as explained in Sec. 2.2, to obtain the error sensitivity (i.e.,
the � value) of the other nodes to the output. Each �

i

is
obtained by finding the number of paths from n

i

through a
depth-first search of the DAG considering the edge weights,
and is depicted in Fig. 3.

We demonstrate our results for three error variance bud-
gets, m = 1K, 10K, 100K, corresponding to the allowable
error variance at the output of the dummy node. For com-
parison purposes, we consider the commonly-used uniform
approximation case (e.g., in [5, 12]), when the number of
approximate bits in each node is identical.

Using SABER, we compute the number of approximate
LSBs in each of the ten nodes, whose distributions among
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Figure 4: Distribution of the number of approximate LSBs
over the ten nodes of DAG10.

the nodes are depicted in Fig. 4 for the three error variance
budgets, m. Since the uniform approximation results in the
same number of approximate LSBs in each node, it is de-
picted by the stem plot, with a single stem of height ten, the
rest being zero, in the same figure. Due to the dependence
of the number of approximate LSBs in a node on its � value
through Eq. (6), the distributions in Fig. 4 are also deter-
mined by the distribution of � values. As m increases, more
approximation is possible, and this is seen by the rightward
horizontal shift in the bar charts.

Table 2: Total number of approximate FAs by SABER and
the uniform approximation case for di↵erent error budgets.

Target, m Achieved, �2

t

Total approximate LSBs Power savings (%)
(⇥103) (⇥103) SABER Uniform SABER Uniform

1.00 0.98 19 LSBs 0 LSB 9.50 0.00
10.00 9.49 44 LSBs 10 LSBs 22.00 5.00

100.00 92.88 58 LSBs 20 LSBs 29.00 10.00

The target, m, and the actual error variance, �2

t

, arising
out of the three approximate configurations, are listed in
the first two columns of Table. 2. The di↵erence between
them arises due to the relaxation of the original problem
in (4), and application of the proposed heuristics to make
our solution feasible. However, this di↵erence is less than
8% for all three cases, indicating the e↵ectiveness of our
methodology. The total number of approximate LSBs by
SABER and the uniform approximation case, are listed in
the next two columns of Table. 2, indicating that SABER
clearly outperforms the uniform approximation for DAG10,
from which power savings are calculated and listed in the
last two columns. The proportionality constant between the
number of approximate FAs and percentage power savings
is 0.5%, as evident from the last four columns of the table,
since each adder node is 20-bit, and 10 such adder nodes in
the DAG lead to a total of 1/200⇥100=0.5% approximate
FAs for each approximate LSB within the DAG. Since we use
appx5 version of FA for approximation, the power savings
for the entire DAG is also scaled by the same factor (0.5%)
as appx5 has negligible power consumption compared to the
exact FA [5]. Hence approximating k LSB FAs in the DAG
leads to 0.5k% power savings, which is accurate to a first

order to indicate the advantage of using SABER to maxi-
mize power savings over the uniform approximation, without
performing logic synthesis.

4.2 Optimization Results on FIR Filters
We evaluate our algorithm on a real-world example, by

checking the sound quality of filtered signals from an approx-
imate finite impulse response (FIR) filter. The results of fil-
tering by approximate filters designed through SABER have
been summarized within a compressed folder and uploaded
to http://conservancy.umn.edu/handle/11299/185544. The
signals under study comprise of 150K samples of eight dif-
ferent genres of audio clips [15] sampled at their prespecified
frequency of 22.05KHz [16] and mixed with a high frequency
noise. We constrain the signal to noise ratio (SNR) degra-
dation between an exact filter and an approximate filter to
be 50dB, to ensure comfortable loudness and clarity.
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Figure 5: An FIR filter with symmetric coe�cients [17].

The normalized pass band and stop band frequencies1 of
the FIR filter are 0.50 and 0.65, respectively, and the mini-
mum order filter that MATLAB generated, had order=33.

The filter coe�cients have been scaled by 1024 to facilitate
integer arithmetic. All adders have word length of 20 bits,
and the multiplications are implemented by array multipliers
with add and shift operations. Since the coe�cients are
symmetric in an order-N FIR filter, we can reuse multipliers
[17], resulting in only dN/2e multipliers and N adders, as
shown in Fig. 5. In our order-33 FIR filter, the first 16
coe�cients could be implemented simply by 30 adders (and
shifters) based on their binary decomposition. Additionally
the filter requires 33 adders. Hence the resulting DAG for
the optimization problem in (4) has T = 63 nodes.
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Figure 6: Tradeo↵ plot of SNR degradation with error vari-
ance in the FIR filter used to select the error budget.

To formulate the optimization problem, we need the er-
ror variance budget for each audio clip. Since the di↵erent

1Normalized pass (stop) band frequency is twice the ratio of the
actual pass (stop) band frequency to the sampling frequency [18].



genres of music are di↵erently sensitive to approximation in
the FIR filter, we select the respective error budgets from
the tradeo↵ plot of SNR degradation versus error variance
for each clip as depicted in Fig. 6. We obtain this plot by
sweeping the error variance, m, to first obtain di↵erent con-
figurations of approximate filters using SABER. We then
filter the noisy signal using each such filter and compute the
SNR degradation from the accurately filtered signal. Using
this plot, we can select the target error variance, m, for var-
ious target SNR degradation values, an example of which is
shown for 50dB by the line in Fig. 6. This plot can be gen-
erated very quickly since SABER takes less than a second
to generate one configuration of the approximate filter.

For demonstration purposes, we select three values of m
(m = 100K, 200K, 400K) from Fig. 6, to obtain three di↵er-
ent approximate filters. The number of approximate LSBs
in each node of the FIR filter for each m is then obtained
by SABER, whose distribution among the 63 adder nodes
is depicted in Fig. 7. The stem plots depicting the corre-
sponding uniform approximation case are also provided in
the same figures as reference.
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Figure 7: Distribution of the number of approximate LSBs
over the 63 nodes of the FIR filter.

The power requirement of the approximate filters as a
fraction of that of the accurate filter is listed in Table 3.

Table 3: Power dissipation of the approximate filters by
SABER and uniform approximation, for three values of error
budget, m, compared to the accurate filter.

m = 100K m = 200K m = 400K
SABER 0.73⇥ 0.70⇥ 0.66⇥
Uniform approximation 0.95⇥ 0.95⇥ 0.90⇥
Improvement in power 30.14% 35.71% 36.36%

The second column denotes the values corresponding to the
filter obtained by SABER with m = 100K, and by uniform
approximation in the first two rows, respectively. The last
row shows the percentage improvement of our method over
the uniform approximation case for this m. Clearly, our
algorithm not only achieves over 27% power savings over
the exact implementation, but also outperforms the uniform
approximation case by over 30%. These numbers increase
as m is increased as seen from the last two columns of the
table. Obtaining the solution through SABER can thus lead
to significant power savings over the existing methodologies.

Table 4: SNR degradation (in dB) between the accurately
filtered signal and those from the approximate filters con-
structed for di↵erent error budgets, m, using SABER.
Genre! country rock hiphop pop disco blues metal reggae
m = 100K 58.24 56.57 54.28 54.12 53.55 52.77 51.17 50.47
m = 200K 55.62 53.93 51.69 51.53 50.90 50.16 48.58 47.87
m = 400K 53.03 51.39 49.12 49.00 48.37 47.65 46.03 45.34

The resulting SNR degradations for the eight audio clips
while using the three filters are summarized in Table 4. The

audio clips are listed in the first row, and the SNR degrada-
tions for the error variance budgets, m=100K, 200K, 400K,
are listed in the next three rows, respectively. The values
are all around 50dB for all m, indicating that the user ex-
perience is not compromised in spite of the approximations
in the filter, which can be verified by playing the audio clips
from http://conservancy.umn.edu/handle/11299/185544.
For each clip, the site contains the noisy version, the exact
filtered version, and filtered versions corresponding to the
three error variance budgets, m, respectively.

5. CONCLUSION
We have proposed a bit-level optimization framework to

design approximate circuits under specified error budgets,
built upon an analytical expression for the number of ap-
proximate LSBs for each computational unit. The runtimes
to obtain an approximate configuration of a DAG are shown
to be very small due to the closed form solution, and out-
performs the conventional approximation methods by over
30% in power savings.
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